Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Trashing the genome: the role of nucleases during apoptosis

Key Points

  • DNA degradation during apoptosis can be divided into two stages. First, DNA is digested by nucleases that are provided by the apoptotic cell itself (cell-autonomous nucleases). Post-engulfment, DNA is further digested by lysosomal enzymes that are provided by the phagocytic cells (waste-management nucleases).

  • Cell-autonomous DNA cleavage is not essential for individual organisms but might affect the progression of apoptosis. By contrast, engulfment-mediated DNA cleavage is necessary for the life of the organism.

  • The role of DNA degradation during apoptosis might have originally been to enable the clearance of harmful DNA (viral or other pathogenic DNA) and for the prevention of self-immunization. DNA degradation also facilitates both killing and engulfment during the apoptotic process.

  • Apoptotic DNA degradation is surprisingly complex, and is carried out by several nucleases. CAD (caspase-activated DNase) and DNase II are particularly important, but other nucleases could have important roles, depending on the apoptotic stimuli and cell types.

  • Low molecular weight (LMW) DNA cleavage is a characteristic of apoptosis but is not essential for cell death. Little is known about the high molecular weight (HMW) DNA cleavage that precedes LMW DNA cleavage. It might be important for nuclear apoptosis.

Abstract

Two classes of nucleases degrade the cellular DNA during apoptosis. Cell-autonomous nucleases cleave DNA within the dying cell. They are not essential for apoptotic cell death or the life of the organism, but they might affect the efficiency of the process. By contrast, waste-management nucleases are essential for the life of the organism. In post-engulfment DNA degradation, the DNA of apoptotic cells is destroyed in lysosomes of the cells that have phagocytosed the corpses. Waste-management nucleases also destroy DNA that is released into the extracellular compartment. Here, we describe the complex group of nucleases that are involved in DNA destruction during apoptotic cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coordinated chromatin condensation and cleavage of the DNA in apoptosis.
Figure 2: HMW and LMW cleavage in apoptosis.
Figure 3: Use of TUNEL to detect cell death in human tissue.
Figure 4: Cell-autonomous and waste-management nucleases in apoptosis and necrosis.
Figure 5: Introduction to the CAD nuclease.
Figure 6: The pathways of DNA processing in apoptosis and necrosis.
Figure 7: The pathway of DNA degradation during cell death in Caenorhabditis elegans.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kerr, J. F. R., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wider ranging implications in tissue kinetics. Br. J. Cancer 24, 239–275 (1972).

    Article  Google Scholar 

  2. Wyllie, A. H., Kerr, J. F. R. & Currie, A. R. Cell death: The significance of apoptosis. Int. Rev. Cytol. 68, 251–305 (1980). This was the original review that defined the characteristics of apoptosis.

    Article  CAS  PubMed  Google Scholar 

  3. Williamson, R. Properties of rapidly labelled deoxyribonucleic acid fragments isolated from the cytoplasm of primary cultures of embryonic mouse liver cells. J. Mol. Biol. 51, 157–168 (1970).

    Article  CAS  PubMed  Google Scholar 

  4. Hewish, D. R. & Burgoyne, L. A. Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem. Biophys. Res. Comm. 52, 504–510 (1973).

    Article  CAS  PubMed  Google Scholar 

  5. Williams, J. R., Little, J. B. & Shipley, W. U. Association of mammalian cell death with a specific endonucleolytic degradation of DNA. Nature 252, 754–755 (1974). This was the first paper to clearly demonstrate oligonucleosomal DNA cleavage during programmed cell death.

    Article  CAS  PubMed  Google Scholar 

  6. Skalka, M., Matyasova, J. & Cejkova, M. DNA in chromatin of irradiated lymphoid tissues degrades in vivo into regular fragments. FEBS Lett. 72, 271–274 (1976).

    Article  CAS  PubMed  Google Scholar 

  7. Wyllie, A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555–556 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Ucker, D. S. et al. Genome digestion is a dispensible consequence of physiological cell death mediated by cytotoxic T lymphocytes. Mol. Cell. Biol. 12, 3060–3069 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, J. et al. Resistance to DNA fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor 45. Proc. Natl Acad. Sci. USA 95, 12480–12485 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McIlroy, D. et al. An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. Genes Dev. 14, 549–558 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Susin, S. A., et al. Molecular characterisation of mitochondrial apoptosis-inducing factor (AIF). Nature 397, 441–446 (1999). This was the first molecular characterization of AIF, which induces HMW DNA cleavage and stage I chromatin condensation in a caspase-independent manner.

    Article  CAS  PubMed  Google Scholar 

  12. Samejima, K., Tone, S. & Earnshaw, W. C. CAD/DFF40 nuclease is dispensable for high molecular weight DNA cleavage and stage I chromatin condensation in apoptosis. J. Biol. Chem. 276, 45427–45432 (2001). This was the first proof that CAD is the main cell-autonomous nuclease during apoptosis.

    Article  CAS  PubMed  Google Scholar 

  13. Cohen, G. M. et al. Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. J. Immunol. 153, 507–516 (1994).

    CAS  PubMed  Google Scholar 

  14. Bortner, C. D. & Cidlowski, J. A. The role of DNA fragmentation in apoptosis. Trends Cell Biol. 5, 21–26 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Walker, P. R., Weaver, V. M., Lach, B. J., L. & Sikorska, M. Endonuclease activities associated with high molecular weight and internucleosomal DNA fragmentation in apoptosis. Exp. Cell Res. 213, 100–106 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Walker, P. R., Kokileva, L., LeBlanc, J. & Sikorska, M. Detection of the initial stages of DNA fragmentation in apoptosis. Biotechniques 15, 1032–1040 (1993).

    CAS  PubMed  Google Scholar 

  17. Oberhammer, F. et al. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 12, 3679–3684 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lieberman, J. & Fan, Z. Nuclear war: the granzyme A-bomb. Curr. Opin. Immunol. 15, 553–559 (2003).

    CAS  PubMed  Google Scholar 

  19. Peitsch, M. C., Muller, C. & Tschopp, J. DNA fragmentation during apoptosis is caused by frequent single-strand cuts. Nucleic Acids Res. 21, 4206–4209 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Solov'yan, V. T. et al. The cleavage of nuclear DNA into high molecular weight DNA fragments occurs not only during apoptosis but also accompanies changes in functional activity of the nonapoptotic cells. Exp. Cell Res. 235, 130–137 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Kaufmann, S. H., Mesner, P. W. J., Samejima, K., Tone, S. & Earnshaw, W. C. Detection of DNA cleavage in apoptotic cells. Methods Enzymol. 322, 3–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Lecoeur, H. Nuclear apoptosis detection by flow cytometry: influence of endogenous endonucleases. Exp. Cell Res. 277, 1–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, X. et al. The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc. Natl Acad. Sci. USA 95, 8461–8466 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Enari, M. et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50 (1998). This paper describes the elegant biochemical purification and characterization of CAD as a major apoptotic nuclease from cells and ICAD as its inhibitory chaperone. The discovery of CAD opened a new field in apoptosis research.

    Article  CAS  PubMed  Google Scholar 

  25. Halenbeck, R. et al. CPAN, a human nuclease regulated by the caspase-sensitive inhibitor DFF-45. Curr. Biol. 8, 537–540 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Oliveri, M. et al. DNase I mediates internucleosomal DNA degradation in human cells undergoing drug-induced apoptosis. Eur. J. Immunol. 31, 743–751 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Widlak, P. & Garrard, W. T. Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J. Cell. Biochem. 94, 1078–1087 (2005). This is a good up-to-date review about CAD and Endo G.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, X., Zou, H., Slaughter, C. & Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175–184 (1997). This group identified a number of the key components of the pathway of apoptotic execution. This paper described a downstream factor activated by caspase-3, DFF, that could induce apoptotic DNA cleavage. DFF later turned out to be the complex of CAD and ICAD.

    Article  CAS  PubMed  Google Scholar 

  29. Gu, J. et al. Functional interaction of DFF35 and DFF45 with caspase-activated DNA fragmentation nuclease DFF40. J. Biol. Chem. 274, 20759–20762 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Sakahira, H., Enari, M. & Nagata, S. Functional differences of two forms of the inhibitor of caspase-activated DNase, ICAD-L, and ICAD-S. J. Biol. Chem. 274, 15740–15744 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Sakahira, H., Iwamatsu, A. & Nagata, S. Specific chaperone-like activity of inhibitor of caspase-activated DNase for caspase-activated DNase. J. Biol. Chem. 275, 8091–8096 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. McCarty, J. S., Toh, S. Y. & Li, P. Study of DFF45 in its role of chaperone and inhibitor: two independent inhibitory domains of DFF40 nuclease activity. Biochem. Biophys. Res. Commun. 264, 176–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Samejima, K. & Earnshaw, W. C. ICAD/DFF regulator of apoptotic nuclease is nuclear. Exp. Cell Res. 243, 453–459 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Samejima, K. & Earnshaw, W. C. Differential localisation of ICAD-L and ICAD-S in cells due to removal of a C-terminal NLS from ICAD-L by alternative splicing. Exp. Cell Res. 255, 314–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Lechardeur, D. et al. Determinants of the nuclear localization of the heterodimeric DNA fragmentation factor (ICAD/CAD). J. Cell Biol. 150, 321–334 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lechardeur, D., Xu, M. & Lukacs, G. L. Contrasting nuclear dynamics of the caspase-activated DNase (CAD) in dividing and apoptotic cells. J. Cell Biol. 167, 851–862 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Korn, C. et al. Interaction of DNA fragmentation factor (DFF) with DNA reveals an unprecedented mechanism for nuclease inhibition and suggests that DFF can be activated in a DNA-bound state. J. Biol. Chem. 280, 6005–6015 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Woo, E. J. et al. Structural mechanism for inactivation and activation of CAD/DFF40 in the apoptotic pathway. Mol. Cell 14, 531–539 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Thomas, D. A., Du, C., Xu, M., Wang, X. & Ley, T. J. DFF45/ICAD can be directly processed by granzyme B during the induction of apoptosis. Immunity 12, 621–632 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Wolf, B. B., Schuler, M., Echeverri, F. & Green, D. R. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/Inhibitor of caspase-activated DNase inactivation. J. Biol. Chem. 274, 30651–30656 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Sakahira, H., Enari, M. & Nagata, S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96–99 (1998). Together with reference 24, this was the original paper demonstrating the role of ICAD during apoptosis.

    Article  CAS  PubMed  Google Scholar 

  42. Hsia, K. C. et al. DNA binding and degradation by the HNH protein ColE7. Structure 12, 205–214 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Widlak, P., Li, P., Wang, X. & Garrard, W. T. Cleavage preferences of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease) on naked DNA and chromatin substrates. J. Biol. Chem. 275, 8226–8232 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Toh, S. Y., Wang, X. & Li, P. Identification of the nuclear factor HMG2 as an activator for DFF nuclease activity. Biochem. Biophys. Res. Commun. 250, 598–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Durrieu, F. et al. DNA topoisomerase II interacts with CAD nuclease in vitro and in vivo and is involved in chromatin condensation during apoptotic execution. Curr. Biol. 10, 923–926 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, X., Zou, H., Widlak, P., Garrard, W. & Wang, X. Activation of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease). Oligomerization and direct interaction with histone H1. J. Biol. Chem. 274, 13836–13840 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, Q. L., Kishi, H., Ohtsuka, K. & Muraguchi, A. Heat shock protein 70 binds caspase-activated DNase and enhances its activity in TCR-stimulated T cells. Blood 102, 1788–1796 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Samejima, K. et al. Transition from caspase-dependent to caspase-independent mechanisms at the onset of apoptotic execution. J. Cell Biol. 143, 225–239 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hsieh, S. Y. et al. Aberrant caspase-activated DNase (CAD) transcripts in human hepatoma cells. Br. J. Cancer 88, 210–216 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bayascas, J. R, et al. Characterization of splice variants of human caspase-activated DNase with CIDE-N structure and function. FEBS Lett. 566, 234–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Inohara, N., Koseki, T., Chen, S., Wu, X. & Núnez, G. CIDE, a novel family of cell death activators with homology fo the 45 kDa subunit of the DNA fragmentation factor. EMBO J. 17, 2526–2533 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cho, S. G. et al. Identification of a novel antiapoptotic protein that antagonizes ASK1 and CAD activities. J. Cell Biol. 163, 71–81 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kawane, K. et al. Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nature Immunol. 4, 138–144 (2003). This paper showed that post-engulfment DNA degradation during apoptosis (mediated by DNase II) is essential for the life of the organism.

    Article  CAS  Google Scholar 

  54. Zhang, J., Lee, H., Lou, D. W., Bovin, G. P. & Xu, M. Lack of obvious 50 kilobase pair DNA fragments in DNA fragmentation factor 45-deficient thymocytes upon activation of apoptosis. Biochem. Biophys. Res. Commun. 274, 225–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, J., Wang, X., Bove, K. E. & Xu, M. DNA fragmentation factor 45-deficient cells are more resistant to apoptosis and exhibit different dying morphology than wild-type control cells. J. Biol. Chem. 274, 37450–37454 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, J., Lee, H., Agarwala, A., Wen Lou, D. & Xu, M. DNA fragmentation factor 45 mutant mice exhibit resistance to kainic acid-induced neuronal cell death. Biochem. Biophys. Res. Commun. 285, 1143–1149 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Slane, J. M., Lee, H. S., Vorhees, C. V., Zhang, J. & Xu, M. DNA fragmentation factor 45 deficient mice exhibit enhanced spatial learning and memory compared to wild-type control mice. Brain Res. 867, 70–79 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Cote, J. & Ruiz-Carrillo, A. Primers for mitochondrial DNA replication generated by endonuclease G. Science 261, 765–769 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Prats, E. et al. Characterization and expression of the mouse endonuclease G gene. DNA Cell Biol. 16, 1111–1122 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Schafer, P. et al. Structural and functional characterization of mitochondrial EndoG, a sugar non-specific nuclease which plays an important role during apoptosis. J. Mol. Biol. 338, 217–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Li, L. Y., Luo, X. & Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99 (2001). This elegant study identified a second mitochondrial factor as a cell-autonomous apoptotic nuclease that functions in addition to CAD.

    Article  CAS  PubMed  Google Scholar 

  62. Arnoult, D. et al. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J. 22, 4385–4399 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Widlak, P., Li, L. Y., Wang, X. & Garrard, W. T. Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: cooperation with exonuclease and DNase I. J. Biol. Chem. 276, 48404–48409 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Parrish, J. et al. Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412, 90–94 (2001). This reports the discovery of the first cell-autonomous apoptotic nuclease in C. elegans , an organism that apparently lacks the CAD system. It also demonstrates that cell-autonomous DNA cleavage affects not only cell killing but also the engulfment process in this organism.

    Article  CAS  PubMed  Google Scholar 

  65. Parrish, J. Z. & Xue, D. Functional genomic analysis of apoptotic DNA degradation in C. elegans. Mol. Cell 11, 987–996 (2003). Candidate-based screening combined with RNAi identified seven new genes that cooperate in apoptotic DNA degradation in C. elegans . These genes are conserved between species, which indicates that they might also be involved in apoptotic DNA degradation in other systems.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, J. et al. Endonuclease G is required for early embryogenesis and normal apoptosis in mice. Proc. Natl Acad. Sci. USA 100, 15782–15787 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Irvine, R. A. et al. Generation and characterization of endonuclease G null mice. Mol. Cell. Biol. 25, 294–302 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zassenhaus, H. P. & Denniger, G. Analysis of the role of the NUC1 endo/exonuclease in yeast mitochondrial DNA recombination. Curr. Genet. 25, 142–149 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, Q. Y., Ribecco, M., Pandey, S., Walker, P. R. & Sikorska, M. Apoptosis-related functional features of the DNaseI-like family of nucleases. Ann. NY Acad. Sci. 887, 60–76 (1999). This is a good review that describes the DNase-I family of proteins that function in apoptosis.

  70. Yakovlev, A. G. et al. A role of the Ca2+/Mg2+-dependent endonuclease in apoptosis and its inhibition by poly(ADP-ribose) polymerase. J. Biol. Chem. 275, 21302–21308 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Shiokawa, D., Ohyama, H., Yamada, T. & Tanuma, S. Purification and properties of DNase g from apoptotic rat thymocytes. Biochem. J. 326, 675–681 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shiokawa, D. & Tanuma, S. Molecular cloning and expression of a cDNA encoding an apoptotic endonuclease DNase γ. Biochem. J. 332, 713–720 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shiokawa, D. & Tanuma, S. Characterization of human DNase I family endonucleases and activation of DNase γ during apoptosis. Biochemistry 40, 143–152 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Shiokawa, D., Shika, Y. & Tanuma, S. Identification of two functional nuclear localization signals in DNase γ and their roles in its apoptotic DNase activity. Biochem. J. 376, 377–381 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Okamoto, M. et al. Involvement of DNase γ in the resected double-strand DNA breaks in immunoglobulin genes. Biochem. Biophys. Res. Commun. 327, 76–83 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Shiokawa, D., Kobayashi, T. & Tanuma, S. Involvement of DNase γ in apoptosis associated with myogenic differentiation of C2C12 cells. J. Biol. Chem. 277, 31031–31037 (2002). This study showed that different DNases are responsible for apoptotic DNA cleavage during different stages of differentiation.

    Article  CAS  PubMed  Google Scholar 

  77. Shiokawa, D. & Tanuma, S. Differential DNases are selectively used in neuronal apoptosis depending on the differentiation state. Cell Death Differ. 11, 1112–1120 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Sunaga, S., Kobayashi, T., Yoshimori, A., Shiokawa, D. & Tanuma, S. A novel inhibitor that protects apoptotic DNA fragmentation catalyzed by DNase γ. Biochem. Biophys. Res. Commun. 325, 1292–1297 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Gaido, M. L. & Cidlowski, J. A. Identification, purification and characterization of a calcium-dependent endonuclease (NUC18) from apoptotic rat thymocytes. NUC18 is not histone H2B. J. Biol. Chem. 266, 18580–18585 (1991).

    CAS  PubMed  Google Scholar 

  80. Montague, J. W., Gaido, M. L., Frye, C. & Cidlowski, J. A. A calcium-dependent nuclease from apoptotic rat thymocytes is homologous with cyclophilin. J. Biol. Chem. 269, 18877–18880 (1994).

    CAS  PubMed  Google Scholar 

  81. Manteca, A. & Sanchez, J. Recombinant cyclophilins lack nuclease activity. J. Bacteriol. 186, 6325–6326 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cande, C. et al. AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 23, 1514–1521 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Evans, C. J. & Aguilera, R. J. DNase II: genes, enzymes and function. Gene 322, 1–15 (2003). This is an excellent review introducing DNase II.

    Article  CAS  PubMed  Google Scholar 

  84. Wu, Y. C., Stanfield, G. M. & Horvitz, H. R. NUC-1, a Caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes Dev. 14, 536–548 (2000). This paper reports the molecular characterization of NUC-1 as a DNase II homologue. This study also demonstrates that apoptotic DNA fragmentation requires both cell-autonomous and waste-management nucleases.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lyon, C. J., Evans, C. J., Bill, B. R., Otsuka, A. J. & Aguilera, R. J. The C. elegans apoptotic nuclease NUC-1 is related in sequence and activity to mammalian DNase II. Gene 252, 147–154 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Kawane, K. et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292, 1546–1549 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Krieser, R. J. et al. Deoxyribonuclease IIα is required during the phagocytic phase of apoptosis and its loss causes perinatal lethality. Cell Death Differ. 9, 956–962 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Barry, M. A., Reynolds, J. E. & Eastman, A. Etoposide-induced apoptosis in human HL-60 cells is associated with intracellular acidification. Cancer Res. 53, 2349–2357 (1993).

    CAS  PubMed  Google Scholar 

  89. Hedgecock, E. M., Sulston, J. E. & Thomson, J. N. Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220, 1277–1279 (1983).

    Article  CAS  PubMed  Google Scholar 

  90. Mukae, N., Yokoyama, H., Yokokura, T., Sakoyama, Y. & Nagata, S. Activation of the innate immunity in Drosophila by endogenous chromosomal DNA that escaped apoptotic degradation. Genes Dev. 16, 2662–2671 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lin, Q., Dong, C. & Cooper, M. D. Impairment of T and B cell development by treatment with a type I interferon. J. Exp. Med. 187, 79–87 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Peitsch, M. C. et al. Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J. 12, 371–377 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Napirei, M. et al. Features of systemic lupus erythematosus in DNase1-deficient mice. Nature Genet. 25, 177–181 (2000). This paper showed the importance of DNase I in the removal of DNA released after cell death and the link between incomplete DNA clearance and autoimmune disease.

    Article  CAS  PubMed  Google Scholar 

  94. Parrish, J. Z., Yang, C., Shen, B. & Xue, D. CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO J. 22, 3451–3460 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Qiu, J., Yoon, J. H. & Shen, B. Search for apoptotic nucleases in yeast: role of Tat-D nuclease in apoptotic DNA degradation. J. Biol. Chem. 280, 1530–1539 (2005).

    Google Scholar 

  96. Arnoult, D. et al. Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli. J. Cell Biol. 159, 923–929 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mate, M. J. et al. The crystal structure of the mouse apoptosis-inducing factor AIF. Nature Struct. Biol. 9, 442–446 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Miramar, M. D. et al. NADH oxidase activity of mitochondrial apoptosis-inducing factor. J. Biol. Chem. 276, 16391–16398 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Klein, J. A. et al. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419, 367–374 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Vahsen, N., et al. AIF deficiency compromises oxidative phosphorylation. EMBO J. 23, 4679–4689 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, X., Yang, C., Chai, J., Shi, Y. & Xue, D. Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science 298, 1587–1592 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Lipton, S. A. & Bossy-Wetzel, E. Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell 111, 147–150 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Cande, C., Cecconi, F., Dessen, P. & Kroemer, G. Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J. Cell Sci. 115, 4727–4734 (2002). This is a good review that summarizes the characteristics of AIF.

    Article  CAS  PubMed  Google Scholar 

  104. Ye, H. et al. DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nature Struct. Biol. 9, 680–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Arnoult, D. et al. On the evolutionary conservation of the cell death pathway: mitochondrial release of an apoptosis-inducing factor during Dictyostelium discoideum cell death. Mol. Biol. Cell 12, 3016–3030 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wissing, S. et al. An AIF orthologue regulates apoptosis in yeast. J. Cell Biol. 166, 969–974 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gurbuxani, S. et al. Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 22, 6669–6678 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Joza, N. et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Lagarkova, M. A., Iarovaia, O. V. & Razin, S. V. Large-scale fragmentation of mammalian DNA in the course of apoptosis proceeds via excision of chromosomal DNA loops and their oligomers. J. Biol. Chem. 270, 20239–20241 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Li, T. K. et al. Activation of topoisomerase II-mediated excision of chromosomal DNA loops during oxidative stress. Genes Dev. 13, 1553–1560 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Koo, H. S., Claassen, L., Grossman, L. & Liu, L. F. ATP-dependent partitioning of the DNA template into supercoiled domains by Escherichia coli UvrAB. Proc. Natl Acad. Sci. USA 88, 1212–1216 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Solovyan, V. T., Bezvenyuk, Z. A., Salminen, A., Austin, C. A. & Courtney, M. J. The role of topoisomerase II in the excision of DNA loop domains during apoptosis. J. Biol. Chem. 277, 21458–21467 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Torriglia, A. et al. L-DNase II, a molecule that links proteases and endonucleases in apoptosis, derives from the ubiquitous serpin leukocyte elastase inhibitor. Mol. Cell. Biol. 18, 3612–3619 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Altairac, S., Wright, S. C., Courtois, Y. & Torriglia, A. L-DNase II activation by the 24 kDa apoptotic protease (AP24) in TNFα-induced apoptosis. Cell Death Differ. 10, 1109–1111 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Chahory, S., Padron, L., Courtois, Y. & Torriglia, A. The LEI/L-DNase II pathway is activated in light-induced retinal degeneration in rats. Neurosci. Lett. 367, 205–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Torriglia, A., Chaudun, E., Chany-Fournier, F., Courtois, Y. & Counis, M. F. Involvement of L-DNase II in nuclear degeneration during chick retina development. Exp. Eye Res. 72, 443–453 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Torriglia, A. et al. Differential involvement of DNases in HeLa cell apoptosis induced by etoposide and long-term culture. Cell Death Differ. 6, 234–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Belmokhtar, C. A. et al. Nuclear translocation of a leukocyte elastase inhibitor/elastase complex during staurosporine-induced apoptosis: role in the generation of nuclear L-DNase II activity. Exp. Cell Res. 254, 99–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Torriglia, A. et al. Involvement of DNase II in nuclear degeneration during lens cell differentiation. J. Biol. Chem. 270, 28579–28585 (1995).

    Article  CAS  PubMed  Google Scholar 

  120. Allmang, C., Mitchell, P., Petfalski, E. & Tollervey, D. Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Res. 28, 1684–1691 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Allmang, C. et al. The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases. Genes Dev. 13, 2148–2158 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Anzai, N. et al. Types of nuclear endonuclease activity capable of inducing internucleosomal DNA fragmentation are completely different between human CD34+ cells and their granulocytic descendants. Blood 86, 917–923 (1995).

    CAS  PubMed  Google Scholar 

  123. Solovyan, V., Bezvenyuk, Z., Huotari, V., Tapiola, T. & Salminen, A. Distinct mechanisms underlay DNA disintegration during apoptosis induced by genotoxic and nongenotoxic agents in neuroblastoma cells. Neurochem. Int. 34, 465–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. Susin, S. A. et al. Two distinct pathways leading to nuclear apoptosis. J. Exp. Med. 192, 571–580 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nur, E. K. A. et al. Single-stranded DNA induces ataxia telangiectasia mutant (ATM)/p53-dependent DNA damage and apoptotic signals. J. Biol. Chem. 278, 12475–12481 (2003).

    Article  Google Scholar 

  126. Yamaguchi, S. et al. DNA-dependent protein kinase enhances DNA damage-induced apoptosis in association with Friend gp70. Leuk. Res. 29, 307–316 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Konishi, A. et al. Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell 114, 673–688 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Betti, C. J., Villalobos, M. J., Diaz, M. O. & Vaughan, A. T. Apoptotic stimuli initiate MLL-AF9 translocations that are transcribed in cells capable of division. Cancer Res. 63, 1377–1381 (2003).

    CAS  PubMed  Google Scholar 

  129. Radic, M., Marion, T. & Monestier, M. Nucleosomes are exposed at the cell surface in apoptosis. J. Immunol. 172, 6692–6700 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Gabler, C., Blank, N., Winkler, S., Kalden, J. R. & Lorenz, H. M. Accumulation of histones in cell lysates precedes expression of apoptosis-related phagocytosis signals in human lymphoblasts. Ann. NY Acad. Sci. 1010, 221–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Cocca, B. A., Cline, A. M. & Radic, M. Z. Blebs and apoptotic bodies are B cell autoantigens. J. Immunol. 169, 159–166 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Yasutomo, K. et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nature Genet. 28, 313–314 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Houge, G. et al. Fine mapping of 28S rRNA sites specifically cleaved in cells undergoing apoptosis. Mol. Cell. Biol. 15, 2051–2062 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ahn, S. H. et al. Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell 120, 25–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Madeo, F. et al. Apoptosis in yeast. Curr. Opin. Microbiol. 7, 655–660 (2004). This review summarizes our current understanding of apoptosis in yeast.

    Article  CAS  PubMed  Google Scholar 

  136. Keyhani, E. & Keyhani, J. Plasma membrane alteration is an early signaling event in doxorubicin-induced apoptosis in the yeast Candida utilis. Ann. NY Acad. Sci. 1030, 369–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Reiter, J., Herker, E., Madeo, F. & Schmitt, M. J. Viral killer toxins induce caspase-mediated apoptosis in yeast. J. Cell Biol. 168, 353–358 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wysocki, R. & Kron, S. J. Yeast cell death during DNA damage arrest is independent of caspase or reactive oxygen species. J. Cell Biol. 166, 311–316 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mitsui, K., Nakagawa, D., Nakamura, M., Okamoto, T. & Tsurugi, K. Valproic acid induces apoptosis dependent of Yca1p at concentrations that mildly affect the proliferation of yeast. FEBS Lett. 579, 723–727 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Narasimhan, M. L. et al. Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol. Cell 17, 171–180 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Madeo, F. et al. Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145, 757–767 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Madeo, F., Frohlich, E. & Frohlich, K. U. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139, 729–734 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wu, J., Zhou, T., He, J. & Mountz, J. D. Autoimmune disease in mice due to integration of an endogenous retrovirus in an apoptosis gene. J. Exp. Med. 178, 461–468 (1993).

    Article  CAS  PubMed  Google Scholar 

  144. Lazebnik, Y. A., Takahashi, A., Poirier, G. G., Kaufmann, S. H. & Earnshaw, W. C. Characterization of the execution phase of apoptosis in vitro using extracts from condemned-phase cells. J. Cell Sci. S19, 41–49 (1995).

    Article  Google Scholar 

  145. Shiokawa, D., Iwamatsu, A. & Tanuma, S. Purification, characterization, and amino acid sequencing of DNase g from rat spleen. Arch. Biochem. Biophys. 346, 15–20 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Montague, J. W., Hughes, F. M., & Cidlowski, J. A. Native recombinant cyclophilins A, B, and C degrade DNA independently of peptidylprolyl cistrans-isomerase activity. Potential roles of cyclophilins in apoptosis. J. Biol. Chem. 272, 6677–6684 (1997).

    Article  CAS  PubMed  Google Scholar 

  147. Fan, Z., Beresford, P. J., Oh, D. Y., Zhang, D. & Lieberman, J. Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112, 659–672 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Ahn, J. Y. et al. Nucleophosmin/B23, a nuclear PI(3,4,5)P(3) receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD. Mol. Cell 18, 435–445 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the Earnshaw laboratory is supported by the National Institutes of Health and The Wellcome Trust. W.E. is a Wellcome Trust Principle Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Earnshaw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Swiss-Prot

CAD

ICAD

NUC-1

FURTHER INFORMATION

William Earnshaw's laboratory

Glossary

TUNEL

(terminal deoxynucleotidyl transferase dUTP-mediated nick end labelling). The most commonly used technique to detect apoptotic cells, which labels DNA breaks with 3′-OH ends.

CELL-AUTONOMOUS NUCLEASE

A nuclease that functions in the dying cell to degrade its DNA.

WASTE-MANAGEMENT NUCLEASE

A nuclease that functions either in cells that ingest apoptotic corpses, or as a secreted enzyme in the extracellular environment to degrade DNA released as a consequence of cell death.

NECROSIS

Accidental cell death due to the loss of cellular homeostasis, which occurs following injury, radiation or treatment with chemicals, and is accompanied by an inflammatory response.

HIGH-MOBILITY GROUP PROTEINS

(HMGs). Abundant chromosomal proteins that facilitate the assembly of higher-order structures. One HMG protein, HMG1, leaks out from necrotic cells (but not apoptotic cells) and induces inflammation.

PEPTIDYLPROLYL CISTRANS-ISOMERASE

An enzymes that facilitates the cis-trans interconversion of the peptidyl–prolyl bond during protein folding.

EXOSOME

A protein complex that comprises 3′→5′ exonucleases (11 in Saccharomyces cerevisiae) that are involved in the processing and degradation of RNA.

3′→5′ EXONUCLEASE

A nuclease that degrades DNA or RNA from an available end in the 3′ to 5′ direction.

FLAVOPROTEIN

An enzyme that contains a chemically linked FAD moiety, and that is active in the oxidation of other molecules in animal cells.

OXIDOREDUCTASE

A class of enzyme that either oxidizes or reduces substrates using either FAD or NAD as a cofactor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samejima, K., Earnshaw, W. Trashing the genome: the role of nucleases during apoptosis. Nat Rev Mol Cell Biol 6, 677–688 (2005). https://doi.org/10.1038/nrm1715

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1715

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing