Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The diverse functions of histone lysine methylation

Key Points

  • DNA is packaged with histone proteins to form chromatin. The histone proteins are subject to numerous covalent modifications that regulate biological processes that are associated with chromatin, such as gene expression.

  • A number of lysine residues within histones H3 and H4 are subject to methylation by site-specific enzymes. With regard to gene expression, some methylated lysines are involved in activation, whereas others are involved in repression. Current evidence suggests that methylated lysines within histones direct the recruitment of different methyl-binding proteins, which mediate the biological effects of lysine methylation.

  • The methylation of H3 lysine 9 (H4-K9) and H4-K20 is involved in the formation of heterochromatin, a specific type of chromatin that is necessary for the proper functioning of centromeres and certain recombination events. Although the function of H4-K20 methylation is unclear, the methylation of H3-K9 functions in the recruitment of Swi6 or its mammalian homologue HP1. Recently, it has been demonstrated that the RNA interference pathway is critical for the recruitment of methyltransferases to sites of heterochromatin formation.

  • The methylation of H3-K9 and H3-K27 has been linked to gene silencing. H3-K9 methylation seems to direct the recruitment of HP1 to several cell-cycle-regulated genes to silence gene expression. H3-K27 methylation is mediated by enzyme complexes composed of members of the Polycomb Group (PcG). PcG proteins have a role in a number of silencing phenomena including homeotic gene silencing, X-inactivation and imprinting.

  • K4, K36 and K79 within histone H3 are associated with the positive regulation of gene expression. The enzymes that mediate H3-K4 and H3-K36 methylation are associated with the transcriptional machinery, and these modifications are established during transcriptional elongation. H3-K4 methylation has been shown to function as a binding site for severalenzymes that are involved in gene expression, including chromatin remodelling enzymes, histone acetyltransferases and lysine methyltransferases.

  • Recently, studies have provided convincing evidence that histone lysine methylation can be reversed, thereby providing an additional level of control. LSD1 demethylates H3-K4 and H3-K9 through an amine oxidase reaction and seems to function as both a positive and negative regulator of gene expression.

Abstract

Covalent modifications of histone tails have fundamental roles in chromatin structure and function. One such modification, lysine methylation, has important functions in many biological processes that include heterochromatin formation, X-chromosome inactivation and transcriptional regulation. Here, we summarize recent advances in our understanding of how lysine methylation functions in these diverse biological processes, and raise questions that need to be addressed in the future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histone lysine methyltransferases, their target sites and methyl-lysine binding domains.
Figure 2: Heterochromatin formation and RNA interference.
Figure 3: H3-K27 methylation in Polycomb silencing and X inactivation.
Figure 4: Histone lysine methylation and transcription.

Similar content being viewed by others

References

  1. Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. van Holde, K. E. in Chromatin (ed. Rich, A.) 1–148 (Springer, New York, 1988).

    Google Scholar 

  3. Bannister, A. J. & Kouzarides, T. Reversing histone methylation. Nature 436, 1103–1106 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Lachner, M., O'Sullivan, R. J. & Jenuwein, T. An epigenetic road map for histone lysine methylation. J. Cell Sci. 116, 2117–2124 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Margueron, R., Trojer, P. & Reinberg, D. The key to development: interpreting the histone code? Curr. Opin. Genet. Dev. 15, 163–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343–2360 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Bedford, M. T. & Richard, S. Arginine methylation an emerging regulator of protein function. Mol. Cell 18, 263–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Stallcup, M. R. Role of protein methylation in chromatin remodeling and transcriptional regulation. Oncogene 20, 3014–3020 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Hansen, J. C. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu. Rev. Biophys. Biomol. Struct. 31, 361–392 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Carruthers, L. M. & Hansen, J. C. The core histone N termini function independently of linker histones during chromatin condensation. J. Biol. Chem. 275, 37285–37290 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Turner, B. M. Histone acetylation and an epigenetic code. Bioessays 22, 836–845 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 17, 1870–1881 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Min, J., Zhang, Y. & Xu, R. M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 17, 1823–1828 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R., 3rd & Grant, P. A. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433, 434–438 (2005). The first demonstration of a protein capable of binding directly to methyl-H3-K4.

    Article  CAS  PubMed  Google Scholar 

  21. Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411 (2004). Established the tudor domain as a methyl-lysine binding motif and a link between H3-K79 methylation and DNA repair processes.

    Article  CAS  PubMed  Google Scholar 

  22. Sanders, S. L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119, 603–614 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3-K4 methylation and vertebrate development. Cell 121, 859–872 (2005). Shows that the WD40-repeat domain within WDR5 binds specifically to dimethyl-H3-K4 and that this interaction is important for H3-K4 methylation.

    Article  CAS  PubMed  Google Scholar 

  24. Kurdistani, S. K. & Grunstein, M. Histone acetylation and deacetylation in yeast. Nature Rev. Mol.Cell Biol. 4, 276–284 (2003).

    Article  CAS  Google Scholar 

  25. Henikoff, S. Histone modifications: combinatorial complexity or cumulative simplicity? Proc. Natl Acad. Sci. USA 102, 5308–5309 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schubeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bernstein, B. E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Lindroth, A. M. et al. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO J. 23, 4286–4296 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Mateescu, B., England, P., Halgand, F., Yaniv, M. & Muchardt, C. Tethering of HP1 proteins to chromatin is relieved by phosphoacetylation of histone H3. EMBO Rep. 5, 490–496 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun, Z. W. & Allis, C. D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Grunstein, M. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93, 325–328 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Pidoux, A. L. & Allshire, R. C. The role of heterochromatin in centromere function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 569–579 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jia, S., Yamada, T. & Grewal, S. I. Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination. Cell 119, 469–480 (2004). Demonstrates the role of heterochromatin and H3-K9 methylation in cell-type-specific spreading of proteins involved in recombination.

    Article  CAS  PubMed  Google Scholar 

  34. Wakimoto, B. T. Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell 93, 321–324 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Tschiersch, B. et al. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3–9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13, 3822–3831 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Aagaard, L. et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3–9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J. 18, 1923–1938 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Ekwall, K. et al. Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J. Cell Sci. 109, 2637–2648 (1996).

    CAS  PubMed  Google Scholar 

  40. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Motamedi, M. R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789–802 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S. I. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl Acad. Sci. USA 102, 152–157 (2005). This paper showed the interdependence between complexes that mediate heterochromatin formation.

    Article  CAS  PubMed  Google Scholar 

  45. Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nature Genet. 36, 1174–1180 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Partridge, J. F., Scott, K. S., Bannister, A. J., Kouzarides, T. & Allshire, R. C. cis-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site. Curr. Biol. 12, 1652–1660 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Partridge, J. F., Borgstrom, B. & Allshire, R. C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14, 783–791 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Rice, J. C. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol.Cell 12, 1591–1598 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Schotta, G. et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18, 1251–1262 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eissenberg, J. C. & Elgin, S. C. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Genet. Dev. 10, 204–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Tachibana, M. et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 19, 815–826 (2005). Shows that two methyltransferases cooperate to mediate the bulk of euchromatic H3-K9 methylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Ait-Si-Ali, S. et al. A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells. EMBO J. 23, 605–615 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vakoc, C. R., Mandat, S. A., Olenchock, B. A. & Blobel, G. A. Histone H3 Lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol. Cell 19, 381–391 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Weiler, K. S. & Wakimoto, B. T. Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet. 29, 577–605 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Cao, R. & Zhang, Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev. 14, 155–164 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Czermin, B. et al. Drosophila Enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 111, 185–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Muller, J. et al. Histone methyltransferase activity of a Drosophila polycomb group repressor complex. Cell 111, 197–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, L. et al. Hierarchical recruitment of polycomb group silencing complexes. Mol. Cell 14, 637–646 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98, 37–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004). Identifies the enzyme responsible for H2A ubiquitylation and shows that this modification is required for Polycomb gene silencing.

    Article  CAS  PubMed  Google Scholar 

  67. Heard, E. Recent advances in X-chromosome inactivation. Curr. Opin. Cell Biol. 16, 247–255 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Mak, W. et al. Reactivation of the paternal X chromosome in early mouse embryos. Science 303, 666–669 (2004). References 68 and 69 demonstrate that X-inactivation is dynamic in that imprinted X inactivation is reversed in the developing embryo followed by random X inactivation.

    Google Scholar 

  69. Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D. & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. de Napoles, M. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7, 663–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Fang, J., Chen, T., Chadwick, B., Li, E. & Zhang, Y. Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J. Biol. Chem. 279, 52812–52815 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Silva, J. et al. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed–Enx1 polycomb group complexes. Dev. Cell 4, 481–495 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, J. et al. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nature Genet. 28, 371–375 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Mager, J., Montgomery, N. D., de Villena, F. P. & Magnuson, T. Genome imprinting regulated by the mouse Polycomb group protein Eed. Nature Genet. 33, 502–507 (2003). Establishes a connection between Polycomb proteins and imprinting.

    Article  CAS  PubMed  Google Scholar 

  76. Lewis, A. et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nature Genet. 36, 1291–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Umlauf, D. et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nature Genet. 36, 1296–1300 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev. 19, 697–708 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Montgomery, N. D. et al. The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr. Biol. 15, 942–947 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Cao, R. & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED–EZH2 complex. Mol. Cell 15, 57–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E. & Helin, K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23, 4061–4071 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kuzmichev, A., Jenuwein, T., Tempst, P. & Reinberg, D. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell 14, 183–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Ng, H. H., Robert, F., Young, R. A. & Struhl, K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Xiao, T. et al. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev. 17, 654–663 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Krogan, N. J. et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 4207–4218 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, B., Howe, L., Anderson, S., Yates, J. R., 3rd & Workman, J. L. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 278, 8897–8903 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Xiao, T. et al. Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol. Cell. Biol. 25, 637–651 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Briggs, S. D. et al. Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418, 498 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Dover, J. et al. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J. Biol Chem. 277, 28368–28371 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Ng, H. H., Xu, R. M., Zhang, Y. & Struhl, K. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J. Biol. Chem. 277, 34655–34657 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Henry, K. W. et al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 17, 2648–2663 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Daniel, J. A. et al. Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J. Biol. Chem. 279, 1867–1871 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Kao, C. F. et al. Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev. 18, 184–195 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Henry, K. W. & Berger, S. L. Trans-tail histone modifications: wedge or bridge? Nature Struct. Biol. 9, 565–566 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Ezhkova, E. & Tansey, W. P. Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol. Cell 13, 435–442 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Bernstein, B. E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl Acad. Sci. USA 99, 8695–8700 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005). Demonstrates the generality of previous work investigating the distribution of histone modifications at active and silent genes.

    Article  CAS  PubMed  Google Scholar 

  99. Briggs, S. D. et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15, 3286–3295 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nagy, P. L., Griesenbeck, J., Kornberg, R. D. & Cleary, M. L. A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc. Natl Acad. Sci. USA 99, 90–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, H. et al. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol. Cell 12, 475–487 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Schlichter, A. & Cairns, B. R. Histone trimethylation by Set1 is coordinated by the RRM, autoinhibitory, and catalytic domains. EMBO J. 24, 1222–1231 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Laribee, R. N. et al. BUR kinase selectively regulates H3-K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex. Curr. Biol. 15, 1487–1493 (2005). Identifies a regulatory pathway that regulates methylation status.

    Article  CAS  PubMed  Google Scholar 

  104. Santos-Rosa, H. et al. Methylation of histone H3-K4 mediates association of the Isw1p ATPase with chromatin. Mol. Cell 12, 1325–1332 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Timmers, H. T. & Tora, L. SAGA unveiled. Trends Biochem. Sci. 30, 7–10 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Dou, Y. et al. Physical association and coordinate function of the H3-K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873–885 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Feng, Q. et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 12, 1052–1058 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. van Leeuwen, F., Gafken, P. R. & Gottschling, D. E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109, 745–756. (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Ng, H. H. et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16, 1518–1527 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lacoste, N., Utley, R. T., Hunter, J. M., Poirier, G. G. & Cote, J. Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J. Biol. Chem. 277, 30421–30424 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Ng, H. H., Ciccone, D. N., Morshead, K. B., Oettinger, M. A. & Struhl, K. Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc. Natl Acad. Sci. USA 100, 1820–1825 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Okada, Y. et al. hDOT1L links histone methylation to leukemogenesis. Cell 121, 167–178 (2005). This study provides evidence that MLL–AF10 fusion proteins induce leukaemia through the recruitment of DOT1L and H3-K79 methylation to target genes.

    Article  CAS  PubMed  Google Scholar 

  113. Bannister, A. J., Schneider, R. & Kouzarides, T. Histone methylation: dynamic or static? Cell 109, 801–806 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Cuthbert, G. L. et al. Histone deimination antagonizes arginine methylation. Cell 118, 545–553 (2004). References 114 and 115 are the first demonstrations of an enzyme capable of reversing histone methylation.

    Article  CAS  PubMed  Google Scholar 

  115. Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306, 279–283 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004). Identifies the first histone lysine demethylase.

    Article  CAS  PubMed  Google Scholar 

  117. Lee, M. G., Wynder, C., Cooch, N. & Shiekhattar, R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437, 432–435 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Clissold, P. M. & Ponting, C. P. JmjC: cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2β. Trends Biochem. Sci. 26, 7–9 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Trewick, S. C., McLaughlin, P. J. & Allshire, R. C. Methylation: lost in hydroxylation? EMBO Rep. 6, 315–320 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Fang, J. et al. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr. Biol. 12, 1086–1099 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Nishioka, K. et al. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol. Cell 9, 1201–1213 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Xiao, B. et al. Specificity and mechanism of the histone methyltransferase Pr-Set7. Genes Dev. 19, 1444–1454 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Karachentsev, D., Sarma, K., Reinberg, D. & Steward, R. PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev. 19, 431–435 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Julien, E. & Herr, W. A switch in mitotic histone H4 lysine 20 methylation status is linked to M phase defects upon loss of HCF-1. Mol. Cell 14, 713–725 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Freitag, M., Hickey, P. C., Khlafallah, T. K., Read, N. D. & Selker, E. U. HP1 is essential for DNA methylation in neurospora. Mol. Cell 13, 427–434 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Bachman, K. E. et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3, 89–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Sarraf, S. A. & Stancheva, I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol.Cell 15, 595–605 (2004). Demonstrates that DNA methylation can direct histone methylation during DNA replication.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their helpful comments. We apologize to our colleagues for not being able to quote all references due to limitations in space. Work in the Zhang laboratory is supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Swiss-Prot

Chd1

Chp1

Crl4

Dot1

ESC

E(Z)

EZH2

G9a

HP1

LSD1

SET1

SUV39H1

SUZ12

Swi6

WDR5

FURTHER INFORMATION

Yi Zhang's laboratory

Glossary

SET DOMAIN

A sequence motif (named after Su(var)3–9, Enhancer of Zeste, Trithorax) that is found in several chromatin-associated proteins, including members of both the Trithorax group (trxG) and Polycomb group (PcG).

X INACTIVATION

A process of dosage compensation in mammals that is achieved by the transcriptional silencing of one of the X chromosomes in XX females.

BROMODOMAIN

A conserved acetyl-lysine binding domain found in several transcriptional regulatory proteins that are involved in gene activation.

CHROMODOMAIN

A conserved protein structure that is common to some chromosomal proteins. It interacts with chromatin by binding to methylated lysine residues in histone proteins.

TUDOR DOMAIN

A conserved protein domain that is found in several RNA-binding proteins and chromatin-associated proteins. Recent studies indicate this domain can bind to methyl-lysine or methyl-arginine.

WD40-REPEAT DOMAIN

A protein motif that is composed of a 40-amino-acid repeat that forms a β-propeller sheet. Proteins that contain WD40 repeats function in a wide range of cellular functions, including G-protein-mediated signal transduction, transcriptional regulation, RNA processing, and regulation of vesicle formation and trafficking.

CENTROMERE

Region of a chromosome that is attached to the spindle during nuclear division.

TELOMERE

A segment at the end of each chromosome arm that consists of a series of repeated DNA sequences.

MATING-TYPE SWITCHING

A recombination event occurring in yeast that results in a 'switch' from one mating type, or sex, to another.

POSITION EFFECT VARIEGATION

A type of gene silencing that results from the translocation of normally active genes to locations that are proximal to heterochromatin. Silencing is initiated in a stochastic manner, but, once established, is stable and results in a variegated expression pattern.

SMALL INTERFERING RNA

(siRNA). A non-coding RNA (22 nucleotides long) that is derived from the processing of long double-stranded RNA during RNA interference. siRNAs direct the destruction or translation repression of mRNA targets that they hybridize with.

EUCHROMATIN

A form of chromatin that is decondensed during interphase and that contains actively transcribing genes.

GENOMIC IMPRINTING

A genetic mechanism by which genes are selectively expressed from the maternal or paternal chromosomes.

POLYCOMB GROUP

(PcG). A class of proteins — originally described in Drosophila melanogaster — that maintain stable and heritable repression of a number of genes, including the homeotic genes with which they are associated.

HOX GENES

(Homeobox genes). A group of linked regulatory genes that are involved in patterning the animal body axis during development.

UBIQUITIN E3 LIGASE

An enzyme that catalyses the covalent attachment of ubiquitin to lysine residues in proteins.

HISTONE DEACETYLASES

Enzymes that modify histones by removing acetyl groups, a chemical modification that is implicated in the regulation of gene expression and chromatin structure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, C., Zhang, Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6, 838–849 (2005). https://doi.org/10.1038/nrm1761

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1761

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing