Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multiple levels of cyclin specificity in cell-cycle control

Key Points

  • In budding yeast, multiple cyclins activate a single cyclin-dependent kinase (Cdk) to control progression through the cell cycle.

  • The ability of specific cyclins to target Cdk to different substrates reflects the timing of expression of individual cyclins in some cases, and in others it reflects the intrinsic properties of individual cyclin proteins.

  • Mechanisms that lead to cyclin specificity include transcriptional activation, proteolysis, negative regulation by particular inhibitors, subcellular localization and binding to specific substrates.

  • Intrinsic cyclin-specific properties affect both the regulation of cyclins as well as the targeting of particular substrates to control downstream events; signal-transduction pathways have evolved to exploit cyclin specificity to produce cell-cycle-specific responses to specific signals.

  • The specificity of different cyclins is thought to be important for the proper order and timing of cell-cycle events.

Abstract

Cyclins regulate the cell cycle by binding to and activating cyclin-dependent kinases (Cdks). Phosphorylation of specific targets by cyclin–Cdk complexes sets in motion different processes that drive the cell cycle in a timely manner. In budding yeast, a single Cdk is activated by multiple cyclins. The ability of these cyclins to target specific proteins and to initiate different cell-cycle events might, in some cases, reflect the timing of the expression of the cyclins; in others, it might reflect intrinsic properties of the cyclins that render them better suited to target particular proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cyclins in the budding yeast cell cycle.
Figure 2: Transcriptional regulation of cyclins.
Figure 3: Degradation and inhibition of cyclins.
Figure 4: Signalling pathways that regulate cyclins.
Figure 5: Cyclin control of DNA replication.
Figure 6: Cyclin control of mitotic spindle formation.
Figure 7: Cyclin control of exit from mitosis.

Similar content being viewed by others

References

  1. Cross, F. R., Archambault, V., Miller, M. & Klovstad, M. Testing a mathematical model of the yeast cell cycle. Mol. Biol. Cell 13, 52–70 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Loog, M. & Morgan, D. O. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434, 104–108 (2005). Identifies Cdc28 substrates that are preferentially phosphorylated by Clb5-directed Cdc28.

    CAS  PubMed  Google Scholar 

  3. Haase, S. B. & Reed, S. I. Evidence that a free-running oscillator drives G1 events in the budding yeast cell cycle. Nature 401, 394–397 (1999).

    CAS  PubMed  Google Scholar 

  4. Hu, F. & Aparicio, O. M. Swe1 regulation and transcriptional control restrict the activity of mitotic cyclins toward replication proteins in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 102, 8910–8915 (2005).

    CAS  PubMed  Google Scholar 

  5. Epstein, C. B. & Cross, F. R. CLB5: a novel B cyclin from budding yeast with a role in S phase. Genes Dev. 6, 1695–1706 (1992).

    CAS  PubMed  Google Scholar 

  6. Tyers, M. The cyclin-dependent kinase inhibitor p40SIC1 imposes the requirement for Cln G1 cyclin function at Start. Proc. Natl Acad. Sci. USA 93, 7772–7776 (1996).

    CAS  PubMed  Google Scholar 

  7. Fisher, D. L. & Nurse, P. A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins. EMBO J. 15, 850–860 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Levine, K., Kiang, L., Jacobson, M. D., Fisher, R. P. & Cross, F. R. Directed evolution to bypass cyclin requirements for the Cdc28p cyclin-dependent kinase. Mol. Cell 4, 353–363 (1999).

    CAS  PubMed  Google Scholar 

  9. Cross, F. R., Yuste-Rojas, M., Gray, S. & Jacobson, M. D. Specialization and targeting of B-type cyclins. Mol. Cell 4, 11–19 (1999).

    CAS  PubMed  Google Scholar 

  10. Jacobson, M. D., Gray, S., Yuste-Rojas, M. & Cross, F. R. Testing cyclin specificity in the exit from mitosis. Mol. Cell. Biol. 20, 4483–4493 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Archambault, V. et al. Targeted proteomic study of the cyclin–cdk module. Mol. Cell 14, 699–711 (2004). Identifies upstream regulators and downstream targets of individual cyclin–Cdc28 complexes by mass-spectrometric analysis.

    CAS  PubMed  Google Scholar 

  12. Cross, F. R. & Jacobson, M. D. Conservation and function of a potential substrate-binding domain in the yeast Clb5 B-type cyclin. Mol. Cell. Biol. 20, 4782–4790 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nasmyth, K. & Dirick, L. The role of SWI4 and SWI6 in the activity of G1 cyclins in yeast. Cell 66, 995–1013 (1991).

    CAS  PubMed  Google Scholar 

  14. Ogas, J., Andrews, B. J. & Herskowitz, I. Transcriptional activation of CLN1, CLN2, and a putative new G1 cyclin (HCS26) by SWI4, a positive regulator of G1-specific transcription. Cell 66, 1015–1026 (1991).

    CAS  PubMed  Google Scholar 

  15. Schwob, E. & Nasmyth, K. CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 7, 1160–1175 (1993).

    CAS  PubMed  Google Scholar 

  16. Bean, J. M., Siggia, E. D. & Cross, F. R. High functional overlap between MluI cell-cycle box binding factor and Swi4/6 cell-cycle box binding factor in the G1/S transcriptional program in Saccharomyces cerevisiae. Genetics 171, 49–61 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tyers, M., Tokiwa, G. & Futcher, B. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12, 1955–1968 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dirick, L., Bohm, T. & Nasmyth, K. Roles and regulation of Cln–Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae. EMBO J. 14, 4803–4813 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stuart, D. & Wittenberg, C. CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells. Genes Dev. 9, 2780–2794 (1995).

    CAS  PubMed  Google Scholar 

  20. Levine, K., Huang, K. & Cross, F. R. Saccharomyces cerevisiae G1 cyclins differ in their intrinsic functional specificities. Mol. Cell. Biol. 16, 6794–6803 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. de Bruin, R. A., McDonald, W. H., Kalashnikova, T. I., Yates, J. 3rd & Wittenberg, C. Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 117, 887–898 (2004).

    CAS  PubMed  Google Scholar 

  22. Costanzo, M. et al. CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117, 899–913 (2004). References 21 and 22 describe Cln–Cdc28-dependent phosphorylation of the SBF inhibitor Whi5, which allows for the transcription of CLN1 and CLN2.

    CAS  PubMed  Google Scholar 

  23. Cross, F. R. & Tinkelenberg, A. H. A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65, 875–883 (1991).

    CAS  PubMed  Google Scholar 

  24. Dirick, L. & Nasmyth, K. Positive feedback in the activation of G1 cyclins in yeast. Nature 351, 754–757 (1991).

    CAS  PubMed  Google Scholar 

  25. Geymonat, M., Spanos, A., Wells, G. P., Smerdon, S. J. & Sedgwick, S. G. Clb6/Cdc28 and Cdc14 regulate phosphorylation status and cellular localization of Swi6. Mol. Cell. Biol. 24, 2277–2285 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Amon, A., Tyers, M., Futcher, B. & Nasmyth, K. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74, 993–1007 (1993).

    CAS  PubMed  Google Scholar 

  27. Siegmund, R. F. & Nasmyth, K. A. The Saccharomyces cerevisiae Start-specific transcription factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28 kinase and through its conserved carboxy terminus with Swi6. Mol. Cell. Biol. 16, 2647–2655 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fitch, I. et al. Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol. Biol. Cell 3, 805–818 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Reynolds, D. et al. Recruitment of Thr319-phosphorylated Ndd1p to the FHA domain of Fkh2p requires Clb kinase activity: a mechanism for CLB cluster gene activation. Genes Dev. 17, 1789–1802 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Darieva, Z. et al. Cell cycle-regulated transcription through the FHA domain of Fkh2p and the coactivator Ndd1p. Curr. Biol. 13, 1740–1745 (2003).

    CAS  PubMed  Google Scholar 

  31. Pic-Taylor, A., Darieva, Z., Morgan, B. A. & Sharrocks, A. D. Regulation of cell cycle-specific gene expression through cyclin-dependent kinase-mediated phosphorylation of the forkhead transcription factor Fkh2p. Mol. Cell. Biol. 24, 10036–10046 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Barral, Y., Jentsch, S. & Mann, C. G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast. Genes Dev. 9, 399–409 (1995).

    CAS  PubMed  Google Scholar 

  33. Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J. & Harper, J. W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91, 209–219 (1997).

    CAS  Google Scholar 

  34. Jackson, L. P., Reed, S. I. & Haase, S. B. Distinct mechanisms control the stability of the related S-phase cyclins Clb5 and Clb6. Mol. Cell. Biol. 26, 2456–2466 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Donaldson, A. D. et al. CLB5-dependent activation of late replication origins in S. cerevisiae. Mol. Cell 2, 173–182 (1998).

    CAS  PubMed  Google Scholar 

  36. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol. 7, 644–656 (2006).

    CAS  Google Scholar 

  37. Shirayama, M., Toth, A., Galova, M. & Nasmyth, K. APCCdc20 promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature 402, 203–207 (1999).

    CAS  PubMed  Google Scholar 

  38. Wasch, R. & Cross, F. R. APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit. Nature 418, 556–562 (2002).

    PubMed  Google Scholar 

  39. Rudner, A. D. & Murray, A. W. Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. J. Cell Biol. 149, 1377–1390 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 1721–1724 (1998).

    CAS  PubMed  Google Scholar 

  41. Jaspersen, S. L., Charles, J. F. & Morgan, D. O. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr. Biol. 9, 227–236 (1999).

    CAS  PubMed  Google Scholar 

  42. Yeong, F. M., Lim, H. H., Wang, Y. & Surana, U. Early expressed Clb proteins allow accumulation of mitotic cyclin by inactivating proteolytic machinery during S phase. Mol. Cell. Biol. 21, 5071–5081 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang, J. N., Park, I., Ellingson, E., Littlepage, L. E. & Pellman, D. Activity of the APCCdh1 form of the anaphase-promoting complex persists until S phase and prevents the premature expression of Cdc20p. J. Cell Biol. 154, 85–94 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Schwob, E., Bohm, T., Mendenhall, M. D. & Nasmyth, K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79, 233–244 (1994).

    CAS  PubMed  Google Scholar 

  45. Feldman, R. M., Correll, C. C., Kaplan, K. B. & Deshaies, R. J. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221–230 (1997).

    CAS  PubMed  Google Scholar 

  46. Verma, R. et al. Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278, 455–460 (1997).

    CAS  PubMed  Google Scholar 

  47. Miller, M. E. & Cross, F. R. Distinct subcellular localization patterns contribute to functional specificity of the Cln2 and Cln3 cyclins of Saccharomyces cerevisiae. Mol. Cell. Biol. 20, 542–555 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Miller, M. E. & Cross, F. R. Mechanisms controlling subcellular localization of the G1 cyclins Cln2p and Cln3p in budding yeast. Mol. Cell. Biol. 21, 6292–6311 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Edgington, N. P. & Futcher, B. Relationship between the function and the location of G1 cyclins in S. cerevisiae. J. Cell Sci. 114, 4599–4611 (2001).

    CAS  PubMed  Google Scholar 

  50. Bailly, E., Cabantous, S., Sondaz, D., Bernadac, A. & Simon, M. N. Differential cellular localization among mitotic cyclins from Saccharomyces cerevisiae: a new role for the axial budding protein Bud3 in targeting Clb2 to the mother-bud neck. J. Cell Sci. 116, 4119–4130 (2003).

    CAS  PubMed  Google Scholar 

  51. Hood, J. K., Hwang, W. W. & Silver, P. A. The Saccharomyces cerevisiae cyclin Clb2p is targeted to multiple subcellular locations by cis- and trans-acting determinants. J. Cell Sci. 114, 589–597 (2001).

    CAS  PubMed  Google Scholar 

  52. Booher, R. N., Deshaies, R. J. & Kirschner, M. W. Properties of Saccharomyces cerevisiae Wee1 and its differential regulation of p34CDC28 in response to G1 and G2 cyclins. EMBO J. 12, 3417–3426 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Thornton, B. R. & Toczyski, D. P. Securin and B-cyclin/CDK are the only essential targets of the APC. Nature Cell Biol. 5, 1090–1094 (2003).

    CAS  PubMed  Google Scholar 

  54. Asano, S. et al. Concerted mechanism of Swe1/Wee1 regulation by multiple kinases in budding yeast. EMBO J. 24, 2194–2204 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Harvey, S. L., Charlet, A., Haas, W., Gygi, S. P. & Kellogg, D. R. Cdk1-dependent regulation of the mitotic inhibitor Wee1. Cell 122, 407–420 (2005).

    CAS  Google Scholar 

  56. Breitkreutz, A. & Tyers, M. MAPK signaling specificity: it takes two to tango. Trends Cell Biol. 12, 254–257 (2002).

    CAS  PubMed  Google Scholar 

  57. Peter, M. & Herskowitz, I. Direct inhibition of the yeast cyclin-dependent kinase Cdc28–Cln by Far1. Science 265, 1228–1231 (1994).

    CAS  PubMed  Google Scholar 

  58. Jeoung, D. I., Oehlen, L. J. & Cross, F. R. Cln3-associated kinase activity in Saccharomyces cerevisiae is regulated by the mating factor pathway. Mol. Cell. Biol. 18, 433–441 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gartner, A. et al. Pheromone-dependent G1 cell cycle arrest requires Far1 phosphorylation, but may not involve inhibition of Cdc28–Cln2 kinase, in vivo. Mol. Cell. Biol. 18, 3681–3691 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. McKinney, J. D., Chang, F., Heintz, N. & Cross, F. R. Negative regulation of FAR1 at the Start of the yeast cell cycle. Genes Dev. 7, 833–843 (1993).

    CAS  PubMed  Google Scholar 

  61. Henchoz, S. et al. Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. Genes Dev. 11, 3046–3060 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. McKinney, J. D. & Cross, F. R. FAR1 and the G1 phase specificity of cell cycle arrest by mating factor in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 2509–2516 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Oehlen, L. J., Jeoung, D. I. & Cross, F. R. Cyclin-specific START events and the G1-phase specificity of arrest by mating factor in budding yeast. Mol. Gen. Genet. 258, 183–198 (1998).

    CAS  PubMed  Google Scholar 

  64. Oehlen, L. J. & Cross, F. R. G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle. Genes Dev. 8, 1058–1070 (1994).

    CAS  PubMed  Google Scholar 

  65. Oehlen, L. J. & Cross, F. R. Potential regulation of Ste20 function by the Cln1–Cdc28 and Cln2–Cdc28 cyclin-dependent protein kinases. J. Biol. Chem. 273, 25089–25097 (1998).

    CAS  PubMed  Google Scholar 

  66. Wu, C., Leeuw, T., Leberer, E., Thomas, D. Y. & Whiteway, M. Cell cycle- and Cln2p–Cdc28p-dependent phosphorylation of the yeast Ste20p protein kinase. J. Biol. Chem. 273, 28107–28115 (1998).

    CAS  PubMed  Google Scholar 

  67. Oda, Y., Huang, K., Cross, F. R., Cowburn, D. & Chait, B. T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl Acad. Sci. USA 96, 6591–6596 (1999).

    CAS  PubMed  Google Scholar 

  68. Lew, D. J. & Reed, S. I. A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J. Cell Biol. 129, 739–749 (1995).

    CAS  PubMed  Google Scholar 

  69. Sia, R. A., Herald, H. A. & Lew, D. J. Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast. Mol. Biol. Cell 7, 1657–1666 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. McNulty, J. J. & Lew, D. J. Swe1p responds to cytoskeletal perturbation, not bud size, in S. cerevisiae. Curr. Biol. 15, 2190–2198 (2005).

    CAS  PubMed  Google Scholar 

  71. McMillan, J. N., Sia, R. A., Bardes, E. S. & Lew, D. J. Phosphorylation-independent inhibition of Cdc28p by the tyrosine kinase Swe1p in the morphogenesis checkpoint. Mol. Cell. Biol. 19, 5981–5990 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Waters, J. C., Chen, R. H., Murray, A. W. & Salmon, E. D. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol. 141, 1181–1191 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, R. H., Brady, D. M., Smith, D., Murray, A. W. & Hardwick, K. G. The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol. Biol. Cell 10, 2607–2618 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Brady, D. M. & Hardwick, K. G. Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function. Curr. Biol. 10, 675–678 (2000).

    CAS  PubMed  Google Scholar 

  75. Hwang, L. H. et al. Budding yeast Cdc20: a target of the spindle checkpoint. Science 279, 1041–1044 (1998).

    CAS  PubMed  Google Scholar 

  76. Visintin, R. et al. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell 2, 709–718 (1998).

    CAS  PubMed  Google Scholar 

  77. Bardin, A. J., Visintin, R. & Amon, A. A mechanism for coupling exit from mitosis to partitioning of the nucleus. Cell 102, 21–31 (2000).

    CAS  PubMed  Google Scholar 

  78. Fraschini, R., Formenti, E., Lucchini, G. & Piatti, S. Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2. J. Cell Biol. 145, 979–991 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Alexandru, G., Zachariae, W., Schleiffer, A. & Nasmyth, K. Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage. EMBO J. 18, 2707–2721 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lew, D. J. & Reed, S. I. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol. 120, 1305–1320 (1993).

    CAS  PubMed  Google Scholar 

  81. Benton, B. K., Tinkelenberg, A. H., Jean, D., Plump, S. D. & Cross, F. R. Genetic analysis of Cln–Cdc28 regulation of cell morphogenesis in budding yeast. EMBO J. 12, 5267–5275 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cvrckova, F. & Nasmyth, K. Yeast G1 cyclins CLN1 and CLN2 and a GAP-like protein have a role in bud formation. EMBO J. 12, 5277–5286 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chant, J. & Herskowitz, I. Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell 65, 1203–1212 (1991).

    CAS  PubMed  Google Scholar 

  84. Moffat, J. & Andrews, B. Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast. Nature Cell Biol. 6, 59–66 (2004). Describes a Cln-specific role for budding and morphogenesis, but not other cell-cycle events such as DNA replication or SPB duplication.

    CAS  PubMed  Google Scholar 

  85. Sreenivasan, A., Bishop, A. C., Shokat, K. M. & Kellogg, D. R. Specific inhibition of Elm1 kinase activity reveals functions required for early G1 events. Mol. Cell. Biol. 23, 6327–6337 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Altman, R. & Kellogg, D. Control of mitotic events by Nap1 and the Gin4 kinase. J. Cell Biol. 138, 119–130 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kellogg, D. R., Kikuchi, A., Fujii-Nakata, T., Turck, C. W. & Murray, A. W. Members of the NAP/SET family of proteins interact specifically with B-type cyclins. J. Cell Biol. 130, 661–673 (1995).

    CAS  PubMed  Google Scholar 

  88. Kellogg, D. R. & Murray, A. W. NAP1 acts with Clb1 to perform mitotic functions and to suppress polar bud growth in budding yeast. J. Cell Biol. 130, 675–685 (1995).

    CAS  PubMed  Google Scholar 

  89. Mortensen, E. M., McDonald, H., Yates, J. 3rd & Kellogg, D. R. Cell cycle-dependent assembly of a Gin4–septin complex. Mol. Biol. Cell 13, 2091–2105 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Masumoto, H., Sugino, A. & Araki, H. Dpb11 controls the association between DNA polymerases α and ɛ and the autonomously replicating sequence region of budding yeast. Mol. Cell. Biol. 20, 2809–2817 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Masumoto, H., Muramatsu, S., Kamimura, Y. & Araki, H. S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature 415, 651–655 (2002). Describes the first identified essential substrate of Cdc28 that is targeted by S-phase Clb–Cdc2 complexes and the phosphorylation of which is required for progression through S phase.

    Google Scholar 

  92. Kesti, T., McDonald, W. H., Yates, J. R., 3rd & Wittenberg, C. Cell cycle-dependent phosphorylation of the DNA polymerase epsilon subunit, Dpb2, by the Cdc28 cyclin-dependent protein kinase. J. Biol. Chem. 279, 14245–14255 (2004).

    CAS  PubMed  Google Scholar 

  93. Elsasser, S., Lou, F., Wang, B., Campbell, J. L. & Jong, A. Interaction between yeast Cdc6 protein and B-type cyclin/Cdc28 kinases. Mol. Biol. Cell 7, 1723–1735 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Drury, L. S., Perkins, G. & Diffley, J. F. The cyclin-dependent kinase Cdc28p regulates distinct modes of Cdc6p proteolysis during the budding yeast cell cycle. Curr. Biol. 10, 231–240 (2000).

    CAS  PubMed  Google Scholar 

  95. Calzada, A., Sanchez, M., Sanchez, E. & Bueno, A. The stability of the Cdc6 protein is regulated by cyclin-dependent kinase/cyclin B complexes in Saccharomyces cerevisiae. J. Biol. Chem. 275, 9734–9741 (2000).

    CAS  PubMed  Google Scholar 

  96. Mimura, S., Seki, T., Tanaka, S. & Diffley, J. F. Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control. Nature 431, 1118–1123 (2004).

    CAS  PubMed  Google Scholar 

  97. Labib, K., Diffley, J. F. & Kearsey, S. E. G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Nature Cell Biol. 1, 415–422 (1999).

    CAS  PubMed  Google Scholar 

  98. Nguyen, V. Q., Co, C., Irie, K. & Li, J. J. Clb/Cdc28 kinases promote nuclear export of the replication initiator proteins Mcm2–7. Curr. Biol. 10, 195–205 (2000).

    CAS  PubMed  Google Scholar 

  99. Nguyen, V. Q., Co, C. & Li, J. J. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411, 1068–1073 (2001).

    CAS  PubMed  Google Scholar 

  100. Wilmes, G. M. et al. Interaction of the S-phase cyclin Clb5 with an “RXL” docking sequence in the initiator protein Orc6 provides an origin-localized replication control switch. Genes Dev. 18, 981–991 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Archambault, V., Buchler, N. E., Wilmes, G. M., Jacobson, M. D. & Cross, F. R. Two-faced cyclins with eyes on the targets. Cell Cycle 4, 125–130 (2005).

    CAS  PubMed  Google Scholar 

  102. Haase, S. B., Winey, M. & Reed, S. I. Multi-step control of spindle pole body duplication by cyclin-dependent kinase. Nature Cell Biol. 3, 38–42 (2001). Describes the functions of different cyclin–Cdc28 complexes in SPB duplication, maturation and separation.

    CAS  PubMed  Google Scholar 

  103. Jaspersen, S. L. & Winey, M. The budding yeast spindle pole body: structure, duplication, and function. Annu. Rev. Cell. Dev. Biol. 20, 1–28 (2004).

    CAS  PubMed  Google Scholar 

  104. Jaspersen, S. L. et al. Cdc28/Cdk1 regulates spindle pole body duplication through phosphorylation of Spc42 and Mps1. Dev. Cell 7, 263–274 (2004). Identifies substrates of Cln–Cdc28 complexes that promote SPB duplication.

    CAS  PubMed  Google Scholar 

  105. Castillo, A. R., Meehl, J. B., Morgan, G., Schutz-Geschwender, A. & Winey, M. The yeast protein kinase Mps1p is required for assembly of the integral spindle pole body component Spc42p. J. Cell Biol. 156, 453–465 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ubersax, J. A. et al. Targets of the cyclin-dependent kinase Cdk1. Nature 425, 859–864 (2003).

    CAS  PubMed  Google Scholar 

  107. Segal, M., Clarke, D. J. & Reed, S. I. Clb5-associated kinase activity is required early in the spindle pathway for correct preanaphase nuclear positioning in Saccharomyces cerevisiae. J. Cell Biol. 143, 135–145 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Segal, M. et al. Coordinated spindle assembly and orientation requires Clb5p-dependent kinase in budding yeast. J. Cell Biol. 148, 441–452 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Pereira, G., Tanaka, T. U., Nasmyth, K. & Schiebel, E. Modes of spindle pole body inheritance and segregation of the Bfa1p–Bub2p checkpoint protein complex. EMBO J. 20, 6359–6370 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Miller, R. K. & Rose, M. D. Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J. Cell Biol. 140, 377–390 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Miller, R. K., Matheos, D. & Rose, M. D. The cortical localization of the microtubule orientation protein, Kar9p, is dependent upon actin and proteins required for polarization. J. Cell Biol. 144, 963–975 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Maekawa, H., Usui, T., Knop, M. & Schiebel, E. Yeast Cdk1 translocates to the plus end of cytoplasmic microtubules to regulate bud cortex interactions. EMBO J. 22, 438–449 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Liakopoulos, D., Kusch, J., Grava, S., Vogel, J. & Barral, Y. Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 112, 561–574 (2003). Identifies a Clb4-specific role for orienting the mitotic spindle.

    CAS  PubMed  Google Scholar 

  114. Maekawa, H. & Schiebel, E. Cdk1–Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex. Genes Dev. 18, 1709–1724 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Moore, J. K., D'Silva, S. & Miller, R. K. The CLIP-170 homologue Bik1p promotes the phosphorylation and asymmetric localization of Kar9p. Mol. Biol. Cell 17, 178–191 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Grava, S., Schaerer, F., Faty, M., Philippsen, P. & Barral, Y. Asymmetric recruitment of dynein to spindle poles and microtubules promotes proper spindle orientation in yeast. Dev. Cell 10, 425–439 (2006).

    CAS  PubMed  Google Scholar 

  117. Schwab, M., Lutum, A. S. & Seufert, W. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell 90, 683–693 (1997).

    CAS  PubMed  Google Scholar 

  118. Jaspersen, S. L., Charles, J. F., Tinker-Kulberg, R. L. & Morgan, D. O. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol. Biol. Cell 9, 2803–2817 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sullivan, M. & Uhlmann, F. A non-proteolytic function of separase links the onset of anaphase to mitotic exit. Nature Cell Biol. 5, 249–254 (2003).

    CAS  PubMed  Google Scholar 

  120. Lew, D. J. & Burke, D. J. The spindle assembly and spindle position checkpoints. Annu. Rev. Genet. 37, 251–282 (2003).

    CAS  PubMed  Google Scholar 

  121. Jaspersen, S. L. & Morgan, D. O. Cdc14 activates Cdc15 to promote mitotic exit in budding yeast. Curr. Biol. 10, 615–618 (2000).

    CAS  PubMed  Google Scholar 

  122. Stegmeier, F., Visintin, R. & Amon, A. Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108, 207–220 (2002).

    CAS  PubMed  Google Scholar 

  123. Azzam, R. et al. Phosphorylation by cyclin B-Cdk underlies release of mitotic exit activator Cdc14 from the nucleolus. Science 305, 516–519 (2004).

    CAS  PubMed  Google Scholar 

  124. Queralt, E., Lehane, C., Novak, B. & Uhlmann, F. Downregulation of PP2ACdc55 phosphatase by separase initiates mitotic exit in budding yeast. Cell 125, 719–732 (2006).

    CAS  PubMed  Google Scholar 

  125. Shou, W. et al. Net1 stimulates RNA polymerase I transcription and regulates nucleolar structure independently of controlling mitotic exit. Mol. Cell 8, 45–55 (2001).

    CAS  PubMed  Google Scholar 

  126. Nasmyth, K. Evolution of the cell cycle. Philos. Trans. R Soc. Lond. B Biol. Sci. 349, 271–281 (1995).

    CAS  PubMed  Google Scholar 

  127. Stern, B. & Nurse, P. A quantitative model for the Cdc2 control of S phase and mitosis in fission yeast. Trends Genet. 12, 345–350 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.B. is supported by a postdoctoral fellowship from the American Cancer Society. F.R.C. is supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick R. Cross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Saccharomyces Genome Database

Cdc14

Cdc28

Clb1

Clb2

Clb3

Clb4

Clb5

Clb6

Cln1

Cln2

Cln3

Dyn1

Fkh2

Kar9

Ndd1

Sic1

Whi5

FURTHER INFORMATION

Frederick R. Cross's homepage

Glossary

Spindle pole body

(SPB). The yeast equivalent of the centrosome, which nucleates microtubules, including those that will form the spindle.

Anaphase promoting complex

(APC). A multicomponent ubiquitin ligase that targets proteins for degradation by the proteasome.

Forkhead transcription factor

A member of a protein family that consists of more than 40 members. This family belongs to the winged-helix class of DNA-binding proteins and its members are involved in diverse cellular functions, including glucose metabolism, apoptosis and cell-cycle regulation.

26S proteasome

A large multisubunit protease complex that selectively degrades intracellular proteins. Targeting to proteasomes occurs through the attachment of polyubiquitin tags.

SCF complex

A multisubunit ubiquitin ligase that contains Skp1, a member of the cullin family (Cdc53) and an F-box protein, as well as a RING-finger-containing protein (Roc1; also known as Rbx1).

F-box protein

A component of the machinery for the ubiquitin-dependent degradation of proteins. F-box proteins recognize specific substrates and, with the help of other subunits of the E3 ubiquitin ligase, deliver them to the E2 ubiquitin-conjugating enzyme.

α-factor

A peptide that is secreted by yeast cells of the α-mating type that causes cells of the a-mating type to prepare for mating by inducing arrest in G1, morphological changes and the transcription of genes involved in mating.

Spindle-assembly checkpoint

A checkpoint that monitors the correct attachment of chromosomes to spindles in the metaphase–anaphase transition. Activation of this checkpoint causes cell-cycle arrest as a result of the inhibition of the anaphase-promoting complex (APC).

Kinetochore

A multiprotein complex that assembles on centromeric DNA and mediates the attachment and movement of chromosomes along the microtubules of the mitotic spindle.

Mitotic exit network

(MEN). A signal-transduction pathway that is required for sustained Cdc14 release during anaphase. This allows for the degradation of mitotic cyclins and the accumulation of the Clb–Cdc28 inhibitor Sic1.

Bfa1–Bub2 GTPase-activating complex

A complex that localizes to spindle pole bodies and inhibits the activation of the mitotic exit network until the mitotic spindle is properly aligned along the mother–bud axis.

Septin ring

A complex of seven septin proteins that forms a ring at the incipient bud site before bud emergence. The septin ring determines bud-site selection and serves as a scaffold for proteins, including those involved in cell polarity, cell-wall synthesis and cytokinesis.

Origin recognition complex

(ORC). A six-subunit complex that associates with replication origins throughout the cell cycle and recruits additional replication factors to initiate DNA replication.

Minichromosome maintenance (Mcm) proteins

Six minichromosome maintenance (Mcm) proteins form a complex that binds DNA at origins of replication and helps unwind DNA to initiate replication.

RXL motif

A protein sequence in Cdc28 substrates that mediates the interaction with the hydrophobic patch of cyclins.

Cdc14 early anaphase release (FEAR) network

A signal-transduction pathway that promotes the transient release of Cdc14 from the nucleolus during early anaphase. This allows for stabilization of the mitotic spindle, segregation of ribosomal DNA and activation of the mitotic exit network.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloom, J., Cross, F. Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8, 149–160 (2007). https://doi.org/10.1038/nrm2105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing