Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CLIPs and CLASPs and cellular dynamics

Key Points

  • Microtubules are polar, filamentous fibres. They are dynamic structures that are important for widely different processes, which include mitosis, cell migration, neuronal differentiation and transport of cargo.

  • The dynamic properties of microtubules are, in part, regulated by plus-end tracking proteins (+TIPs), which associate with the distal ends of microtubules. Many of the +TIPs interact with each other as well as with microtubules.

  • Different mechanisms account for the specific association of +TIPs with the microtubule end. Among these are 'treadmilling', motor-protein-mediated delivery and 'hitch hiking'.

  • Cytoplasmic linker proteins (CLIPs) interact with CLIP-associating proteins (CLASPs) and both are conserved +TIPs. CLIPs and CLASPs might cooperate to regulate cellular asymmetry.

  • CLIP170 and CLIP115 are homodimers that contain very similar N-terminal microtubule-binding motifs, an elongated coiled-coil domain, but differing C termini. They are general promoters of microtubule growth.

  • The structure of CLASPs has been less well defined. CLASPs are regulatable proteins and are involved in stabilizing a subset of microtubules at highly specific cellular sites in response to signalling cues. These sites include mitotic kinetochores, as well as microtubule ends at the leading edge of fibroblasts and neuronal growth cones.

Abstract

The dynamic properties of microtubules are regulated by plus-end tracking proteins (+TIPs), which associate with the distal ends of microtubules. Among the +TIPs are cytoplasmic linker proteins (CLIPs), which promote microtubule growth and regulate dynein–dynactin localization, and CLIP-associating proteins (CLASPs), which stabilize specific subsets of microtubules on reception of signalling cues. CLIPs and CLASPs interact and cooperate to direct the microtubule network, thereby regulating cellular asymmetry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization of the microtubule network in different model systems.
Figure 2: CLIPs.
Figure 3: Mechanisms of +TIP localization.
Figure 4: CLASPs.
Figure 5: Cell polarity cues can stabilize microtubules through +TIPs.

Similar content being viewed by others

References

  1. Schuyler, S. C. & Pellman, D. Microtubule “plus-end-tracking proteins”: the end is just the beginning. Cell 105, 421–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Pierre, P., Scheel, J., Rickard, J. E. & Kreis, T. E. CLIP-170 links endocytic vesicles to microtubules. Cell 70, 887–900 (1992). CLIP170 is characterized in this paper, and the term 'cytoplasmic linker protein' is introduced.

    Article  CAS  PubMed  Google Scholar 

  3. Bilbe, G. et al. Restin: a novel intermediate filament-associated protein highly expressed in the Reed–Sternberg cells of Hodgkin's disease. EMBO J. 11, 2103–2113 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Griparic, L. & Keller, T. C. Identification and expression of two novel CLIP-170/Restin isoforms expressed predominantly in muscle. Biochim. Biophys. Acta 1405, 35–46 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Griparic, L. & Keller, T. C. Differential usage of two 5′ splice sites in a complex exon generates additional protein sequence complexity in chicken CLIP-170 isoforms. Biochim. Biophys. Acta 1449, 119–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Akhmanova, A. et al. CLASPs are CLIP-115 and-170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 104, 923–935 (2001). Identifies CLASPs as CLIP-associating proteins, and their specific function as stabilizers of a subset of microtubules in interphase is described.

    Article  CAS  PubMed  Google Scholar 

  7. Scheel, J. et al. Purification and analysis of authentic CLIP-170 and recombinant fragments. J. Biol. Chem. 274, 25883–25891 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Riehemann, K. & Sorg, C. Sequence homologies between four cytoskeleton-associated proteins. Trends Biochem. Sci. 18, 82–83 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Feierbach, B., Nogales, E., Downing, K. H. & Stearns, T. Alf1p, a CLIP-170 domain-containing protein, is functionally and physically associated with α-tubulin. J. Cell Biol. 144, 113–124 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Li, S. et al. Crystal structure of the cytoskeleton-associated protein (CAP-Gly) domain. J. Biol. Chem. 277, 48596–48601 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Saito, K. et al. The CAP-Gly domain of CYLD associates with the proline-rich sequence in NEMO/IKKγ. Structure (Camb.) 12, 1719–1728 (2004).

    Article  CAS  Google Scholar 

  12. Lansbergen, G. et al. Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization. J. Cell Biol. 166, 1003–1014 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lantz, V. A. & Miller, K. G. A class VI unconventional myosin is associated with a homologue of a microtubule-binding protein, cytoplasmic linker protein-170, in neurons and at the posterior pole of Drosophila embryos. J. Cell Biol. 140, 897–910 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. De Zeeuw, C. I. et al. CLIP-115, a novel brain-specific cytoplasmic linker protein, mediates the localization of dendritic lamellar bodies. Neuron 19, 1187–1199 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. De Zeeuw, C. I., Hertzberg, E. L. & Mugnaini, E. The dendritic lamellar body: a new neuronal organelle putatively associated with dendrodendritic gap junctions. J. Neurosci. 15, 1587–1604 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoogenraad, C. C. et al. Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Nature Genet. 32, 116–127 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Perez, F. et al. CLIPR-59, a new trans-Golgi/TGN cytoplasmic linker protein belonging to the CLIP-170 family. J. Cell Biol. 156, 631–642 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lallemand-Breitenbach, V. et al. CLIPR-59 is a lipid raft-associated protein containing a cytoskeleton-associated protein glycine-rich domain (CAP-Gly) that perturbs microtubule dynamics. J. Biol. Chem. 279, 41168–41178 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Rickard, J. E. & Kreis, T. E. Identification of a novel nucleotide-sensitive microtubule-binding protein in HeLa cells. J. Cell Biol. 110, 1623–1633 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Dujardin, D. et al. Evidence for a role of CLIP-170 in the establishment of metaphase chromosome alignment. J. Cell Biol. 141, 849–862 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Perez, F., Diamantopoulos, G. S., Stalder, R. & Kreis, T. E. CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517–527 (1999). The first manuscript that describes the specific association of a GFP-tagged protein with the ends of growing microtubules.

    Article  CAS  PubMed  Google Scholar 

  22. Arnal, I., Heichette, C., Diamantopoulos, G. S. & Chretien, D. CLIP-170/tubulin-curved oligomers coassemble at microtubule ends and promote rescues. Curr. Biol. 14, 2086–2095 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Diamantopoulos, G. S. et al. Dynamic localization of CLIP-170 to microtubule plus ends is coupled to microtubule assembly. J. Cell Biol. 144, 99–112 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Rickard, J. E. & Kreis, T. E. Binding of pp170 to microtubules is regulated by phosphorylation. J. Biol. Chem. 266, 17597–17605 (1991).

    CAS  PubMed  Google Scholar 

  25. Choi, J. H. et al. The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase. EMBO Rep. 3, 988–994 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Choi, J. H. et al. TOR signaling regulates microtubule structure and function. Curr. Biol. 10, 861–864 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Busch, K. E., Hayles, J., Nurse, P. & Brunner, D. Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Dev. Cell 6, 831–843 (2004). Together with reference 28, shows that motor-mediated transport is the primary means by which Tip1 (reference 27) and Bik1 (reference 28) localize at microtubule ends.

    Article  CAS  PubMed  Google Scholar 

  28. Carvalho, P., Gupta, M. L. Jr, Hoyt, M. A. & Pellman, D. Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev. Cell 6, 815–829 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Sawin, K. E. Microtubule dynamics: faint speckle, hidden dragon. Curr. Biol. 14, R702–R704 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Busch, K. E. & Brunner, D. The microtubule plus end-tracking proteins mal3p and tip1p cooperate for cell-end targeting of interphase microtubules. Curr. Biol. 14, 548–559 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Badin-Larcon, A. C. et al. Suppression of nuclear oscillations in Saccharomyces cerevisiae expressing Glu tubulin. Proc. Natl Acad. Sci. USA 101, 5577–5582 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Goodson, H. V. et al. CLIP-170 interacts with dynactin complex and the APC-binding protein EB1 by different mechanisms. Cell Motil. Cytoskeleton 55, 156–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Brunner, D. & Nurse, P. CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast. Cell 102, 695–704 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Berlin, V., Styles, C. A. & Fink, G. R. BIK1, a protein required for microtubule function during mating and mitosis in Saccharomyces cerevisiae, colocalizes with tubulin. J. Cell Biol. 111, 2573–2586 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Sheeman, B. et al. Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr. Biol. 13, 364–372 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Komarova, Y. A., Akhmanova, A. S., Kojima, S., Galjart, N. & Borisy, G. G. Cytoplasmic linker proteins promote microtubule rescue in vivo. J. Cell Biol. 159, 589–599 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wieland, G., Orthaus, S., Ohndorf, S., Diekmann, S. & Hemmerich, P. Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 6620–6630 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Coquelle, F. M. et al. LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol. Cell. Biol. 22, 3089–3102 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Xiang, X. LIS1 at the microtubule plus end and its role in dynein-mediated nuclear migration. J. Cell Biol. 160, 289–290 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Lin, H. et al. Polyploids require Bik1 for kinetochore–microtubule attachment. J. Cell Biol. 155, 1173–1184 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Xiang, X., Beckwith, S. M. & Morris, N. R. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc. Natl Acad. Sci. USA 91, 2100–2104 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiang, X., Han, G., Winkelmann, D. A., Zuo, W. & Morris, N. R. Dynamics of cytoplasmic dynein in living cells and the effect of a mutation in the dynactin complex actin-related protein Arp1. Curr. Biol. 10, 603–606 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Vaughan, P. S., Miura, P., Henderson, M., Byrne, B. & Vaughan, K. T. A role for regulated binding of p150Glued to microtubule plus ends in organelle transport. J. Cell Biol. 158, 305–319 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Suzuki, M. et al. Dynactin is involved in a checkpoint to monitor cell wall synthesis in Saccharomyces cerevisiae. Nature Cell Biol. 6, 861–871 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Deacon, S. W. et al. Dynactin is required for bidirectional organelle transport. J. Cell Biol. 160, 297–301 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Lee, W. L., Oberle, J. R. & Cooper, J. A. The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast. J. Cell Biol. 160, 355–364 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Niccoli, T., Yamashita, A., Nurse, P. & Yamamoto, M. The p150-Glued Ssm4p regulates microtubular dynamics and nuclear movement in fission yeast. J. Cell Sci. 117, 5543–5556 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Berrueta, L., Tirnauer, J. S., Schuyler, S. C., Pellman, D. & Bierer, B. E. The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain. Curr. Biol. 9, 425–428 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Askham, J. M., Vaughan, K. T., Goodson, H. V. & Morrison, E. E. Evidence that an interaction between EB1 and p150Glued is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol. Biol. Cell 13, 3627–3645 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Lemos, C. L. et al. Mast, a conserved microtubule-associated protein required for bipolar mitotic spindle organization. EMBO J. 19, 3668–3682 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Inoue, Y. H. et al. Orbit, a novel microtubule-associated protein essential for mitosis in Drosophila melanogaster. J. Cell Biol. 149, 153–166 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Andrade, M. A., Petosa, C., O'Donoghue, S. I., Muller, C. W. & Bork, P. Comparison of ARM and HEAT protein repeats. J. Mol. Biol. 309, 1–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Mimori-Kiyosue, Y. et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J. Cell Biol. 168, 141–153 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Mathe, E., Inoue, Y. H., Palframan, W., Brown, G. & Glover, D. M. Orbit/Mast, the CLASP orthologue of Drosophila, is required for asymmetric stem cell and cystocyte divisions and development of the polarised microtubule network that interconnects oocyte and nurse cells during oogenesis. Development 130, 901–915 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Rogers, S. L., Wiedemann, U., Hacker, U., Turck, C. & Vale, R. D. Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr. Biol. 14, 1827–1833 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Maiato, H. et al. MAST/Orbit has a role in microtubule–kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity. J. Cell Biol. 157, 749–760 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Inoue, Y. H. et al. Mutations in orbit/mast reveal that the central spindle is comprised of two microtubule populations, those that initiate cleavage and those that propagate furrow ingression. J. Cell Biol. 166, 49–60 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Maiato, H. et al. Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell 113, 891–904 (2003). Together with reference 60, provides a detailed description of how CLASPs might function at the kinetochore.

    Article  CAS  PubMed  Google Scholar 

  60. Maiato, H., Khodjakov, A. & Rieder, C. L. Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres. Nature Cell Biol. (2004).

  61. Mitchison, T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109, 637–652 (1989).

    Article  CAS  PubMed  Google Scholar 

  62. Tirnauer, J. S., O'Toole, E., Berrueta, L., Bierer, B. E. & Pellman, D. Yeast Bim1p promotes the G1-specific dynamics of microtubules. J. Cell Biol. 145, 993–1007 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Rogers, S. L., Rogers, G. C., Sharp, D. J. & Vale, R. D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158, 873–884 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Tirnauer, J. S., Grego, S., Salmon, E. D. & Mitchison, T. J. EB1–microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. Mol. Biol. Cell 13, 3614–3626 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Louie, R. K. et al. Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB1 is a functional component of centrosomes. J. Cell Sci. 117, 1117–1128 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Wen, Y. et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature Cell Biol. 6, 820–830 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Su, L. K. et al. APC binds to the novel protein EB1. Cancer Res. 55, 2972–2977 (1995).

    CAS  PubMed  Google Scholar 

  68. Subramanian, A. et al. Shortstop recruits EB1/APC1 and promotes microtubule assembly at the muscle–tendon junction. Curr. Biol. 13, 1086–1095 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A. & Fuchs, E. ACF7: an essential integrator of microtubule dynamics. Cell 115, 343–354 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Slep, K. C. et al. Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end. J. Cell Biol. 168, 587–598 (2005). Together with reference 71, describes the structure of the C terminus of EB1 and how proteins such as APC might interact with EB1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Honnappa, S., John, C. M., Kostrewa, D., Winkler, F. K. & Steinmetz, M. O. Structural insights into the EB1–APC interaction. EMBO J. 24, 261–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Kirschner, M. & Mitchison, T. Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986).

    Article  CAS  PubMed  Google Scholar 

  73. Vaughan, K. T. Surfing, regulating and capturing: are all microtubule-tip-tracking proteins created equal? Trends Cell Biol. 14, 491–496 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Nathke, I. S., Adams, C. L., Polakis, P., Sellin, J. H. & Nelson, W. J. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J. Cell Biol. 134, 165–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Mogensen, M. M., Tucker, J. B., Mackie, J. B., Prescott, A. R. & Nathke, I. S. The adenomatous polyposis coli protein unambiguously localizes to microtubule plus ends and is involved in establishing parallel arrays of microtubule bundles in highly polarized epithelial cells. J. Cell Biol. 157, 1041–1048 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Zumbrunn, J., Kinoshita, K., Hyman, A. A. & Nathke, I. S. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Curr. Biol. 11, 44–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756 (2003). Describes a signalling pathway that determines cell polarization in migrating astrocytes, which involves Cdc42, GSK3β, and the target of GSK3, APC.

    Article  CAS  PubMed  Google Scholar 

  78. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell 106, 489–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Suter, D. M., Schaefer, A. W. & Forscher, P. Microtubule dynamics are necessary for SRC family kinase-dependent growth cone steering. Curr. Biol. 14, 1194–1199 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Rodriguez, O. C. et al. Conserved microtubule–actin interactions in cell movement and morphogenesis. Nature Cell Biol. 5, 599–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Fukata, M., Nakagawa, M. & Kaibuchi, K. Roles of Rho-family GTPases in cell polarisation and directional migration. Curr. Opin. Cell Biol. 15, 590–597 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Grohmanova, K. et al. Phosphorylation of IQGAP1 modulates its binding to Cdc42, revealing a new type of Rho-GTPase regulator. J. Biol. Chem. 279, 48495–48504 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Fukata, M. et al. Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873–885 (2002). Describes the interaction of CLIP170 with IQGAP1 and activated Cdc42/Rac1 and explains how this might lead to a polarized cell phenotype.

    Article  CAS  PubMed  Google Scholar 

  84. Watanabe, T. et al. Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Dev. Cell 7, 871–883 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Galjart, N. & Perez, F. A plus-end raft to control microtubule dynamics and function. Curr. Opin. Cell Biol. 15, 48–53 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Baas, P. W., Deitch, J. S., Black, M. M. & Banker, G. A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl Acad. Sci. USA. 85, 8335–8339 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Stepanova, T. et al. Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). J. Neurosci. 23, 2655–2664 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Ma, Y., Shakiryanova, D., Vardya, I. & Popov, S. V. Quantitative analysis of microtubule transport in growing nerve processes. Curr. Biol. 14, 725–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, H. et al. The microtubule plus end tracking protein Orbit/MAST/CLASP acts downstream of the tyrosine kinase Abl in mediating axon guidance. Neuron 42, 913–926 (2004). Orbit/MAST is identified as a downstream target of the Abl kinase. GFP–CLASP2 labels the ends of growing microtubules in neuronal cultures, which indicates that Orbit is probably involved in axon guidance.

    Article  CAS  PubMed  Google Scholar 

  90. Eickholt, B. J., Walsh, F. S. & Doherty, P. An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Semaphorin 3A signaling. J. Cell Biol. 157, 211–217 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Buck, K. B. & Zheng, J. Q. Growth cone turning induced by direct local modification of microtubule dynamics. J. Neurosci. 22, 9358–9367 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Dent, E. W. & Gertler, F. B. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40, 209–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Zhou, F. Q., Zhou, J., Dedhar, S., Wu, Y. H. & Snider, W. D. NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC. Neuron 42, 897–912 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Bornens, M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14, 25–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Chretien, D., Fuller, S. D. & Karsenti, E. Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J. Cell Biol. 129, 1311–1328 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Mandelkow, E. M., Mandelkow, E. & Milligan, R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J. Cell Biol. 114, 977–991 (1991).

    Article  CAS  PubMed  Google Scholar 

  98. Bulinski, J. C. & Gundersen, G. G. Stabilization of post-translational modification of microtubules during cellular morphogenesis. Bioessays 13, 285–293 (1991).

    Article  CAS  PubMed  Google Scholar 

  99. Hirokawa, N. & Takemura, R. Kinesin superfamily proteins and their various functions and dynamics. Exp. Cell Res. 301, 50–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Vallee, R. B., Williams, J. C., Varma, D. & Barnhart, L. E. Dynein: An ancient motor protein involved in multiple modes of transport. J. Neurobiol. 58, 189–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Endow, S. A. Determinants of molecular motor directionality. Nature Cell Biol. 1, E163–E167 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Tai, C. Y., Dujardin, D. L., Faulkner, N. E. & Vallee, R. B. Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J. Cell Biol. 156, 959–968 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Schroer, T. A. Dynactin. Annu. Rev. Cell Dev. Biol. 20, 759–779 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Gross, S. P. et al. Interactions and regulation of molecular motors in Xenopus melanophores. J. Cell Biol. 156, 855–865 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Gross, S. P., Welte, M. A., Block, S. M. & Wieschaus, E. F. Coordination of opposite-polarity microtubule motors. J. Cell Biol. 156, 715–724 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Merlot, S. & Firtel, R. A. Leading the way: directional sensing through phosphatidylinositol 3-kinase and other signaling pathways. J. Cell Sci. 116, 3471–3478 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Harwood, A. J. Regulation of GSK-3: a cellular multiprocessor. Cell 105, 821–824 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank past and present members of my laboratory and colleagues in the field for stimulating discussions. They have helped to shape this review. Work in my laboratory is supported by grants from the Netherlands Organization for Scientific Research, the Dutch Cancer Society and the Ministry of Economic Affairs.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

41580_2005_BFnrm1664_MOESM1_ESM.mov

S1 (movie) | GFP–CLIP170 in 3T3 fibroblasts. 3T3 fibroblasts that express low levels of inducible GFP–CLIP170 were maintained at 37°C in normal culture medium and were analysed by confocal microscopy. The movie contains 25 images, acquired every 2 seconds. Dashes of GFPndash;CLIP170 display a cometlike shape with a sharp and brightly fluorescent front that points towards the microtubule plus end. Most comets build up in the centrosomal region. They move toward the cell periphery, where they disappear. Images were acquired by T. Stepanova, Department of Cell Biology and Genetics, Erasmus Medical Centre, the Netherlands. (MOV 305 kb)

41580_2005_BFnrm1664_MOESM2_ESM.mov

S2 (movie 2007 KB) | EB3–GFP movement in transfected neurons and glia. Hippocampal cultures were infected with a virus that expresses EB3–GFP. Cultures were imaged as in Movie 1 and the movie contains 100 images. Notice how the axon from a hippocampal neuron makes contact with a glial cell. The movie shows that neuronal microtubule 'comets' move slower than glial ones, indicating slower microtubule growth rates in neurons. Images were acquired by T. Stepanova, Department of Cell Biology and Genetics, Erasmus Medical Centre, The Netherlands. (MOV 305 kb)

Related links

Related links

DATABASES

Swiss-Prot

ACF7

CLASP1

CLASP2

CLIP115

CLIPR59

CYLD

EB1

IQGAP1

LIS1

restin

Interpro

CAP-Gly

Flybase

CLIP190

Orbit

Short stop

Saccharomyces genome database

Bik1

Bim1

Nip100

Pac1

S. pombe gene database

Mal3

Ssm4

Tip1

FURTHER INFORMATION

Scansite

Glossary

GREEN FLUORESCENT PROTEIN

(GFP). Fluorescent protein cloned from the jellyfish Aequoria victoria. The most frequently used mutant, EGFP, is excited at 488 nm and has an emission maximum at 510 nm.

α-HELIX

An element of the secondary structure of a protein in which hydrogen bonds located along the backbone of a single polypeptide cause the chain to form a right-handed helix.

COILED-COIL DOMAIN

A protein structural domain that mediates subunit oligomerization. Coiled coils contain between two and five helices that twist around each other to form a supercoil.

MICROTUBULE-ORGANIZING CENTRE

(MTOC). Also called the centrosome or spindle-pole body, this structure nucleates and organizes microtubules.

β-SHEET

An element of protein secondary structure in which hydrogen bonds between the backbones of the same or different polypeptides stabilize arrays of parallel chains that can form larger elements resembling sheets.

ZINC KNUCKLE

A protein domain in which specifically positioned cysteine and histidine residues coordinate the binding of a zinc atom, thereby generating a structural conformation (the 'knuckle') that is capable of protein–protein interactions.

ATOMIC FORCE MICROSCOPY

A microscopy technique that nondestructively measures the forces (at the atomic level) between a sharp probing tip (which is attached to a cantilever spring) and a sample surface. The microscope images structures at the resolution of individual atoms.

FLUORESCENCE RESONANCE ENERGY TRANSFER

(FRET). The non-radiative transfer of energy from a donor fluorophore to an acceptor fluorophore, which occurs when the donor and acceptor fluorophore are typically <80 Ă… apart. FRET will only occur between fluorophores in which the emission spectrum of the donor has a significant overlap with the excitation wavelength of the acceptor.

PROCESSIVITY

The ability of a motor protein to move long distances without dissociating.

KINETOCHORE

A large multiprotein complex that assembles on the centromere of the chromosome and links the chromosome to the microtubules of the mitotic spindle.

DENDRO-DENDRITIC GAP JUNCTIONS

Small pores, formed by connexins in the membranes of two adjacent cells, that allow passage of low molecular-weight compounds from one cell to the other. Dendro–dendritic gap junctions form between two dendrites.

LIPID RAFTS

Lateral aggregates of cholesterol and sphingomyelin that are thought to occur in the plasma membrane.

TREADMILLING

A special state in polymer dynamics, when monomer addition at one end occurs at the same rate as monomer dissociation at the other end, which keeps the polymer length unchanged.

CATASTROPHE

The transition from microtubule growth to shortening.

DOMINANT NEGATIVE

A defective protein that retains interaction capabilities and so competes with normal proteins, thereby impairing protein function.

RNA INTERFERENCE

(RNAi). A form of post-transcriptional gene silencing in which expression or transfection of double-stranded RNA induces degradation — by nucleases — of the homologous endogenous transcripts. This mimics the effect of the reduction, or loss, of gene activity.

SCHMOOING

A change in cell appearance from round to pear-shaped in a yeast cell.

PALMITOYLATION

Covalent attachment of a palmitate (16-carbon saturated fatty acid) to a cysteine residue through a thioester bond.

HEAT REPEAT

A tandemly repeated, 37–47-amino-acid module that occurs in several cytoplasmic proteins. Arrays of HEAT repeats form a rod-like helical structure and are thought to function as protein–protein interaction surfaces.

LEADING EDGE

The thin margin of a lamellipodium that spans the area of the cell from the plasma membrane to a depth of about 1 ÎĽm into the lamellipodium.

SPINDLE POLE

The yeast equivalent of the centrosome that nucleates microtubules, including those that will form the spindle.

SPECTRAPLAKINS

Plakins that contain spectrin repeats. Plakins are proteins that crosslink cytoskeletal filaments and attach them to membrane-associated complexes at cell junctions.

FORMINS

A family of proteins that contain a formin-homology-2 (FH2) domain. They can promote actin assembly.

RHO-FAMILY GTPASES

Ras-related GTPases that are involved in controlling the dynamics of the actin cytoskeleton.

EFFECTOR

A protein or protein complex that binds the GTPase directly and in a GTP-dependent manner, and is required for the downstream function determined by that GTPase.

GUANINE NUCLEOTIDE-EXCHANGE FACTOR

A protein that activates a specific small GTPase by catalysing the exchange of bound GDP for GTP.

VISCERAL ENDODERM CELLS

Cells that delineate the yolk sac cavity together with parietal endoderm cells in the egg cylinder stage of the mammalian embryo.

NOCODAZOLE

A microtubule-depolymerizing drug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galjart, N. CLIPs and CLASPs and cellular dynamics. Nat Rev Mol Cell Biol 6, 487–498 (2005). https://doi.org/10.1038/nrm1664

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1664

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing