Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The catalytic diversity of RNAs

Key Points

  • Small self-cleaving ribozymes catalyse the same reversible phosphodiester-cleavage reaction, but can adopt different structures and use distinct catalytic strategies. These catalytic RNAs do not require metal-cation cofactors and instead use active-site nucleotide bases for their catalytic chemistry.

  • Structural and biochemical studies of the hepatitis delta virus ribozyme are consistent with models in which an active-site cytosine activates the nucleophile through general base catalysis, whereas a metal-bound water protonates the leaving group. In an alternative model, these roles are reversed and the metal-bound water accepts a proton to activate the nucleophile, whereas cytosine mediates general acid catalysis to stabilize the leaving group.

  • Structural studies of the hairpin ribozyme place two active-site nucleobases near the reactive phosphate where hydrogen-bonding interactions provide electrostatic stabilization to the transition state. The nucleobase that interacts with the bridging 5′ oxygen might also mediate general acid–base catalysis.

  • Biochemical studies support a three-metal model for group-I intron splicing, in which catalytic metal cations activate nucleophiles, stabilize leaving groups and position reactants in the appropriate geometry. Structural studies have so far identified only two active-site metals.

  • The catalytic chemistry that is mediated by ribosomal RNA in the peptidyl-transferase centre of the ribosome focuses on peptide release, whereas the 2′ hydroxyl of the P-site tRNA is important for peptide-bond formation.

Abstract

The natural RNA enzymes catalyse phosphate-group transfer and peptide-bond formation. Initially, metal ions were proposed to supply the chemical versatility that nucleotides lack. In the ensuing decades, structural and mechanistic studies have substantially altered this initial viewpoint. Whereas self-splicing ribozymes clearly rely on essential metal-ion cofactors, self-cleaving ribozymes seem to use nucleotide bases for their catalytic chemistry. Despite the overall differences in chemical features, both RNA and protein enzymes use similar catalytic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hepatitis delta virus ribozyme structure and mechanism.
Figure 2: Hairpin ribozyme structure and mechanism.
Figure 3: Hammerhead ribozyme structure.
Figure 4: Group-I intron catalysis of self-splicing.
Figure 5: The ribosomal catalysis of protein synthesis.

Similar content being viewed by others

References

  1. The RNA World, 2nd edn (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) (Cold Spring Harbor Laboratory Press, New York, 1999).

  2. Yusupov, M. M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    CAS  PubMed  Google Scholar 

  3. Nissen, P., Hansen, J., Ban, N., Moore, P. & Steitz, T. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000). The crystal structures of the large ribosomal subunit and of complexes with two substrate analogues demonstrate that the ribosome is a catalytic RNA and identify the nucleotide functional groups in the RNA active site.

    CAS  PubMed  Google Scholar 

  4. Winkler, W. C., Nahvi, A., Roth, A., Collins, J. A. & Breaker, R. R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004).

    CAS  PubMed  Google Scholar 

  5. Teixeira, A. et al. Autocatalytic RNA cleavage in the human β-globin pre-mRNA promotes transcription termination. Nature 432, 526–530 (2004).

    CAS  PubMed  Google Scholar 

  6. Pley, H. W., Flaherty, K. M. & McKay, D. B. Three-dimensional structure of a hammerhead ribozyme. Nature 372, 68–74 (1994).

    CAS  PubMed  Google Scholar 

  7. Scott, W. G., Finch, J. T. & Klug, A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81, 991–1002 (1995).

    CAS  PubMed  Google Scholar 

  8. Scott, W. G., Murray, J. B., Arnold, J. R., Stoddard, B. L. & Klug, A. Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science 274, 2065–2069 (1996).

    CAS  PubMed  Google Scholar 

  9. Murray, J. B., Szoke, H., Szoke, A. & Scott, W. G. Capture and visualization of a catalytic RNA enzyme–product complex using crystal lattice trapping and X-ray holographic reconstruction. Mol. Cell 5, 279–287 (2000).

    CAS  PubMed  Google Scholar 

  10. Scott, W. G. Visualizing the structure and mechanism of a small nucleolytic ribozyme. Methods 28, 302–306 (2002).

    CAS  PubMed  Google Scholar 

  11. Murray, J. B. et al. The structural basis of hammerhead ribozyme self-cleavage. Cell 92, 665–673 (1998).

    CAS  PubMed  Google Scholar 

  12. Scott, W. G. Biophysical and biochemical investigations of RNA catalysis in the hammerhead ribozyme. Q. Rev. Biophys. 32, 241–284 (1999).

    CAS  PubMed  Google Scholar 

  13. Ferré-D'Amaré, A. R., Zhou, K. & Doudna, J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature 395, 567–574 (1998). The crystal structure of the 3′ product of the HDV ribozyme self-cleavage places C75 in a solvent-inaccessible cleft near the 5′-oxygen leaving group, where it might mediate general acid catalysis. There is no evidence of an active-site metal ion.

    Google Scholar 

  14. Ke, A., Zhou, K., Ding, F., Cate, J. H. & Doudna, J. A. A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature 429, 201–205 (2004). The crystal structure of an uncleaved HDV ribozyme inactivated by a C75U mutation shows U75 near the 2′-oxygen nucleophile, where the wild-type C75 nucleotide base might mediate general base catalysis, and a divalent metal in position for a water-mediated interaction with the 5′-oxygen leaving group.

    CAS  PubMed  Google Scholar 

  15. Rupert, P. B. & Ferré-D'Amaré, A. R. Crystal structure of a hairpin ribozyme–inhibitor complex with implications for catalysis. Nature 410, 780–786 (2001). The crystal structure of the hairpin ribozyme in complex with an uncleavable substrate analogue shows nucleophilic and leaving group oxygens in the appropriate alignment for an S N 2-type attack mechanism and places the Watson–Crick face of G8 near the reactive phosphate.

    CAS  PubMed  Google Scholar 

  16. Rupert, P. B., Massey, A. P., Sigurdsson, S. T. & Ferré-D'Amaré, A. R. Transition state stabilization by a catalytic RNA. Science 298, 1421–1424 (2002). The crystal structure of a hairpin ribozyme complex with vanadate, a transition state mimic, shows interactions with functional groups on the Watson–Crick faces of G8 and A38.

    CAS  PubMed  Google Scholar 

  17. Adams, P. L., Stahley, M. R., Kosek, A. B., Wang, J. & Strobel, S. A. Crystal structure of a self-splicing group I intron with both exons. Nature 430, 45–50 (2004). The crystal structure of a pre-tRNA intron with both exons that is inactivated by deoxynucleotide substitutions shows the 3′ oxygen of the 5′ exon in position for a nucleophilic attack on the reactive phosphate. The active site contains two of the three active-site metals that have been implicated in the catalysis of self-splicing by biochemical experiments.

    CAS  PubMed  Google Scholar 

  18. Guo, F., Gooding, A. R. & Cech, T. R. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol. Cell 16, 351–362 (2004).

    CAS  PubMed  Google Scholar 

  19. Adams, P. L. et al. Crystal structure of a group I intron splicing intermediate. RNA 10, 1867–1887 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Golden, B. L., Kim, H. & Chase, E. Crystal structure of a phage Twort group I ribozyme–product complex. Nature Struct. Mol. Biol. 12, 82–89 (2005).

    CAS  Google Scholar 

  21. Moore, P. B. & Steitz, T. A. After the ribosome structures: how does peptidyl transferase work? RNA 9, 155–159 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Green, R. & Lorsch, J. R. The path to perdition is paved with protons. Cell 110, 665–668 (2002).

    CAS  PubMed  Google Scholar 

  23. Benkovic, S. & Schray, K. in The Enzymes Vol. 8 (ed. Boyer, P. D.) 201–238 (Academic Press, New York, 1973).

    Google Scholar 

  24. Knowles, J. R. Enzyme-catalyzed phosphoryl transfer reactions. Annu. Rev. Biochem. 49, 877–919 (1980).

    CAS  PubMed  Google Scholar 

  25. Steitz, T. A. & Steitz, J. A. A general two-metal mechanism for catalytic RNA. Proc. Natl Acad. Sci. USA 90, 6498–6502 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shih, I. & Been, M. D. Catalytic strategies of the hepatitis delta virus ribozymes. Annu. Rev. Biochem. 71, 887–917 (2002).

    CAS  PubMed  Google Scholar 

  27. Ferré-D'Amaré, A. R. & Doudna, J. A. Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA-binding protein U1A as a crystallization module. J. Mol. Biol. 295, 541–556 (2000).

    PubMed  Google Scholar 

  28. Hampel, A. & Cowan, J. A. A unique mechanism for RNA catalysis: the role of metal cofactors in hairpin ribozyme cleavage. Chem. Biol. 4, 513–517 (1997).

    CAS  PubMed  Google Scholar 

  29. Nesbitt, S., Hegg, L. A. & Fedor, M. J. An unusual pH-independent and metal-ion-independent mechanism for hairpin ribozyme catalysis. Chem. Biol. 4, 619–630 (1997).

    CAS  PubMed  Google Scholar 

  30. Young, K. J., Gill, F. & Grasby, J. A. Metal ions play a passive role in the hairpin ribozyme catalysed reaction. Nucleic Acids Res. 25, 3760–3766 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Murray, J. B., Seyhan, A. A., Walter, N. G., Burke, J. M. & Scott, W. G. The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem. Biol. 5, 587–595 (1998).

    CAS  PubMed  Google Scholar 

  32. Perrotta, A. T., Shih, I. & Been, M. D. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science 286, 123–126 (1999).

    CAS  PubMed  Google Scholar 

  33. Lupták, A., Ferré-D'Amaré, A. R., Zhou, K., Zilm, K. W. & Doudna, J. A. Direct pKa measurement of the active-site cytosine in a genomic hepatitis delta virus ribozyme. J. Am. Chem. Soc. 123, 8447–8452 (2001).

    PubMed  Google Scholar 

  34. Oyelere, A. K., Kardon, J. R. & Strobel, S. A. pKa perturbation in genomic hepatitis delta virus ribozyme catalysis evidenced by nucleotide analogue interference mapping. Biochemistry 41, 3667–3675 (2002).

    CAS  PubMed  Google Scholar 

  35. Nakano, S., Chadalavada, D. M. & Bevilacqua, P. C. General acid–base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science 287, 1493–1497 (2000).

    CAS  PubMed  Google Scholar 

  36. Shih, I. & Been, M. D. Involvement of a cytosine side chain in proton transfer in the rate-determining step of ribozyme self-cleavage. Proc. Natl Acad. Sci. USA 98, 1489–1494 (2001). Changes in the pH-rate profiles that result from cytosine mutations and the rescue of cytosine mutations with exogenous imidazole analogues implicate an active-site cytosine in general acid–base catalysis of HDV ribozyme self-cleavage.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Toney, M. & Kirsch, J. Direct Brønsted analysis of the restoration of activity to a mutant enzyme by exogenous amines. Science 243, 1485–1488 (1989).

    CAS  PubMed  Google Scholar 

  38. Jencks, W. P. Catalysis in Chemistry and Enzymology 163–242 (Dover Publications, New York, 1969).

    Google Scholar 

  39. Nakano, S., Proctor, D. J. & Bevilacqua, P. C. Mechanistic characterization of the HDV genomic ribozyme: assessing the catalytic and structural contributions of divalent metal ions within a multichannel reaction mechanism. Biochemistry 40, 12022–12038 (2001).

    CAS  PubMed  Google Scholar 

  40. Fedor, M. J. Structure and function of the hairpin ribozyme. J. Mol. Biol. 297, 269–291 (2000).

    CAS  PubMed  Google Scholar 

  41. Walter, N. G., Hampel, K. J., Brown, K. M. & Burke, J. M. Tertiary structure formation in the hairpin ribozyme monitored by fluorescence resonance energy transfer. EMBO J. 17, 2378–2391 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Walter, N. G., Burke, J. M. & Millar, D. P. Stability of hairpin ribozyme tertiary structure is governed by the interdomain junction. Nature Struct. Biol. 6, 544–549 (1999).

    CAS  PubMed  Google Scholar 

  43. Zhao, Z., Wilson, T., Maxwell, K. & Lilley, D. The folding of the hairpin ribozyme: dependence on the loops and the junction. RNA 6, 1833–1846 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hampel, A. & Tritz, R. RNA catalytic properties of the minimum (−)sTRSV sequence. Biochemistry 28, 4929–4933 (1989).

    CAS  PubMed  Google Scholar 

  45. Fedor, M. J. Tertiary structure stabilization promotes hairpin ribozyme ligation. Biochemistry 38, 11040–11050 (1999).

    CAS  PubMed  Google Scholar 

  46. Yadava, R., Choi, A., Lebruska, L. & Fedor, M. Hairpin ribozymes with four-way helical junctions mediate intracellular RNA ligation. J. Mol. Biol. 309, 893–902 (2001).

    CAS  PubMed  Google Scholar 

  47. Klostermeier, D. & Millar, D. P. Tertiary structure stability of the hairpin ribozyme in its natural and minimal forms: different energetic contributions from a ribose zipper motif. Biochemistry 40, 11211–11218 (2001).

    CAS  PubMed  Google Scholar 

  48. Ferré-D'Amaré, A. R. & Rupert, P. B. The hairpin ribozyme: from crystal structure to function. Biochem. Soc. Trans. 30, 1105–1109 (2001).

    Google Scholar 

  49. Ryder, S. P. & Strobel, S. A. Comparative analysis of hairpin ribozyme structures and interference data. Nucleic Acids Res. 30, 1287–1291 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ferré-D'Amaré, A. R. The hairpin ribozyme. Biopolymers 73, 71–78 (2004).

    PubMed  Google Scholar 

  51. van Tol, H., Buzayan, J. M., Feldstein, P. A., Eckstein, F. & Bruening, G. Two autolytic processing reactions of a satellite RNA proceed with inversion of configuration. Nucleic Acids Res. 18, 1971–1975 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bevilacqua, P. C. Mechanistic considerations for general acid–base catalysis by RNA: revisiting the mechanism of the hairpin ribozyme. Biochemistry 42, 2259–2265 (2003).

    CAS  PubMed  Google Scholar 

  53. Pinard, R. et al. Functional involvement of G8 in the hairpin ribozyme cleavage mechanism. EMBO J. 20, 6434–6442 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuzmin, Y. I., Da Costa, C. C. & Fedor, M. J. Role of an active site guanine in hairpin ribozyme catalysis probed by exogenous nucleobase rescue. J. Mol. Biol. 340, 233–251 (2004).

    CAS  PubMed  Google Scholar 

  55. Lebruska, L. L., Kuzmine, I. I. & Fedor, M. J. Rescue of an abasic hairpin ribozyme by cationic nucleobases. Evidence for a novel mechanism of RNA catalysis. Chem. Biol. 9, 465–473 (2002).

    CAS  PubMed  Google Scholar 

  56. Kuzmin, Y. I., DaCosta, C. P., Cottrell, J. & Fedor, M. J. Contribution of an active site adenosine to hairpin ribozyme catalysis. J. Mol. Biol. (in the press).

  57. Hutchins, C. J., Rathjen, P. D., Forster, A. C. & Symons, R. H. Self-cleavage of plus and minus transcripts of avocado sunblotch viroid. Nucleic Acids Res. 14, 3627–3640 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Buzayan, J. M., Gerlach, W. L. & Bruening, G. Nonenzymatic cleavage and ligation of RNAs complementary to a plant virus satellite RNA. Nature 323, 349–353 (1986).

    CAS  Google Scholar 

  59. Burke, J. M. Hairpin and hammerhead ribozymes: how different are they? Biochem. Soc. Trans. 30, 1115–1118 (2002).

    CAS  PubMed  Google Scholar 

  60. Blount, K. F. & Uhlenbeck, O. C. The hammerhead ribozyme. Biochem. Soc. Trans. 30, 1119–1122 (2002).

    CAS  PubMed  Google Scholar 

  61. Hammann, C. & Lilley, D. M. Folding and activity of the hammerhead ribozyme. Chembiochem 3, 690–700 (2002).

    CAS  PubMed  Google Scholar 

  62. Blount, K. F. & Uhlenbeck, O. C. The structure–function dilemma for the hammerhead ribozyme. Annu. Rev. Biophys. Biomol. Struct. (in the press).

  63. McKay, D. B. Structure and function of the hammerhead ribozyme: an unfinished story. RNA 2, 395–403 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Peracchi, A., Beigelman, L., Scott, E. C., Uhlenbeck, O. C. & Herschlag, D. Involvement of a specific metal ion in the transition of the hammerhead ribozyme to its catalytic conformation. J. Biol. Chem. 272, 26822–26826 (1997).

    CAS  PubMed  Google Scholar 

  65. Wang, S., Karbstein, K., Peracchi, A., Beigelman, L. & Herschlag, D. Identification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate. Biochemistry 38, 14363–14378 (1999).

    CAS  PubMed  Google Scholar 

  66. Khvorova, A., Lescoute, A., Westhof, E. & Jayasena, S. D. Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nature Struct. Biol. 10, 708–712 (2003).

    CAS  PubMed  Google Scholar 

  67. De la Pena, M., Gago, S. & Flores, R. Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity. EMBO J. 22, 5561–5570 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Penedo, J. C., Wilson, T. J., Jayasena, S. D., Khvorova, A. & Lilley, D. M. Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements. RNA 10, 880–888 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Canny, M. D. et al. Fast cleavage kinetics of a natural hammerhead ribozyme. J. Am. Chem. Soc. 126, 10848–10849 (2004).

    CAS  PubMed  Google Scholar 

  70. Saksmerprome, V., Roychowdhury-Saha, M., Jayasena, S., Khvorova, A. & Burke, D. H. Artificial tertiary motifs stabilize trans-cleaving hammerhead ribozymes under conditions of submillimolar divalent ions and high temperatures. RNA 10, 1916–1924 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cech, T. R. & Golden, B. L. in The RNA World, 2nd edn (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) 321–349 (Cold Spring Harbor Laboratory Press, New York, 1999).

    Google Scholar 

  72. Horton, N. C. & Perona, J. J. Making the most of metal ions. Nature Struct. Biol. 8, 290–293 (2001).

    CAS  PubMed  Google Scholar 

  73. Fedor, M. J. The role of metal ions in RNA catalysis. Curr. Opin. Struct. Biol. 12, 289–295 (2002).

    CAS  PubMed  Google Scholar 

  74. Weinstein, L. B., Jones, B. C., Cosstick, R. & Cech, T. R. A second catalytic metal ion in group I ribozyme. Nature 388, 805–808 (1997).

    CAS  PubMed  Google Scholar 

  75. Shan, S. & Herschlag, D. Probing the role of metal ions in RNA catalysis: kinetic and thermodynamic characterization of a metal ion interaction with the 2′-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme. Biochemistry 38, 10958–10975 (1999).

    CAS  PubMed  Google Scholar 

  76. Shan, S., Yoshida, A., Sun, S., Piccirilli, J. A. & Herschlag, D. Three metal ions at the active site of the Tetrahymena group I ribozyme. Proc. Natl Acad. Sci. USA 96, 12299–12304 (1999). Metal-cation specificity-switch experiments support a three-metal mechanism of group-I intron splicing, in which three distinct metal cations interact with the 3′ oxygen of the oligonucleotide substrate and the 3′ and 2′ oxygens of the guanosine nucleophile.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yoshida, A., Sun, S. & Piccirilli, J. A. A new metal ion interaction in the Tetrahymena ribozyme reaction revealed by double sulfur substitution. Nature Struct. Biol. 6, 318–321 (1999).

    CAS  PubMed  Google Scholar 

  78. Shan, S., Kravchuk, A. V., Piccirilli, J. A. & Herschlag, D. Defining the catalytic metal ion interactions in the Tetrahymena ribozyme reaction. Biochemistry 40, 5161–5171 (2001).

    CAS  PubMed  Google Scholar 

  79. Sjögren, A. S., Pettersson, E., Sjöberg, B. M. & Strömberg, R. Metal ion interaction with cosubstrate in self-splicing of group I introns. Nucleic Acids Res. 25, 648–653 (1997).

    PubMed  PubMed Central  Google Scholar 

  80. Noller, H. F., Hoffarth, V. & Zimniak, L. Unusual resistance of peptidyl transferase to protein extraction methods. Science 256, 1416–1419 (1992).

    CAS  PubMed  Google Scholar 

  81. Muth, G., Ortoleva-Donnelly, L. & Strobel, S. A single adenosine with a neutral pKa in the ribosomal peptidyl transferase center. Science 289, 947–950 (2000).

    CAS  PubMed  Google Scholar 

  82. Polacek, N., Gaynor, M., Yassin, A. & Mankin, A. S. Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide. Nature 411, 498–501 (2001).

    CAS  PubMed  Google Scholar 

  83. Muth, G. W., Chen, L., Kosek, A. B. & Strobel, S. A. pH-dependent conformational flexibility within the ribosomal peptidyl transferase center. RNA 7, 1403–1415 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Katunin, V. I., Muth, G. W., Strobel, S. A., Wintermeyer, W. & Rodnina, M. V. Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol. Cell 10, 339–346 (2002).

    CAS  PubMed  Google Scholar 

  85. Rodnina, M. V. & Wintermeyer, W. Peptide bond formation on the ribosome: structure and mechanism. Curr. Opin. Struct. Biol. 13, 334–340 (2003).

    CAS  PubMed  Google Scholar 

  86. Sievers, A., Beringer, M., Rodnina, M. V. & Wolfenden, R. The ribosome as an entropy trap. Proc. Natl Acad. Sci. USA 101, 7897–7901 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Weinger, J. S., Parnell, K. M., Dorner, S., Green, R. & Strobel, S. A. Substrate-assisted catalysis of peptide bond formation by the ribosome. Nature Struct. Mol. Biol. 11, 1101–1106 (2004).

    CAS  Google Scholar 

  88. Youngman, E. M., Brunelle, J. L., Kochaniak, A. B. & Green, R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589–599 (2004).

    CAS  PubMed  Google Scholar 

  89. Perrault, D. M. & Anslyn, E. V. Unifying the current data on the mechanism of cleavage-transesterification of RNA. Angew. Chem. Int. Ed. Engl. 36, 432–450 (1997).

    Google Scholar 

  90. Raines, R. T. Ribonuclease A. Chem. Rev. 98, 1045–1066 (1998).

    CAS  PubMed  Google Scholar 

  91. Oivanen, M., Kuusela, S. & Lönnberg, H. Kinetics and mechanisms for the cleavage and isomerization of the phosphodiester bonds of RNA by Brønsted acids and bases. Chem. Rev. 98, 961–990 (1998).

    CAS  PubMed  Google Scholar 

  92. Lister, J. H. in Fused pyrimidines Vol. 24 (ed. Brown, D. J.) 478–496 (John Wiley & Sons, New York, 1971).

    Google Scholar 

  93. Brown, D. J. in The Pyrimidines Vol. 52 (ed. Taylor, E. G.) 823–853 (John Wiley & Sons, New York, 1994).

    Google Scholar 

  94. Kochetkov, N. K. & Budovskii, E. I. in Organic Chemistry of Nucleic Acids (eds Kochetkov, N. K. & Budovskii, E. I.) 148–165 (Plenum, New York, 1971).

    Google Scholar 

  95. Narlikar, G. J. & Herschlag, D. Mechanistic aspects of enzymatic catalysis: lessons from comparison of RNA and protein enzymes. Annu. Rev. Biochem. 66, 19–59 (1997).

    CAS  PubMed  Google Scholar 

  96. Bevilacqua, P. C., Brown, T. S., Nakano, S. & Yajima, R. Catalytic roles for proton transfer and protonation in ribozymes. Biopolymers 73, 90–109 (2004).

    CAS  PubMed  Google Scholar 

  97. Draper, D. E. A guide to ions and RNA structure. RNA 10, 335–343 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Draper, D. E., Grilley, D. & Soto, A. M. Ions and RNA folding. Annu. Rev. Biophys. Biomol. Struct. 29 Oct 2004 [epub ahead of print].

  99. Sigel, R. K. O., Song, B. & Sigel, H. Stabilities and structures of metal ion complexes of adenosine 5′-O-thiomonophosphate (AMPS2−) in comparison with those of its parent nucleotide (AMP2−) in aqueous solution. J. Am. Chem. Soc. 119, 744–755 (1997).

    CAS  Google Scholar 

  100. Frey, P. A. & Sammons, R. D. Bond order and charge localization in nucleoside phosphorothioates. Science 228, 541–545 (1985).

    CAS  PubMed  Google Scholar 

  101. Basu, S. & Strobel, S. A. Thiophilic metal ion rescue of phosphorothioate interference within the Tetrahymena ribozyme P4–P6 domain. RNA 5, 1399–1407 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Doherty, E. A. & Doudna, J. A. Ribozyme structures and mechanisms. Annu. Rev. Biochem. 69, 597–615 (2000).

    CAS  PubMed  Google Scholar 

  103. Golden, B. L., Gooding, A. R., Podell, E. R. & Cech, T. R. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science 282, 259–264 (1998).

    CAS  PubMed  Google Scholar 

  104. Steitz, T. A. & Moore, P. B. RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem. Sci. 28, 411–418 (2003).

    CAS  PubMed  Google Scholar 

  105. Hansen, J. L., Schmeing, T. M., Moore, P. B. & Steitz, T. A. Structural insights into peptide bond formation. Proc. Natl Acad. Sci. USA 99, 11670–11675 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in our laboratories is supported by grants from the National Institutes of Health and by the Skaggs Institute for Chemical Biology.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

James Williamson's laboratory

Martha Fedor's laboratory

RNABase.org: The RNA Structure Database

Glossary

RIBOZYME

An enzyme in which RNA functions as the catalytic component.

GROUP-I SELF-SPLICING INTRONS

A group of catalytic RNAs that carry out phosphodiester-cleavage and -ligation reactions, which result in the removal of noncoding intronic sequences and splicing of coding exon sequences. Group-I introns were the first class of catalytic RNAs to be discovered.

SN2-TYPE IN-LINE MECHANISM

The chemical term for a class of nucleophilic substitution reactions that involve a concerted attack of a nucleophile and the departure of a leaving group.

TRANSITION-STATE THEORY

A general chemical theory whereby the trajectory of a chemical reaction proceeds from the starting reagents through a high-energy, short-lived transition state towards the products.

GENERAL ACID OR BASE

A proton acceptor or a proton donor that is not the solvent.

IMIDAZOLE

A small heterocyclic compound that contains two nitrogen atoms in a five-membered ring. Imidazole has chemical groups that can serve as a general acid or a general base in catalysis. The amino acid histidine has an imidazole group as its side chain.

LEWIS ACID

Any functional group or chemical that can interact with unpaired electrons.

pH-RATE PROFILE

The measurement of a reaction rate as a function of varying pH values, which can be an indicator of the presence of acid or base catalysis.

KINETIC EQUIVALENCE

The principle that underlies the fact that it is often not possible to determine if either acid- or base-catalytic mechanisms are operative from the pH dependence of a reaction rate. This is because different reaction mechanisms can give rise to identical pH-rate profiles that reflect different, but kinetically equivalent, rate equations.

ROLLING-CIRCLE REPLICATION

A replication mechanism commonly used by virus-associated RNAs, whereby a circular DNA or RNA template is continuously replicated around a circle to make a concatenated linear polymer of genomic copies. Self-cleaving ribozymes are often responsible for the cleavage of monomeric genomic RNAs from the linear polymeric strand, and for the rejoining of the monomeric RNA termini to form circular templates for subsequent rounds of replication.

PLANT SATELLITE RNA

An RNA that is associated with plant viruses and that does not itself contain any functional open reading frames.

ABASIC

Lacking a nucleotide base, which can occur, for example, when a nucleotide is substituted with a linker that maintains the ribose–phosphate backbone but has a hydrogen atom in place of the nucleotide base.

PURINE

An aromatic, heterocyclic base that consists of a six-membered pyrimidine ring fused to a five-membered imidazole. Adenine and guanine are the most common purines that are joined to ribose in the ribonucleotide building blocks of RNA.

PYRIMIDINE

An aromatic, heterocyclic base that contains two nitrogen atoms in a six-membered ring. Uracil and cytosine are the most common pyrimidines that are joined to ribose in the ribonucleotide building blocks of RNA.

THIOPHILIC

Attracted to sulphur.

SPECIFIC ACID OR BASE

Solvent acid or base species, which, for water, are H+ and OH.

PRO-RP AND PRO-SP

The chemical terms that specify the two stereochemically distinct nonbridging oxygen atoms of a phosphodiester.

P SITE

The site in the peptidyl-transferase centre of the ribosome that binds to the tRNA that is attached to the growing peptide chain.

PUROMYCIN

An antibiotic compound that inhibits protein synthesis and that binds to the ribosome as an analogue of aminoacyl-tRNA.

A SITE

The site in the peptidyl-transferase centre of the ribosome that binds the incoming aminoacyl-tRNA.

ZWITTERION

A dipolar ion that contains ionic groups of opposite charge, and has a net charge of zero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedor, M., Williamson, J. The catalytic diversity of RNAs. Nat Rev Mol Cell Biol 6, 399–412 (2005). https://doi.org/10.1038/nrm1647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1647

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing