Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ILK, PINCH and parvin: the tIPP of integrin signalling

Key Points

  • Adhesion of cells to the extracellular matrix (ECM) regulates processes that are related to cell survival, growth, differentiation, migration, polarity and proliferation. The main cell-surface receptors for ECM proteins are the integrins.

  • Integrin-linked kinase (ILK), PINCH and parvin form a ternary complex (the IPP complex) that binds to ECM-ligated integrins. This complex regulates signalling pathways and connects the ECM with the actin cytoskeleton.

  • Numerous isoforms of PINCH and parvin coexist to allow for the formation of different IPP complexes. Differential binding partners for PINCH and parvin isoforms might impart distinct functions to each complex.

  • ILK has been identified as a Ser/Thr protein kinase in vitro. In vivo confirmation of kinase activity has proven difficult because mutations in ILK disrupt the assembly and function of the IPP complex.

  • Genetic deletion of ILK, PINCH and parvin isoforms reveals common functions that are related to cell adhesion, but subtle differences in knockout phenotypes indicate separable functions outside of focal adhesions.

Abstract

The ternary complex of integrin-linked kinase (ILK), PINCH and parvin functions as a signalling platform for integrins by interfacing with the actin cytoskeleton and many diverse signalling pathways. All these proteins have synergistic functions at focal adhesions, but recent work has indicated that these proteins might also have separate roles within a cell. They function as regulators of gene transcription or cell–cell adhesion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biogenesis of focal adhesions.
Figure 2: Anatomy of the IPP complex and its binding partners.
Figure 3: Signalling through the IPP complex.
Figure 4: Divergence of the kinase domain of ILK.

Similar content being viewed by others

References

  1. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    CAS  PubMed  Google Scholar 

  2. Brown, N. H. Null mutations in the αPS2 and βPS integrin subunit genes have distinct phenotypes. Development 120, 1221–1231 (1994).

    CAS  PubMed  Google Scholar 

  3. Gettner, S. N., Kenyon, C. & Reichardt, L. F. Characterization of βpat-3 heterodimers, a family of essential integrin receptors in C. elegans. J. Cell Biol. 129, 1127–1141 (1995).

    CAS  PubMed  Google Scholar 

  4. Fässler, R. & Meyer, M. Consequences of lack of β1 integrin gene expression in mice. Genes Dev. 9, 1896–1908 (1995).

    PubMed  Google Scholar 

  5. Stephens, L. E. et al. Deletion of β1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev. 9, 1883–1895 (1995).

    CAS  PubMed  Google Scholar 

  6. Marsden, M. & DeSimone, D. W. Regulation of cell polarity, radial intercalation and epiboly in Xenopus: novel roles for integrin and fibronectin. Development 128, 3635–3647 (2001).

    CAS  PubMed  Google Scholar 

  7. Hannigan, G. E. et al. Regulation of cell adhesion and anchorage-dependent growth by a new β1-integrin-linked protein kinase. Nature 379, 91–96 (1996). Identifies ILK as a novel kinase that binds to the cytoplasmic tails of β1 integrins.

    CAS  PubMed  Google Scholar 

  8. Delcommenne, M. et al. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl Acad. Sci. USA 95, 11211–11216 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Persad, S. et al. Inhibition of integrin-linked kinase (ILK) suppresses activation of protein kinase B/Akt and induces cell cycle arrest and apoptosis of PTEN-mutant prostate cancer cells. Proc. Natl Acad. Sci. USA 97, 3207–3212 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, F., Zhang, Y. & Wu, C. Integrin-linked kinase is localized to cell-matrix focal adhesions but not cell–cell adhesion sites and the focal adhesion localization of integrin-linked kinase is regulated by the PINCH-binding ANK repeats. J. Cell Sci. 112, 4589–4599 (1999).

    CAS  PubMed  Google Scholar 

  11. Pasquet, J. M., Noury, M. & Nurden, A. T. Evidence that the platelet integrin αIIb β3 is regulated by the integrin-linked kinase, ILK, in a PI3-kinase dependent pathway. Thromb. Haemost. 88, 115–122 (2002).

    CAS  PubMed  Google Scholar 

  12. Yamaji, S. et al. Possible role of ILK–affixin complex in integrin–cytoskeleton linkage during platelet aggregation. Biochem. Biophys. Res. Commun. 297, 1324–1331 (2002).

    CAS  PubMed  Google Scholar 

  13. Tu, Y., Huang, Y., Zhang, Y., Hua, Y. & Wu, C. A new focal adhesion protein that interacts with integrin-linked kinase and regulates cell adhesion and spreading. J. Cell Biol. 153, 585–598 (2001). References 13, 14 and 20 identify the parvins as members of the IPP complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yamaji, S. et al. A novel integrin-linked kinase-binding protein, affixin, is involved in the early stage of cell–substrate interaction. J. Cell Biol. 153, 1251–1264 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rearden, A. A new LIM protein containing an autoepitope homologous to 'senescent cell antigen'. Biochem. Biophys. Res. Commun. 201, 1124–1131 (1994).

    CAS  PubMed  Google Scholar 

  16. Tu, Y., Li, F., Goicoechea, S. & Wu, C. The LIM-only protein PINCH directly interacts with integrin-linked kinase and is recruited to integrin-rich sites in spreading cells. Mol. Cell Biol. 19, 2425–2434 (1999). Describes the physical interaction between ILK and PINCH1.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hobert, O., Moerman, D. G., Clark, K. A., Beckerle, M. C. & Ruvkun, G. A conserved LIM protein that affects muscular adherens junction integrity and mechanosensory function in Caenorhabditis elegans. J. Cell Biol. 144, 45–57 (1999). Describes the UNC-97/PINCH loss-of-function phenotype in C. elegans.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, Y., Chen, K., Guo, L. & Wu, C. Characterization of PINCH-2, a new focal adhesion protein that regulates the PINCH-1–ILK interaction, cell spreading, and migration. J. Biol. Chem. 277, 38328–38338 (2002).

    CAS  PubMed  Google Scholar 

  19. Braun, A. et al. PINCH2 is a new five LIM domain protein, homologous to PINCH and localized to focal adhesions. Exp. Cell Res. 284, 239–250 (2003).

    CAS  PubMed  Google Scholar 

  20. Nikolopoulos, S. N. & Turner, C. E. Actopaxin, a new focal adhesion protein that binds paxillin LD motifs and actin and regulates cell adhesion. J. Cell Biol. 151, 1435–1448 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Olski, T. M., Noegel, A. A. & Korenbaum, E. Parvin, a 42 kDa focal adhesion protein, related to the α-actinin superfamily. J. Cell Sci. 114, 525–538 (2001).

    CAS  PubMed  Google Scholar 

  22. Attwell, S., Mills, J., Troussard, A., Wu, C. & Dedhar, S. Integration of cell attachment, cytoskeletal localization, and signaling by integrin-linked kinase (ILK), CH-ILKBP, and the tumor suppressor PTEN. Mol. Biol. Cell 14, 4813–4825 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, Y. et al. Formation and phosphorylation of the PINCH-1–integrin linked kinase–α-parvin complex are important for regulation of renal glomerular podocyte adhesion, architecture, and survival. J. Am. Soc. Nephrol. 16, 1966–1976 (2005).

    CAS  PubMed  Google Scholar 

  24. Curtis, M., Nikolopoulos, S. N. & Turner, C. E. Actopaxin is phosphorylated during mitosis and is a substrate for cyclin B1/cdc2 kinase. Biochem. J. 363, 233–242 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Clarke, D. M., Brown, M. C., LaLonde, D. P. & Turner, C. E. Phosphorylation of actopaxin regulates cell spreading and migration. J. Cell Biol. 166, 901–912 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Korenbaum, E., Olski, T. M. & Noegel, A. A. Genomic organization and expression profile of the parvin family of focal adhesion proteins in mice and humans. Gene 279, 69–79 (2001).

    CAS  PubMed  Google Scholar 

  27. Zhang, Y., Chen, K., Tu, Y. & Wu, C. Distinct roles of two structurally closely related focal adhesion proteins, α-parvins and β-parvins, in regulation of cell morphology and survival. J. Biol. Chem. 279, 41695–41705 (2004). Demonstrates that cells might assemble different IPP complexes with different functions.

    CAS  PubMed  Google Scholar 

  28. Zhang, Y. et al. Assembly of the PINCH–ILK–CH-ILKBP complex precedes and is essential for localization of each component to cell–matrix adhesion sites. J. Cell Sci. 115, 4777–4786 (2002).

    CAS  PubMed  Google Scholar 

  29. Fukuda, T., Chen, K., Shi, X. & Wu, C. PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival. J. Biol. Chem. 278, 51324–51333 (2003). Demonstrates that the stability of the members of the IPP complex is partially dependent on the presence of the other members of the complex.

    CAS  PubMed  Google Scholar 

  30. Xu, Z. et al. Molecular dissection of PINCH-1 reveals a mechanism of coupling and uncoupling of cell shape modulation and survival. J. Biol. Chem. 280, 27631–27637 (2005).

    CAS  PubMed  Google Scholar 

  31. Stanchi, F. et al. Consequences of loss of PINCH2 expression in mice. J. Cell Sci. 118, 6119–6128 (2005).

    Google Scholar 

  32. Zhang, Y., Guo, L., Chen, K. & Wu, C. A critical role of the PINCH integrin-linked kinase interaction in the regulation of cell shape change and migration. J. Biol. Chem. 277, 318–326 (2002).

    CAS  PubMed  Google Scholar 

  33. Nikolopoulos, S. N. & Turner, C. E. Integrin-linked kinase (ILK) binding to paxillin LD1 motif regulates ILK localization to focal adhesions. J. Biol. Chem. 276, 23499–23505 (2001).

    CAS  PubMed  Google Scholar 

  34. Mackinnon, A. C., Qadota, H., Norman, K. R., Moerman, D. G. & Williams, B. D. C. elegans PAT-4/ILK functions as an adaptor protein within integrin adhesion complexes. Curr. Biol. 12, 787–797 (2002). Identifies the ILK orthologue in C. elegans and reveals that ILK functions as an adaptor protein in this organism.

    CAS  PubMed  Google Scholar 

  35. Clark, K. A., McGrail, M. & Beckerle, M. C. Analysis of PINCH function in Drosophila demonstrates its requirement in integrin-dependent cellular processes. Development 130, 2611–2621 (2003). Describes the PINCH loss-of-function phenotype in D. melanogaster.

    CAS  PubMed  Google Scholar 

  36. Wu, C. PINCH, N(i)ck and the ILK: network wiring at cell–matrix adhesions. Trends Cell Biol. 15, 460–466 (2005).

    CAS  PubMed  Google Scholar 

  37. Turner, C. E., Glenney, J. R. Jr. & Burridge, K. Paxillin: a new vinculin-binding protein present in focal adhesions. J. Cell Biol. 111, 1059–1068 (1990).

    CAS  PubMed  Google Scholar 

  38. Wood, C. K., Turner, C. E., Jackson, P. & Critchley, D. R. Characterisation of the paxillin-binding site and the C-terminal focal adhesion targeting sequence in vinculin. J. Cell Sci. 107, 709–717 (1994).

    CAS  PubMed  Google Scholar 

  39. Kloeker, S. et al. The Kindler syndrome protein is regulated by transforming growth factor-β and involved in integrin-mediated adhesion. J. Biol. Chem. 279, 6824–6833 (2004).

    CAS  PubMed  Google Scholar 

  40. Siegel, D. H. et al. Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin–extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am. J. Hum. Genet. 73, 174–187 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tu, Y., Wu, S., Shi, X., Chen, K. & Wu, C. Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell 113, 37–47 (2003).

    CAS  PubMed  Google Scholar 

  42. Feng, Y. & Walsh, C. A. The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nature Cell Biol. 6, 1034–1038 (2004).

    CAS  PubMed  Google Scholar 

  43. Tsuda, T., Marinetti, M. R., Masuelli, L. & Cutler, M. L. The Ras suppressor RSU-1 localizes to 10p13 and its expression in the U251 glioblastoma cell line correlates with a decrease in growth rate and tumorigenic potential. Oncogene 11, 397–403 (1995).

    CAS  PubMed  Google Scholar 

  44. Vasaturo, F., Dougherty, G. W. & Cutler, M. L. Ectopic expression of Rsu-1 results in elevation of p21CIP and inhibits anchorage-independent growth of MCF7 breast cancer cells. Breast Cancer Res. Treat. 61, 69–78 (2000).

    CAS  PubMed  Google Scholar 

  45. Kadrmas, J. L. et al. The integrin effector PINCH regulates JNK activity and epithelial migration in concert with Ras suppressor 1. J. Cell Biol. 167, 1019–1024 (2004). By combining a genetic and a biochemical approach, these authors provide a connection between PINCH and the JNK signalling pathway in D. melanogaster.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dougherty, G. W., Chopp, T., Qi, S. M. & Cutler, M. L. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions. Exp. Cell Res. 306, 168–179 (2005).

    CAS  PubMed  Google Scholar 

  47. Bock-Marquette, I., Saxena, A., White, M. D., Dimaio, J. M. & Srivastava, D. Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432, 466–472 (2004).

    CAS  PubMed  Google Scholar 

  48. Liang, X. et al. PINCH1 plays an essential role in early murine embryonic development but is dispensable in ventricular cardiomyocytes. Mol. Cell Biol. 25, 3056–3062 (2005). References 48 and 63 describe the Pinch1 mouse-knockout phenotype.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Velyvis, A. et al. Structural and functional insights into PINCH LIM4 domain-mediated integrin signaling. Nature Struct. Biol. 10, 558–564 (2003).

    CAS  PubMed  Google Scholar 

  50. Vaynberg, J. et al. Structure of an ultraweak protein–protein complex and its crucial role in regulation of cell morphology and motility. Mol. Cell 17, 513–523 (2005).

    CAS  PubMed  Google Scholar 

  51. Bladt, F. et al. The murine Nck SH2/SH3 adaptors are important for the development of mesoderm-derived embryonic structures and for regulating the cellular actin network. Mol. Cell Biol. 23, 4586–4597 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tu, Y., Li, F. & Wu, C. Nck-2, a novel Src homology2/3-containing adaptor protein that interacts with the LIM-only protein PINCH and components of growth factor receptor kinase-signaling pathways. Mol. Biol. Cell 9, 3367–3382 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim-Kaneyama, J., Shibanuma, M. & Nose, K. Transcriptional activation of the c-fos gene by a LIM protein, Hic-5. Biochem. Biophys. Res. Commun. 299, 360–365 (2002).

    CAS  PubMed  Google Scholar 

  54. Shibanuma, M., Kim-Kaneyama, J. R., Sato, S. & Nose, K. A LIM protein, Hic-5, functions as a potential coactivator for Sp1. J. Cell. Biochem. 91, 633–645 (2004).

    CAS  PubMed  Google Scholar 

  55. LaLonde, D. P., Brown, M. C., Bouverat, B. P. & Turner, C. E. Actopaxin interacts with TESK1 to regulate cell spreading on fibronectin. J. Biol. Chem. 280, 21680–21688 (2005).

    CAS  PubMed  Google Scholar 

  56. Yamaji, S. et al. Affixin interacts with α-actinin and mediates integrin signaling for reorganization of F-actin induced by initial cell–substrate interaction. J. Cell Biol. 165, 539–551 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Rosenberger, G., Jantke, I., Gal, A. & Kutsche, K. Interaction of αPIX (ARHGEF6) with β-parvin (PARVB) suggests an involvement of αPIX in integrin-mediated signaling. Hum. Mol. Genet. 12, 155–167 (2003).

    CAS  PubMed  Google Scholar 

  58. Manser, E. et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell 1, 183–192 (1998).

    CAS  PubMed  Google Scholar 

  59. Edwards, D. C., Sanders, L. C., Bokoch, G. M. & Gill, G. N. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature Cell Biol. 1, 253–259 (1999).

    CAS  PubMed  Google Scholar 

  60. Rosenberger, G., Gal, A. & Kutsche, K. αPIX associates with calpain 4, the small subunit of calpain, and has a dual role in integrin-mediated cell spreading. J. Biol. Chem. 280, 6879–6889 (2005).

    CAS  PubMed  Google Scholar 

  61. Franco, S. J. et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nature Cell Biol. 6, 977–983 (2004).

    CAS  PubMed  Google Scholar 

  62. Matsuda, C. et al. Dysferlin interacts with affixin (β-parvin) at the sarcolemma. J. Neuropathol. Exp. Neurol. 64, 334–340 (2005).

    CAS  PubMed  Google Scholar 

  63. Li, S. et al. PINCH1 regulates cell–matrix and cell–cell adhesions, cell polarity and cell survival during the peri-implantation stage. J. Cell Sci. 118, 2913–2921 (2005). Shows that PINCH1 has functional roles (cell–cell adhesion and survival) in the primitive endoderm that are independent of ILK. This indicates that ILK and PINCH1 might not always act in concert.

    CAS  PubMed  Google Scholar 

  64. Campana, W. M., Myers, R. R. & Rearden, A. Identification of PINCH in Schwann cells and DRG neurons: shuttling and signaling after nerve injury. Glia 41, 213–223 (2003).

    PubMed  Google Scholar 

  65. Vespa, A., Darmon, A. J., Turner, C. E., D'Souza, S. J. & Dagnino, L. Ca2+-dependent localization of integrin-linked kinase to cell junctions in differentiating keratinocytes. J. Biol. Chem. 278, 11528–11535 (2003).

    CAS  PubMed  Google Scholar 

  66. Vespa, A., D'Souza, S. J. & Dagnino, L. A novel role for integrin-linked kinase in epithelial sheet morphogenesis. Mol. Biol. Cell 16, 4084–4095 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hanks, S. K., Quinn, A. M. & Hunter, T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52 (1988).

    CAS  PubMed  Google Scholar 

  68. Hanks, S. K. & Hunter, T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9, 576–596 (1995).

    CAS  PubMed  Google Scholar 

  69. Lynch, D. K., Ellis, C. A., Edwards, P. A. & Hiles, I. D. Integrin-linked kinase regulates phosphorylation of serine 473 of protein kinase B by an indirect mechanism. Oncogene 18, 8024–8032 (1999).

    CAS  PubMed  Google Scholar 

  70. Deng, J. T., Van Lierop, J. E., Sutherland, C. & Walsh, M. P. Ca2+-independent smooth muscle contraction. a novel function for integrin-linked kinase. J. Biol. Chem. 276, 16365–16373 (2001).

    CAS  PubMed  Google Scholar 

  71. Persad, S. et al. Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J. Biol. Chem. 276, 27462–27469 (2001). Shows that ILK phosphorylates AKT/PKB on Ser473 and reveals ILK as a candidate for HMK activity.

    CAS  PubMed  Google Scholar 

  72. Leung-Hagesteijn, C., Mahendra, A., Naruszewicz, I. & Hannigan, G. E. Modulation of integrin signal transduction by ILKAP, a protein phosphatase 2C associating with the integrin-linked kinase, ILK1. EMBO J. 20, 2160–2170 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kumar, A. S., Naruszewicz, I., Wang, P., Leung-Hagesteijn, C. & Hannigan, G. E. ILKAP regulates ILK signaling and inhibits anchorage-independent growth. Oncogene 23, 3454–3461 (2004).

    CAS  PubMed  Google Scholar 

  74. Sakai, T. et al. Integrin-linked kinase (ILK) is required for polarizing the epiblast, cell adhesion, and controlling actin accumulation. Genes Dev. 17, 926–940 (2003). The first report of ILK genetic deletion in the mouse. Deletion of Ilk results in severe developmental defects, but alterations in potential kinase substrates were not found.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Grashoff, C., Aszodi, A., Sakai, T., Hunziker, E. B. & Fassler, R. Integrin-linked kinase regulates chondrocyte shape and proliferation. EMBO Rep. 4, 432–438 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Troussard, A. A. et al. Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation. J. Biol. Chem. 278, 22374–22378 (2003).

    CAS  PubMed  Google Scholar 

  77. Mills, J. et al. Role of integrin-linked kinase in nerve growth factor-stimulated neurite outgrowth. J. Neurosci. 23, 1638–1648 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Novak, A. et al. Cell adhesion and the integrin-linked kinase regulate the LEF-1 and β-catenin signaling pathways. Proc. Natl Acad. Sci. USA 95, 4374–4379 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Nikolopoulos, S. N. & Turner, C. E. Molecular dissection of actopaxin–integrin-linked kinase–paxillin interactions and their role in subcellular localization. J. Biol. Chem. 277, 1568–1575 (2002).

    CAS  PubMed  Google Scholar 

  80. Khyrul, W. A., LaLonde, D. P., Brown, M. C., Levinson, H. & Turner, C. E. The integrin-linked kinase regulates cell morphology and motility in a rho-associated kinase-dependent manner. J. Biol. Chem. 279, 54131–54139 (2004).

    CAS  PubMed  Google Scholar 

  81. Filipenko, N. R., Attwell, S., Roskelley, C. & Dedhar, S. Integrin-linked kinase activity regulates Rac- and Cdc42-mediated actin cytoskeleton reorganization via α-PIX. Oncogene 24, 5837–5849 (2005).

    CAS  PubMed  Google Scholar 

  82. Carrera, A. C., Alexandrov, K. & Roberts, T. M. The conserved lysine of the catalytic domain of protein kinases is actively involved in the phosphotransfer reaction and not required for anchoring ATP. Proc. Natl Acad. Sci. USA 90, 442–446 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Zervas, C. G., Gregory, S. L. & Brown, N. H. Drosophila integrin-linked kinase is required at sites of integrin adhesion to link the cytoskeleton to the plasma membrane. J. Cell Biol. 152, 1007–1018 (2001). Using an ILK loss-of-function mutation, these authors demonstrate that ILK functions as an adaptor molecule in D. melanogaster.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Fukuda, T. et al. CH-ILKBP regulates cell survival by facilitating the membrane translocation of protein kinase B/Akt. J. Cell Biol. 160, 1001–1008 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tan, C. et al. Regulation of tumor angiogenesis by integrin-linked kinase (ILK). Cancer Cell 5, 79–90 (2004).

    CAS  PubMed  Google Scholar 

  86. Nho, S. et al. Role of integrin-linked kinase in regulating phosphorylation of Akt and fibroblast survival in type I collagen matrices through a β1 integrin viability signaling pathway. J. Biol. Chem. 280, 26630–26639 (2005).

    CAS  PubMed  Google Scholar 

  87. Lin, X., Qadota, H., Moerman, D. G. & Williams, B. D. C. elegans PAT-6/actopaxin plays a critical role in the assembly of integrin adhesion complexes in vivo. Curr. Biol. 13, 922–932 (2003). Describes the phenotypes associated with loss-of-function mutations in pat-6/parvin in C. elegans.

    CAS  PubMed  Google Scholar 

  88. Rogalski, T. M., Mullen, G. P., Gilbert, M. M., Williams, B. D. & Moerman, D. G. The UNC-112 gene in Caenorhabditis elegans encodes a novel component of cell–matrix adhesion structures required for integrin localization in the muscle cell membrane. J. Cell Biol. 150, 253–264 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mercer, K. B. et al. Caenorhabditis elegans UNC-98, a C2H2 Zn finger protein, is a novel partner of UNC-97/PINCH in muscle adhesion complexes. Mol. Biol. Cell 14, 2492–2507 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Xia, Y. & Karin, M. The control of cell motility and epithelial morphogenesis by Jun kinases. Trends Cell Biol. 14, 94–101 (2004).

    CAS  PubMed  Google Scholar 

  91. Ruan, W., Pang, P. & Rao, Y. The SH2/SH3 adaptor protein dock interacts with the Ste20-like kinase misshapen in controlling growth cone motility. Neuron 24, 595–605 (1999).

    CAS  PubMed  Google Scholar 

  92. Peifer, M., Rauskolb, C., Williams, M., Riggleman, B. & Wieschaus, E. The segment polarity gene armadillo interacts with the wingless signaling pathway in both embryonic and adult pattern formation. Development 111, 1029–1043 (1991).

    CAS  PubMed  Google Scholar 

  93. Staveley, B. E. et al. Genetic analysis of protein kinase B (AKT) in Drosophila. Curr. Biol. 8, 599–602 (1998).

    CAS  PubMed  Google Scholar 

  94. Chun, S. J., Rasband, M. N., Sidman, R. L., Habib, A. A. & Vartanian, T. Integrin-linked kinase is required for laminin-2-induced oligodendrocyte cell spreading and CNS myelination. J. Cell Biol. 163, 397–408 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Friedrich, E. B. et al. Role of integrin-linked kinase in leukocyte recruitment. J. Biol. Chem. 277, 16371–16375 (2002).

    CAS  PubMed  Google Scholar 

  96. Aszodi, A., Hunziker, E. B., Brakebusch, C. & Fassler, R. β1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev. 17, 2465–2479 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Terpstra, L. et al. Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. J. Cell Biol. 162, 139–148 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Friedrich, E. B. et al. Integrin-linked kinase regulates endothelial cell survival and vascular development. Mol. Cell Biol. 24, 8134–8144 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Gary, D. S., Milhavet, O., Camandola, S. & Mattson, M. P. Essential role for integrin linked kinase in Akt-mediated integrin survival signaling in hippocampal neurons. J. Neurochem. 84, 878–890 (2003).

    CAS  PubMed  Google Scholar 

  100. Ishii, T., Furuoka, H., Muroi, Y. & Nishimura, M. Inactivation of integrin-linked kinase induces aberrant tau phosphorylation via sustained activation of glycogen synthase kinase 3β in N1E-115 neuroblastoma cells. J. Biol. Chem. 278, 26970–26975 (2003).

    CAS  PubMed  Google Scholar 

  101. Aumailley, M., Pesch, M., Tunggal, L., Gaill, F. & Fassler, R. Altered synthesis of laminin 1 and absence of basement membrane component deposition in β1 integrin-deficient embryoid bodies. J. Cell Sci. 113, 259–268 (2000).

    CAS  PubMed  Google Scholar 

  102. Li, S. et al. Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation. J. Cell Biol. 157, 1279–1290 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wiesner, S., Legate, K. R. & Fassler, R. Integrin–actin interactions. Cell Mol. Life Sci. 62, 1081–1099 (2005).

    CAS  PubMed  Google Scholar 

  104. Yasunaga, T. et al. Xenopus ILK (integrin-linked kinase) is required for morphogenetic movements during gastrulation. Genes Cells 10, 369–379 (2005).

    CAS  PubMed  Google Scholar 

  105. D'Amico, M. et al. The integrin-linked kinase regulates the cyclin D1 gene through glycogen synthase kinase 3b and cAMP-responsive element-binding protein-dependent pathways. J. Biol. Chem. 275, 32649–32657 (2000).

    CAS  PubMed  Google Scholar 

  106. Di-Poi, N., Tan, N. S., Michalik, L., Wahli, W. & Desvergne, B. Antiapoptotic role of PPARβ in keratinocytes via transcriptional control of the Akt1 signaling pathway. Mol. Cell 10, 721–733 (2002).

    CAS  PubMed  Google Scholar 

  107. Di-Poi, N., Michalik, L., Tan, N. S., Desvergne, B. & Wahli, W. The anti-apoptotic role of PPARβ contributes to efficient skin wound healing. J. Steroid Biochem. Mol. Biol. 85, 257–265 (2003).

    CAS  PubMed  Google Scholar 

  108. Persad, S. & Dedhar, S. The role of integrin-linked kinase (ILK) in cancer progression. Cancer Metastasis Rev. 22, 375–384 (2003).

    CAS  PubMed  Google Scholar 

  109. Hannigan, G., Troussard, A. A. & Dedhar, S. Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nature Rev. Cancer 5, 51–63 (2005).

    CAS  Google Scholar 

  110. Xu, Z., Ma, D. Z., Wang, L. Y., Su, J. M. & Zha, X. L. Transforming growth factor-β1 stimulated protein kinase B serine-473 and focal adhesion kinase tyrosine phosphorylation dependent on cell adhesion in human hepatocellular carcinoma SMMC-7721 cells. Biochem. Biophys. Res. Commun. 312, 388–396 (2003).

    CAS  PubMed  Google Scholar 

  111. White, D. E., Cardiff, R. D., Dedhar, S. & Muller, W. J. Mammary epithelial-specific expression of the integrin-linked kinase (ILK) results in the induction of mammary gland hyperplasias and tumors in transgenic mice. Oncogene 20, 7064–7072 (2001).

    CAS  PubMed  Google Scholar 

  112. Feng, J., Park, J., Cron, P., Hess, D. & Hemmings, B. A. Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J. Biol. Chem. 279, 41189–41196 (2004).

    CAS  PubMed  Google Scholar 

  113. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science 307, 1098–1101 (2005).

    CAS  PubMed  Google Scholar 

  114. Hresko, R. C. & Mueckler, M. mTOR/RICTOR is the Ser473 kinase for Akt/PKB in 3T3-L1 adipocytes. J. Biol. Chem. 280, 40406–40416 (2005).

    CAS  PubMed  Google Scholar 

  115. Viniegra, J. G. et al. Full activation of PKB/Akt in response to insulin or ionizing radiation is mediated through ATM. J. Biol. Chem. 280, 4029–4036 (2005).

    CAS  PubMed  Google Scholar 

  116. Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159–171 (1996).

    CAS  PubMed  Google Scholar 

  117. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292, 1728–1731 (2001).

    CAS  PubMed  Google Scholar 

  118. Chen, W. S. et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 15, 2203–2208 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Li, S., Edgar, D., Fassler, R., Wadsworth, W. & Yurchenco, P. D. The role of laminin in embryonic cell polarization and tissue organization. Dev. Cell 4, 613–624 (2003).

    CAS  PubMed  Google Scholar 

  120. Critchley, D. R. Cytoskeletal proteins talin and vinculin in integrin-mediated adhesion. Biochem. Soc. Trans. 32, 831–836 (2004).

    CAS  PubMed  Google Scholar 

  121. Zaidel-Bar, R., Ballestrem, C., Kam, Z. & Geiger, B. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci. 116, 4605–4613 (2003).

    CAS  PubMed  Google Scholar 

  122. Dai, J. & Higgins, J. M. Haspin: a mitotic histone kinase required for metaphase chromosome alignment. Cell Cycle 4, 665–668 (2005).

    CAS  PubMed  Google Scholar 

  123. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    CAS  PubMed  Google Scholar 

  124. Troussard, A. A., Tan, C., Yoganathan, T. N. & Dedhar, S. Cell–extracellular matrix interactions stimulate the AP-1 transcription factor in an integrin-linked kinase- and glycogen synthase kinase 3-dependent manner. Mol. Cell. Biol. 19, 7420–7427 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Muranyi, A. et al. Phosphorylation of the myosin phosphatase target subunit by integrin-linked kinase. Biochem. J. 366, 211–216 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Quelo, I., Gauthier, C., Hannigan, G. E., Dedhar, S. & St-Arnaud, R. Integrin-linked kinase regulates the nuclear entry of the c-Jun coactivator α-NAC and its coactivation potency. J. Biol. Chem. 279, 43893–43899 (2004).

    CAS  PubMed  Google Scholar 

  127. Deng, J. T., Sutherland, C., Brautigan, D. L., Eto, M. & Walsh, M. P. Phosphorylation of the myosin phosphatase inhibitors, CPI-17 and PHI-1, by integrin-linked kinase. Biochem. J. 367, 517–524 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Erdodi, F. et al. Phosphorylation of protein phosphatase type-1 inhibitory proteins by integrin-linked kinase and cyclic nucleotide-dependent protein kinases. Biochem. Biophys. Res. Commun. 306, 382–387 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from a Marie Curie International Fellowship within the 6th European Community Framework Programme to K.R.L, an Erwin Schroedinger fellowship from the Austrian Science Foundation (FWF) to O.K, and the Deutsche Forschungsgemeinschaft, Fonds der Chemischen Industrie and the Max-Planck Society. The authors would like to thank C. Zervas and members of the Fässler laboratory for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

Flybase

Dreadlocks

Misshapen

STCK

Interpro

LIM domain

PH domain

SH2 domain

SH3 domain

Swiss-Prot

AKT

ILK

kindlin-1

kindlin-2

NCK2

α-parvin

β-parvin

γ-parvin

PAT-4

paxillin

α-PIX

PINCH1

PINCH2

RSU1

TESK1

thymosin-β4

UNC-97

FURTHER INFORMATION

Reinhard Füssler's laboratory

Glossary

Extracellular matrix

(ECM). A network of secreted proteins and polysaccharides that surrounds all the connective tissues and underlines all the epithelial and the endothelial sheets. It provides a physical support for tissues, as well as a sink for the storage, release and presentation of growth factors.

Focal adhesion

A highly specialized cell-adhesion structure that connects actin filaments to the ECM through integrins. Immature focal adhesions are known as focal complexes, and those that are formed through interactions with fibronectin mature into structures known as fibrillar adhesions.

Ankyrin repeat

A protein–protein-interaction module that consists of approximately 30 amino acids. It was first identified in the yeast cell-cycle regulator Swi6/Cdc10 and the D. melanogaster signalling protein Notch, and it was named after the cytoskeletal protein ankyrin. This motif is found in more than 1,700 different proteins.

Pleckstrin homology (PH) domain

A phosphoinositide-binding motif that is composed of approximately 100 amino acids and is involved in receiving and transmitting signals at the interface between the membrane and cytosol.

Senescent

Cells that are undergoing a permanent form of cell-cycle arrest that was originally described for post-proliferative primary cells in culture. Senescence can be induced by DNA damage, oxidative stress, chemotherapy and excess mitogenic stimuli, and is controlled by the tumour suppressor proteins, p53 and retioblastoma protein.

LIM domain

A tandem cysteine-rich Zn2+-finger motif that mediates protein–protein interactions. It was originally identified in the transcription factors LIN11, ISL1 and MEC3.

Calponin homology (CH) domain

A relatively small motif that is present in several cytoskeletal proteins and functions as an actin-binding domain, especially when they are presented in tandem.

Small inhibitory RNA

(siRNA). Double-stranded RNA molecules of 21–25 nucleotides in length that are used as a viral defence mechanism and an endogenous gene-silencing mechanism from plants to humans.

Lamellipodium

Dynamic actin-mediated cell-membrane protrusions at the front of spreading and migrating cells. They are essential for cell motility, phagocytosis and the development of substrate adhesions.

RNA interference

(RNAi). A method to silence specific gene expression by introducing double-stranded RNA into the cell that matches the nucleotide sequence of the targeted mRNA.

LD motif

Leucine-rich protein-binding sequences with the consensus sequence LDXLLXXL.

Kindler syndrome

An inheritable epidermal defect that is characterized by blistering, abnormal pigmentation, fragile skin and increased cancer risk.

Thymosins

A large family of small peptides that was originally identified in the thymus, but is also found in many tissues. They are divided into three main groups: α-, β-, and γ-thymosins. β-Thymosins bind globular actin to maintain a pool of actin monomers in the cell.

Calpains

A superfamily of multimeric Ca2+-dependent cysteine proteases that is implicated in various cellular processes such as proliferation, differentiation and apoptosis. Deregulation of calpain activity has been implicated in various pathological conditions.

Sarcolemma

The plasma membrane that encloses striated muscle fibres.

Adherens junction

A highly specialized cell–cell-adhesion complex that contains cadherins and catenins, and which is connected to cytoplasmic actin filaments.

Dominant negative

Introduction of an inactive mutant gene product, which interferes with the functional endogenous gene product, perhaps by competing for available accessory factors.

Ataxia telangiectasia

(ATM). Autosomal recessive hereditary disease associated with DNA-repair defects and caused by mutations in the ATM (ataxia telangiectasia) gene. It is characterized by progressive cerebellar ataxia, dilation of blood vessels in the skin and eyes, chromosomal aberrations, immune dysfunction and an increased risk of cancer malignancy, particularly leukaemia and lymphoma.

PAT phenotype

A broad phenotypic class of lethal mutations that affect muscle formation in C. elegans. Mutations that cause a PAT (paralyzed and arrested elongation at twofold) phenotype, affect either components of the attachment complex or essential components within the sarcomere.

Dense bodies/M-lines

Focal-adhesion-like muscle-attachment structures in C. elegans. Dense bodies anchor actin filaments to the plasma membrane, and M-lines attach myosin filaments to the plasma membrane. Both structures are essential for the contractility and the maintenance of the muscles.

Dorsal closure

A mid-stage developmental process that involves the movement of lateral dorsal epithelia towards the dorsal midline. This process is required for the sealing of embryonic epidermis in D. melanogaster.

Podocyte

Highly specialized epithelial cells that cover the outer aspect of the glomerular basement membrane in the kidney. Mature podocytes possess a highly branched array of foot processes that are essential for glomerular filtration.

Chondrodysplasia

A heterogeneous group of genetic disorders, which are characterized by abnormal skeletal morphogenesis affecting the development and growth of most skeletal elements.

Inner cell mass

Inner cells of the blastocyst that retain pluripotency and give rise to all cell types of the future body.

Blastocyst

An early stage of embryonic development, during which cells begin to commit to developmental lineages.

Embryoid bodies

Three-dimensional spherical aggregates of differentiated cells that are derived from embryonic stem cells. The differentiation of embryoid bodies recapitulates many aspects of the early course of embryonic development in vivo.

Basement membrane

Specialized extracellular matrix that first appears during the peri-implantation stage in vertebrates and during gastrulation in invertebrates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legate, K., Montañez, E., Kudlacek, O. et al. ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol 7, 20–31 (2006). https://doi.org/10.1038/nrm1789

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing