Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Innovations

Towards the plant metabolome and beyond

Abstract

Methods for network-wide analysis are increasingly showing that the textbook view of the regulation of plant metabolism is often incomplete and misleading. Recent innovations in small-molecule analysis have created the ability to rapidly identify and quantify numerous compounds, and these data are creating new opportunities for understanding plant metabolism and for plant metabolic engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Small-molecule analysis by mass spectrometry without chromatographic separation.
Figure 2: Small-molecule analysis by mass spectrometry with chromatographic separation.
Figure 3: Approaches to data reduction.
Figure 4: Use of metabolomics to analyse plants perturbed by genetic or environmental changes.

Similar content being viewed by others

References

  1. Fiehn, O. Metabolomics — the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Dunn, W. B. & Ellis, D. I. Metabolomics: current analytical platforms and methodologies. Trends Anal. Chem. 24, 285–294 (2005).

    Article  CAS  Google Scholar 

  3. Sweetlove, L. J., Last, R. L. & Fernie, A. R. Predictive metabolic engineering: a goal for systems biology. Plant Physiol. 132, 420–425 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ward, J. L., Harris, C., Lewis, J. & Beale, M. H. Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 62, 949–957 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Krishnan, P., Kruger, N. J. & Ratcliffe, R. G. Metabolite fingerprinting and profiling in plants using NMR. J. Exp. Bot. 56, 255–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Ratcliffe, R. G. & Shachar-Hill, Y. Probing plant metabolism with NMR. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 499–526 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Ratcliffe, R. G., Roscher, A. & Shachar-Hill, Y. Plant NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectros. 39, 267–300 (2001).

    Article  Google Scholar 

  8. Glinski, M. & Weckwerth, W. The role of mass spectrometry in plant systems biology. Mass Spectrom. Rev. 25, 173–214 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Villas-Bôas, S. G., Mas, S., Åkesson, M., Smedsgaard, J. & Nielsen, J. Mass spectrometry in metabolome analysis. Mass Spectrom. Rev. 24, 613–646 (2005).

    Article  PubMed  Google Scholar 

  10. Aharoni, A. et al. Nontargeted metabolome analysis by use of fourier transform ion cyclotron mass spectrometry. OMICS 6, 217–234 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Tohge, T. et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 42, 218–235 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Catchpole, G. S. et al. Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc. Natl Acad. Sci. USA 102, 14458–14462 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu, Q. et al. The Orbitrap: a new mass spectrometer. J. Mass. Spectrom. 40, 430–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Weckwerth, W., Loureiro, M. E., Wenzel, K. & Fiehn, O. Differential metabolic networks unravel the effects of silent plant phenotypes. Proc. Natl Acad. Sci. USA 101, 7809–7814 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ratcliffe, R. G. & Shachar-Hill, Y. Revealing metabolic phenotypes in plants: inputs from NMR analysis. Biol. Rev. 80, 27–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Janes, K. A. & Yaffe, M. B. Data-driven modelling of signal-transduction networks. Nature Rev. Mol. Cell Biol. 7, 820–828 (2006).

    Article  CAS  Google Scholar 

  17. Fan, T. W. M. et al. Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry 57, 209–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Shachar-Hill, Y. & Pfeffer, P. Nuclear Magnetic Resonance in Plant Biology (American Society of Plant Biologists, Rockville, 1996).

    Google Scholar 

  19. Bailey, N. J., Stanley, P. D., Hadfield, S. T., Lindon, J. C. & Nicholson, J. K. Mass spectrometrically detected directly coupled high performance liquid chromatography/nuclear magnetic resonance spectroscopy/mass spectrometry for the identification of xenobiotic metabolites in maize plants. Rapid Commun. Mass Spectrom. 14, 679–684 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Fan, T. W. M., Higashi, R. M., Lane, A. N. & Jardetzky, O. Combined use of 1H-NMR and GC–MS for metabolite monitoring and in vivo1H-NMR assignments. Biochim. Biophys. Acta 882, 154–167 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Morgenthal, K., Weckwerth, W. & Steuer, R. Metabolic networks in plants: transitions from pattern recognition to biological interpretation. BioSystems 83, 108–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Pettersson, G. & Ryde-Pettersson, U. A mathematical model of the Calvin photosynthesis cycle. Eur. J. Biochem. 175, 661–672 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Tikunov, Y. et al. A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol. 139, 1125–1137 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Broeckling, C. D., Reddy, I. R., Duran, A. L., Zhao, X. & Sumner, L. W. MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Anal. Chem. 78, 4334–4341 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Jonsson, P. et al. High-throughput data analysis for detecting and identifying differences between samples in GC–MS-based metabolomic analyses. Anal. Chem. 77, 5635–5642 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Scholz, M., Gatzek, S., Sterling, A., Fiehn, O. & Selbig, J. Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics 20, 2447–2454 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Goodacre, R., York, E. V., Heald, J. K. & Scott, I. M. Chemometric discrimination of unfractionated plant extracts analyzed by electrospray mass spectrometry. Phytochemistry 62, 859–863 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Hirai, M. Y. et al. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 101, 10205–10210 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wurtele, E. S. et al. MetNet: software to build and model the biogenetic lattice of Arabidopsis. Comp. Funct. Genomics 4, 239–245 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thimm, O. et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914–939 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. & Gruissem, W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 136, 2621–2632 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cook, D., Fowler, S., Fiehn, O. & Thomashow, M. F. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc. Natl Acad. Sci. USA 101, 15243–15248 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van Eenennaam, A. L. et al. Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15, 3007–3019 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Charlton, A. et al. NMR profiling of transgenic peas. Plant Biotech. J. 2, 27–35 (2004).

    Article  CAS  Google Scholar 

  35. Le Gall, G., Colquhoun, I. J. & Defernez, M. Metabolite profiling using 1H NMR spectroscopy for quality assessment of green tea, Camellia sinensis (L.). J. Agric. Food Chem. 52, 692–700 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Noteborn, H. P., Lommen, A., van der Jagt, R. C. & Weseman, J. M. Chemical fingerprinting for the evaluation of unintended secondary metabolic changes in transgenic food crops. J. Biotechnol. 77, 103–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Manetti, C. et al. A metabonomic study of transgenic maize (Zea mays) seeds revealed variations in osmolytes and branched amino acids. J. Exp. Bot. 57, 2613–2625 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Benning, C. Genetic mutant screening by direct metabolite analysis. Anal. Biochem. 332, 1–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Rose, A. B., Li, J. & Last, R. L. An allelic series of blue fluorescent trp1 mutants of Arabidopsis thaliana. Genetics 145, 197–205 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485–493 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chapple, C. C., Vogt, T., Ellis, B. E. & Somerville, C. R. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4, 1413–1424 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Somerville, C. & Browse, J. Plant lipids: metabolism, mutants and membranes. Science 252, 80–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Cheng, Z. et al. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell 15, 2343–2356 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Valentin, H. E. et al. The Arabidopsis vitamin E pathway gene 5–1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18, 212–224 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Conklin, P. L., Saracco, S. A., Norris, S. R. & Last, R. L. Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154, 847–856 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jander, G. et al. Application of a high-throughput HPLC–MS/MS assay to Arabidopsis mutant screening; evidence that threonine aldolase plays a role in seed nutritional quality. Plant J. 39, 465–475 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Broeckling, C. D. et al. Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J. Exp. Bot. 56, 323–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Schauer, N. et al. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnol. 24, 447–454 (2006).

    Article  CAS  Google Scholar 

  49. Eshed, Y. & Zamir, D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141, 1147–1162 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Keurentjes, J. J. et al. The genetics of plant metabolism. Nature Genet. 38, 842–849 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Fell, D. A. Enzymes, metabolites and fluxes. J. Exp. Bot. 56, 267–272 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Tomos, A. D. & Leigh, R. A. The pressure probe: a versatile tool in plant cell physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 447–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Lalonde, S., Ehrhardt, D. W. & Frommer, W. B. Shining light on signaling and metabolic networks by genetically encoded biosensors. Curr. Opin. Plant Biol. 8, 574–581 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ratcliffe, R. G. & Shachar-Hill, Y. Measuring multiple fluxes through plant metabolic networks. Plant J. 45, 490–511 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Raamsdonk, L. M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnol. 19, 45–50 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research in the Jones, Last and Shachar-Hill laboratories is funded by grants from the National Science Foundation, United States Department of Agriculture Competitive Grants Program, the National Institutes of Health and Michigan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Last.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

Statistical methods used in the analysis of metabolomics data. (PDF 594 kb)

Related links

Related links

FURTHER INFORMATION

Robert L. Last's homepage

A. Daniel Jones's homepage

Yair Shachar-Hill's homepage

AraCyc Arabidopsis metabolic pathway annotations

Genevestigator

Iowa Gene Expression Toolkit

KEGG Pathway Database

L. penellii Introgression Lines

MapMan tool

Metabolic modeling

Metabolic Ontology Working Group

MetAlign tool for GC– or LC–MS data analysis

Pathexplore tool

Plant metabolites database

Solcyc Solanaceae metabolic pathway annotations

The Golm Metabolome Database

WTEC Panel Report on International Research and Development in Systems Biology

Glossary

Allelopathic

The known or postulated ability of a plant-produced chemical to modify the physiology of a nearby plant, which constitutes a form of chemical communication between plants.

Capillary electrophoresis

Separation of compounds by the different times that they take to traverse a narrow column under the influence of an electric field.

Electrospray ionization

(ESI). A gentle method for ionizing compounds that applies high voltage to a solution of compounds that are sprayed through a capillary.

Flavonoid family

A large family of structurally diverse molecules that are produced by plants. They confer common colours to leaves, flowers and fruits, absorb ultraviolet light and have other known and postulated roles in plant growth and development.

Flow-injection analysis

(FIA). Introduction of a sample into a flowing medium that transports the sample components to a detector, such as a mass spectrometer, without chromatographic separation.

Fourier-transform-infrared (FT-IR) spectroscopy

Spectroscopy that enables the identification of classes of compound by analysing their interactions with infrared light. Mass resolution is the ability to distinguish ions of different masses, usually expressed as a ratio of the ion mass to the difference in mass that the mass spectrometer can reliably distinguish.

Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry

A method for obtaining accurate measurements of the mass-to-charge ratio of ions in a complex mixture, allowing the identification and measurement of the molecules.

Freezing-tolerance response

A measure of the ability of an organism to survive when exposed to below-freezing temperatures.

Gas chromatography

(GC). Method for the separation of volatile compounds in a gas phase through differential binding to a column at elevated temperatures.

High-performance liquid chromatography

(HPLC). Method for separating compounds in solution through their differential interactions with a column.

HPLC with electrochemical or photodiode-array detection

Method for the separation of metabolites by HPLC followed by the detection of the metabolites based on their redox behaviour or spectral absorption properties.

Mass-to-charge ratio

(m/z). The ratio of the mass of an ion (in Daltons, or atomic mass units) to the number of charges on the ion.

Nominal mass

The mass of a molecule, rounded off to the nearest integer value. Two compounds with different elemental formulas can have identical nominal masses, although their exact masses might differ by a small fraction of a Dalton (or atomic mass unit).

Orbitrap mass analyser

A high-resolution mass spectrometer that traps ions in an electric field and measures their abundances and mass-to-charge ratios based on their orbital motions in the ion trap.

Targeted metabolite analysis

Quantitative analysis of a pre-selected list of metabolites.

Thin-layer chromatography

Method for the separation of molecules through their differential interactions with a matrix on a glass or plastic plate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Last, R., Jones, A. & Shachar-Hill, Y. Towards the plant metabolome and beyond. Nat Rev Mol Cell Biol 8, 167–174 (2007). https://doi.org/10.1038/nrm2098

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2098

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing