Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Chromatin in pluripotent embryonic stem cells and differentiation

Abstract

Embryonic stem (ES) cells are unique in that they are pluripotent and have the ability to self-renew. The molecular mechanisms that underlie these two fundamental properties are largely unknown. We discuss how unique properties of chromatin in ES cells contribute to the maintenance of pluripotency and the determination of differentiation properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nuclear architecture in ES cells and differentiating ES-derived cells.
Figure 2: Chromatin during ES-cell differentiation.
Figure 3: Models of the transcriptional landscape during ES-cell differentiation.

Similar content being viewed by others

References

  1. O'Shea, K. S. Self-renewal vs. differentiation of mouse embryonic stem cells. Biol. Reprod. 71, 1755–1765 (2004).

    Article  CAS  Google Scholar 

  2. Chambers, I. The molecular basis of pluripotency in mouse embryonic stem cells. Cloning Stem Cells 6, 386–391 (2004).

    Article  CAS  Google Scholar 

  3. Francastel, C., Schubeler, D., Martin, D. I. & Groudine, M. Nuclear compartmentalization and gene activity. Nature Rev. Mol. Cell Biol. 1, 137–143 (2000).

    Article  CAS  Google Scholar 

  4. Lamond, A. I. & Earnshaw, W. C. Structure and function in the nucleus. Science 280, 547–553 (1998).

    Article  CAS  Google Scholar 

  5. Parada, L. & Misteli, T. Chromosome positioning in the interphase nucleus. Trends Cell Biol. 12, 425–432 (2002).

    Article  CAS  Google Scholar 

  6. Cremer, T. et al. Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments. Hum. Genet. 62, 201–209 (1982).

    Article  CAS  Google Scholar 

  7. Parada, L. A., McQueen, P. G. & Misteli, T. Tissue-specific spatial organization of genomes. Genome Biol. 5, R44 (2004).

    Article  Google Scholar 

  8. Bolzer, A. et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 3, e157 (2005).

    Article  Google Scholar 

  9. Misteli, T. Spatial positioning: a new dimension in genome function. Cell 119, 153–156 (2004).

    Article  CAS  Google Scholar 

  10. Constantinescu, D., Gray, H. L., Sammak, P. J., Schatten, G. P. & Csoka, A. B. Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24, 177–185 (2005).

    Article  Google Scholar 

  11. Park, S. H., Kook, M. C., Kim, E. Y., Park, S. & Lim, J. H. Ultrastructure of human embryonic stem cells and spontaneous and retinoic acid-induced differentiating cells. Ultrastruct. Pathol. 28, 229–238 (2004).

    Article  Google Scholar 

  12. Meshorer, E. et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10, 105–116 (2006).

    Article  CAS  Google Scholar 

  13. Wiblin, A. E., Cui, W., Clark, A. J. & Bickmore, W. A. Distinctive nuclear organisation of centromeres and regions involved in pluripotency in human embryonic stem cells. J. Cell Sci. 118, 3861–3868 (2005).

    Article  CAS  Google Scholar 

  14. Marshall, W. F. Gene expression and nuclear architecture during development and differentiation. Mech. Dev. 120, 1217–1230 (2003).

    Article  CAS  Google Scholar 

  15. Taddei, A., Hediger, F., Neumann, F. R. & Gasser, S. M. The function of nuclear architecture: a genetic approach. Annu. Rev. Genet. 38, 305–345 (2004).

    Article  CAS  Google Scholar 

  16. Kim, S. H. et al. Spatial genome organization during T-cell differentiation. Cytogenet. Genome Res. 105, 292–301 (2004).

    Article  CAS  Google Scholar 

  17. Sperger, J. M. et al. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc. Natl Acad. Sci. USA 100, 13350–13355 (2003).

    Article  CAS  Google Scholar 

  18. Chambeyron, S. & Bickmore, W. A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119–1130 (2004).

    Article  CAS  Google Scholar 

  19. Chakalova, L., Debrand, E., Mitchell, J. A., Osborne, C. S. & Fraser, P. Replication and transcription: shaping the landscape of the genome. Nature Rev. Genet. 6, 669–677 (2005).

    Article  CAS  Google Scholar 

  20. Panning, M. M. & Gilbert, D. M. Spatio-temporal organization of DNA replication in murine embryonic stem, primary, and immortalized cells. J. Cell Biochem. 95, 74–82 (2005).

    Article  CAS  Google Scholar 

  21. Perry, P. et al. A dynamic switch in the replication timing of key regulator genes in embryonic stem cells upon neural induction. Cell Cycle 3, 1645–1650 (2004).

    Article  CAS  Google Scholar 

  22. Williams, R. R. et al. Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J. Cell Sci. 119, 132–140 (2006).

    Article  CAS  Google Scholar 

  23. Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol. 8, 532–538 (2006).

    Article  CAS  Google Scholar 

  24. Loden, M. & van Steensel, B. Whole-genome views of chromatin structure. Chromosome Res. 13, 289–298 (2005).

    Article  CAS  Google Scholar 

  25. Arney, K. L. & Fisher, A. G. Epigenetic aspects of differentiation. J. Cell Sci. 117, 4355–4363 (2004).

    Article  CAS  Google Scholar 

  26. Cammas, F. et al. Cell differentiation induces TIF1β association with centromeric heterochromatin via an HP1 interaction. J. Cell Sci. 115, 3439–3448 (2002).

    CAS  PubMed  Google Scholar 

  27. Kurisaki, A. et al. Chromatin-related proteins in pluripotent mouse embryonic stem cells are downregulated after removal of leukemia inhibitory factor. Biochem. Biophys. Res. Commun. 335, 667–675 (2005).

    Article  CAS  Google Scholar 

  28. Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000).

    Article  CAS  Google Scholar 

  29. Klochendler-Yeivin, A. et al. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep. 1, 500–506 (2000).

    Article  CAS  Google Scholar 

  30. Cao, S. et al. The high-mobility-group box protein SSRP1/T160 is essential for cell viability in day 3.5 mouse embryos. Mol. Cell Biol. 23, 5301–5307 (2003).

    Article  CAS  Google Scholar 

  31. Stopka, T. & Skoultchi, A. I. The ISWI ATPase Snf2h is required for early mouse development. Proc. Natl Acad. Sci. USA 100, 14097–14102 (2003).

    Article  CAS  Google Scholar 

  32. Xi, R. & Xie, T. Stem cell self-renewal controlled by chromatin remodeling factors. Science 310, 1487–1489 (2005).

    Article  CAS  Google Scholar 

  33. Kaji, K. et al. The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nature Cell Biol. 8, 285–292 (2006).

    Article  CAS  Google Scholar 

  34. Kimura, H. & Cook, P. R. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 153, 1341–1353 (2001).

    Article  CAS  Google Scholar 

  35. Phair, R. D. et al. Global nature of dynamic protein–chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell Biol. 24, 6393–6402 (2004).

    Article  CAS  Google Scholar 

  36. Fischle, W., Wang, Y. & Allis, C. D. Histone and chromatin cross-talk. Curr. Opin. Cell Biol. 15, 172–183 (2003).

    Article  CAS  Google Scholar 

  37. Hsieh, C. L. Dynamics of DNA methylation pattern. Curr. Opin. Genet. Dev. 10, 224–228 (2000).

    Article  CAS  Google Scholar 

  38. Lee, J. H., Hart, S. R. & Skalnik, D. G. Histone deacetylase activity is required for embryonic stem cell differentiation. Genesis 38, 32–38 (2004).

    Article  CAS  Google Scholar 

  39. Keohane, A. M., O'Neill L, P., Belyaev, N. D., Lavender, J. S. & Turner, B. M. X-inactivation and histone H4 acetylation in embryonic stem cells. Dev. Biol. 180, 618–630 (1996).

    Article  CAS  Google Scholar 

  40. Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

    Article  CAS  Google Scholar 

  41. Kimura, H., Tada, M., Nakatsuji, N. & Tada, T. Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol. Cell Biol. 24, 5710–5720 (2004).

    Article  CAS  Google Scholar 

  42. Szutorisz, H. et al. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Mol. Cell Biol. 25, 1804–1820 (2005).

    Article  CAS  Google Scholar 

  43. Szutorisz, H. & Dillon, N. The epigenetic basis for embryonic stem cell pluripotency. Bioessays 27, 1286–1293 (2005).

    Article  CAS  Google Scholar 

  44. Lande-Diner, L. & Cedar, H. Silence of the genes — mechanisms of long-term repression. Nature Rev. Genet. 6, 648–654 (2005).

    Article  CAS  Google Scholar 

  45. Lorincz, M. C., Dickerson, D. R., Schmitt, M. & Groudine, M. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nature Struct. Mol. Biol. 11, 1068–1075 (2004).

    Article  CAS  Google Scholar 

  46. Hashimshony, T., Zhang, J., Keshet, I., Bustin, M. & Cedar, H. The role of DNA methylation in setting up chromatin structure during development. Nature Genet. 34, 187–192 (2003).

    Article  CAS  Google Scholar 

  47. Li, C. L. & Johnson, G. R. Stem cell factor enhances the survival but not the self-renewal of murine hematopoietic long-term repopulating cells. Blood 84, 408–414 (1994).

    CAS  PubMed  Google Scholar 

  48. Shiota, K. et al. Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells 7, 961–969 (2002).

    Article  CAS  Google Scholar 

  49. Tsuji-Takayama, K. et al. Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells. Biochem. Biophys. Res. Commun. 323, 86–90 (2004).

    Article  CAS  Google Scholar 

  50. Taylor, S. M. & Jones, P. A. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17, 771–779 (1979).

    Article  CAS  Google Scholar 

  51. Hattori, N. et al. Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J. Biol. Chem. 279, 17063–17069 (2004).

    Article  CAS  Google Scholar 

  52. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental regulators by polycomb in human embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  Google Scholar 

  53. Munoz-Sanjuan, I. & Brivanlou, A. H. Neural induction, the default model and embryonic stem cells. Nature Rev. Neurosci. 3, 271–280 (2002).

    Article  CAS  Google Scholar 

  54. Abeyta, M. J. et al. Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum. Mol. Genet. 13, 601–608 (2004).

    Article  CAS  Google Scholar 

  55. Eckfeldt, C. E., Mendenhall, E. M. & Verfaillie, C. M. The molecular repertoire of the 'almighty' stem cell. Nature Rev. Mol. Cell Biol. 6, 726–737 (2005).

    Article  CAS  Google Scholar 

  56. Golan-Mashiach, M. et al. Design principle of gene expression used by human stem cells: implication for pluripotency. FASEB J. 19, 147–149 (2005).

    Article  CAS  Google Scholar 

  57. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  Google Scholar 

  58. Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).

    Article  CAS  Google Scholar 

  59. Peaston, A. E. et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7, 597–606 (2004).

    Article  CAS  Google Scholar 

  60. Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  Google Scholar 

  61. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).

    Article  CAS  Google Scholar 

  62. Oswald, J. et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475–478 (2000).

    Article  CAS  Google Scholar 

  63. Rougier, N. et al. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 12, 2108–2113 (1998).

    Article  CAS  Google Scholar 

  64. Maitra, A. et al. Genomic alterations in cultured human embryonic stem cells. Nature Genet. 37, 1099–1103 (2005).

    Article  CAS  Google Scholar 

  65. Bracken, A. P., Dietrich, N., Pasini, D., Hansen, K. H. & Helin, K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20, 1123–1136 (2006).

    Article  CAS  Google Scholar 

  66. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 19 Apr 2006 (doi:10.1038/nature04733).

  67. Lee, T. I. et al. Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Bustin, N. Dillon, P. Scaffidi and T. Takizawa for constructive comments. T.M. is a Fellow of the Keith R. Porter Endowment for Cell Biology.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Tom Misteli's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meshorer, E., Misteli, T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7, 540–546 (2006). https://doi.org/10.1038/nrm1938

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1938

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing