Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanism of the nuclear protein import cycle

Key Points

  • The classic nuclear protein import cycle functions as a biological molecular ratchet and is powered by the Ran GTPase that modulates interactions between carrier molecules and their cargoes. In the cytoplasm, cargo molecules carrying a classic nuclear localization signal (NLS) sequence are attached to the carrier importin-β by the importin-α adaptor. Cargoes are released in the nucleus following RanGTP binding to importin-β, after which the importins are recycled.

  • Nuclear pores facilitate the equilibration of cargo:carrier complexes between the nucleus and the cytoplasm. Transport directionality is imposed by import-complex dissociation by RanGTP in the nucleus and by RanGTP hydrolysis in the cytoplasm. Energy is used to orchestrate the binding and release of cargoes in the appropriate compartments rather than to move material directly through the pores.

  • Movement of material backwards and forwards through nuclear pores is facilitated by interactions with nuclear pore proteins (nucleoporins) that contain Phe-Gly (FG) sequence repeats. These proteins also obstruct the passage of proteins that lack an NLS.

  • Nucleoporins on the nuclear face of the NPC accelerate import-complex disassembly and provide a molecular ratchet to prevent futile cycles in which cargo is returned to the cytoplasm.

  • Molecular flexibility is important in modulating interactions between importins and their partners.

Abstract

The nuclear import of proteins through nuclear pore complexes (NPCs) illustrates how a complex biological function can be generated by a spatially and temporally organized cycle of interactions between cargoes, carriers and the Ran GTPase. Recent work has given considerable insight into this process, especially about how interactions are coordinated and the basis for the molecular recognition that underlies the process. Although considerable progress has been made in identifying and characterizing the molecular interactions in the soluble phase that drive the nuclear protein import cycle, understanding the precise mechanism of translocation through NPCs remains a major challenge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of nuclear protein import.
Figure 2: Formation of the importin-α:cargo complex in the cytoplasm.
Figure 3: Import-complex disassembly.
Figure 4: Nucleoporin catalysis of import-complex disassembly.
Figure 5: Nuclear export of importin-α.

Similar content being viewed by others

References

  1. Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Ann. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    Article  Google Scholar 

  2. Macara, I. G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chook, Y. M. & Blobel, G. Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11, 703–715 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Conti, E. & Izaurralde, E. Nuclear transport enters the atomic age. Curr. Opin. Cell Biol. 13, 310–319 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Fahrenkrog, B. & Aebi, U. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nature Rev. Mol. Cell Biol. 4, 757–766 (2003).

    Article  CAS  Google Scholar 

  6. Mosammaparast, N. & Pemberton, L. F. Karyopherins: from nuclear-transport mediators to nuclear-function regulators. Trends Cell Biol. 14, 547–556 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Pemberton, L. F. & Paschal, B. M. Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6, 187–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Madrid, A. S. & Weis, K. Nuclear transport is becoming crystal clear. Chromosoma 115, 98–109 (2006).

    Article  PubMed  Google Scholar 

  9. Conti, E., Müller, C. W. & Stewart, M. Karyopherin flexibility in nucleocytoplasmic transport. Curr. Opin. Struct. Biol. 16, 237–244 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Stewart, M. et al. Molecular mechanism of translocation through nuclear pore complexes during nuclear protein import. FEBS Lett. 498, 145–149 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Weis, K. Regulating access to the genome. Nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441–451 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Feldherr, C. M., Akin, D. & Cohen, R. J. Regulation of functional nuclear pores size in fibroblasts. J. Cell Sci. 114, 4621–4627 (2001).

    CAS  PubMed  Google Scholar 

  13. Rout, M. P. & Wente, S. R. Pores for thought: nuclear pore complex proteins. Trends Cell Biol. 4, 357–365 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000). A landmark paper that established the complete protein composition of yeast NPCs together with the location of each nucleoporin as determined by electron microscopy. The authors also proposed an entropic gating mechanism to prevent entry of inappropriate material into the NPC transport channel.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T. & Matunis, M. J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Timney, B. L. et al. Simple kinetic relationships and nonspecific competition govern nuclear import rates in vivo. J. Cell Biol. 175, 579–593 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mosammaparast, N. et al. Nuclear import of histone H2A and H2B is mediated by a network of karyopherins. J. Cell Biol. 153, 251–262 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, B. J. et al. Rules for nuclear localization sequence recognition by karyopherinβ2. Cell 126, 543–558 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ribbeck, K. & Görlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20, 1320–1330 (2001). Presents a careful analysis of nuclear protein import kinetics and proposes a selective phase model based on the formation of a hydrogel formed by interactions between the hydrophobic cores of FG repeats.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ribbeck, K., Lipowsky, G., Kent, H. M., Stewart, M. & Görlich, D. NTF2 mediates nuclear import of Ran. EMBO J. 17, 6587–6598 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smith, A. E., Brownawell, A. & Macara, I. G. Nuclear import of Ran is mediated by the transport factor NTF2. Curr. Biol. 8, 1403–1406 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin-α. Cell 94, 193–204 (1998). Pioneering determination of the structure of yeast importin-α and the way in which it binds NLSs.

    Article  CAS  PubMed  Google Scholar 

  23. Conti, E. & Kuriyan, J. Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin-α. Structure Fold. Des. 8, 329–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Fontes, M. R., The, T. & Kobe, B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-α. J. Mol. Biol. 297, 1183–1194 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Hodel, M. R., Corbett, A. H. & Hodel, A. E. Dissection of a nuclear localization signal. J. Biol. Chem. 276, 1317–1325 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Catimel, B. et al. Biophysical characterization of interactions involving importin-α during nuclear import. J. Biol. Chem. 276, 34189–34198 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Rodriguez, M. et al. A cytotoxic ribonuclease variant with a discontinuous nuclear localization signal constituted by basic residues scattered over three areas of the molecule. J. Mol. Biol. 360, 548–557 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, S. J. et al. The structure of importin-β bound to SREBP-2: nuclear import of a transcription factor. Science 302, 1571–1575 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Cingolani, G., Bednenko, J., Gillespie, M. T. & Gerace, L. Molecular basis for the recognition of a nonclassical nuclear localization signal by importin β. Mol. Cell 10, 1345–1353 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Görlich, D., Henklein, P., Laskey, R. A. & Hartmann, E. A 41 amino acid motif in importin-α confers binding to importin-β and hence transit into the nucleus. EMBO J. 15, 1810–1817 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Weis, K., Ryder, U. & Lamond, A. I. The conserved amino-terminal domain of hSRP1 α is essential for nuclear protein import. EMBO J. 15, 1818–1825 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nature Struct. Biol. 6, 388–397 (1999). Pioneering structural paper that proposed how the importin-α IBB domain could have an autoinhibitory function that facilitates cargo release in the nucleus.

    Article  CAS  PubMed  Google Scholar 

  33. Matsuura, Y. & Stewart, M. Structural basis for the assembly of a nuclear export complex. Nature 432, 872–877 (2004). Describes the structure of the yeast CAS:RanGTP:importin-α complex, showing the central role of the IBB domain in preventing futile cycles in which cargo is returned to the cytoplasm. Also proposes a spring-loaded model to account for how karyopherin flexibility can mediate the release of importin-α following GTP hydrolysis on Ran.

    Article  CAS  PubMed  Google Scholar 

  34. Matsuura, Y., Lange, A., Harreman, M. T., Corbett, A. H. & Stewart, M. Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import. EMBO J. 22, 5358–5369 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Matsuura, Y. & Stewart, M. Nup50/Npap60 function in nuclear protein import complex disassembly and importin recycling. EMBO J. 24, 3681–3689 (2005). Demonstration of active displacement of cargo from importin-α by NUP50 and how this can generate a molecular ratchet to prevent futile cycles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goldfarb, D. S., Corbett, A. H., Mason, D. A., Harreman, M. T. & Adam, S. A. Importin α: a multi-purpose nuclear receptor. Trends Cell Biol. 14, 505–514 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Hodel, H. E. et al. Nuclear localization signal-receptor affinity correlates with in vivo localization in S. cerevisiae. J. Biol. Chem. 281, 23545–23556 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Yang, W., Gelles, J. & Musser, S. M. Imaging of single-molecule translocation through nuclear pore complexes. Proc. Natl Acad. Sci. USA 101, 12887–12892 (2004). Direct demonstration of the random-walk diffusion of import complexes in the central transport channel of NPCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kubitscheck, U. et al. Nuclear transport of single molecules: dwell times at the nuclear pore complex. J. Cell Biol. 168, 233–243 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, W. & Musser, S. M. Nuclear import time and transport efficiency depend on importin β concentration. J. Cell Biol. 174, 951–961 (2006).

    Article  CAS  Google Scholar 

  41. Bayliss, R. et al. Interaction between NTF2 and xFxFG nucleoporins is required for the nuclear import of RanGDP. J. Mol. Biol. 293, 579–593 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Bayliss, R., Littlewood, T. & Stewart, M. Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell 102, 99–108 (2000). Describes the structural basis for the interaction between importin-β and FG-nucleoporin cores.

    Article  CAS  PubMed  Google Scholar 

  43. Bayliss, R., Littlewood, T., Strawn, L. A., Wente, S. R. & Stewart, M. GLFG and FxFG nucleoporins bind to overlapping sites on importin-β. J. Biol. Chem. 277, 50597–50606 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Bayliss, R. et al. Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. EMBO J. 21, 2843–2853 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fribourg, S. Braun, I. C., Izaurralde, E. & Conti, E. Structural basis for the recognition of a nucleoporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol. Cell 8, 645–656 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Grant, R. P., Neuhaus, D. N. & Stewart, M. Structural basis for the interaction between the Tap/NXF1 UBA domain and FG nucleoporins at 1Å resolution. J. Mol. Biol. 326, 849–858 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Rexach, M. & Blobel, G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83, 683–692 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Ribbeck, K. & Görlich, D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 21, 2664–2671 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Strawn, L. A., Shen, T. & Wente, S. R. The GLFG regions of Nup116p and Nup100p serve as binding sites for both Kap95p and Mex67p at the nuclear pore complex. J. Biol. Chem. 276, 6445–6452 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Strawn, L. A., Shen, T., Shulga, N., Goldfarb, D. S. & Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nature Cell Biol. 6, 197–206 (2004). Exploration of the importance of the FG-repeat regions of nucleoporins using an innovative method for deleting these regions in S. cerevisiae . Whereas up to half the mass of FG repeats can be deleted using particular groups of nucleoporins, deletion from several selected nucleoporins has a marked effect.

    Article  CAS  PubMed  Google Scholar 

  51. Tran, E. J. & Wente, S. R. Dynamic nuclear pore complexes: life on the edge. Cell 125, 1041–1053 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Grote, M., Kubitscheck, U., Reichelt, R. & Peters, R. Mapping of nucleoporins to the centre of the nuclear pore complex by post-embedding immunogold electron microscopy. J. Cell Sci. 108, 2963–2972 (1995).

    CAS  PubMed  Google Scholar 

  53. Denning, D. P., Uversky, V., Patel, S. S., Fink, A. L. & Rexach, M. The Saccharomyces cerevisiae nucleoporin Nup2p is a natively unfolded protein. J. Biol. Chem. 277, 33447–33455 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Denning, D. P., Patel, S. S., Uversky, V., Fink, A. L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA 100, 2450–2455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Paulillo, S. M. et al. Nucleoporin domain topology is linked to transport status of the nuclear pore complex. J. Mol. Biol. 351, 784–798 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Liu, S. M. & Stewart, M. Structural basis for the high-affinity binding of nucleoporin Nup1p to the Saccharomyces cerevisiae importin-β homologue, Kap95p. J. Mol. Biol. 349, 515–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Bednenko, J., Cingolani, G. & Gerace, L. Importin β contains a COOH-terminal nucleoporin binding region important for nuclear transport. J. Cell Biol. 162, 391–401 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ben-Efraim, I. & Gerace, L. Gradient of increasing affinity of importin-β for nucleoporins along the pathway of nuclear import. J. Cell Biol. 152, 411–418 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pyhtila, B. & Rexach, M. A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex. J. Biol. Chem. 278, 42699–42709 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Zeitler, B. & Weis, K. The FG-repeat asymmetry of the nuclear pore complex is dispensable for bulk nucleocytoplasmic transport in vivo. J. Cell Biol. 167, 583–590 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nachury, M. V. & Weis, K. The direction of transport through the nuclear pore can be inverted. Proc. Natl Acad. Sci. USA 96, 9622–9627 (1999). Direct demonstration that the directionality of nuclear transport can be reversed by reversing the RanGTP gradient. This work shows conclusively that directionality of transport is driven by the Ran nucleotide state and not by a nucleoporin-affinity gradient for importin-β.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lim, R. Y. et al. Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc. Natl Acad. Sci. USA 103, 9512–9517 (2006). This paper uses atomic force microscopy to show that FG-repeats can form molecular brushes when bound to gold particles in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rout, M. P., Aitchison, J. D., Magnasco, M. O. & Chait, B. T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Tanford, C. The Physical Chemistry of Macromolecules. (Wiley, New York, 1961).

    Google Scholar 

  65. de Gennes, P. G. Conformations of polymers attached to an interface. Macromolecules 13, 1069–1075 (1980).

    Article  CAS  Google Scholar 

  66. Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Doi, M. & Edwards, S. F. The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986).

    Google Scholar 

  68. Gilchrist, D., Mykytka, B. & Rexach, M. Accelerating the rate of disassembly of karyopherin–cargo complexes. J. Biol. Chem. 277, 18161–18172 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Franke, W. W. Structure, biochemistry and functions of the nuclear envelope. Internat. Rev. Cytol. (Suppl. 4), 71–236 (1974).

  70. Richardson, W. D., Mills, A. D., Dilworth, S. M., Laskey, R. A. & Dingwall, C. Nuclear protein migration involves two steps: rapid binding at the nuclear envelope followed by slower translocation through nuclear pores. Cell 52, 655–664 (1988).

    Article  CAS  PubMed  Google Scholar 

  71. Walther, T. C. et al. The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J. Cell Biol. 158, 63–77 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rexach, M. & Blobel, G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors and nucleoporins. Cell 83, 683–692 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Vetter, I. R., Arndt, A., Kutay, U., Görlich, D. & Wittinghofer, A. Structural view of the Ran-importin β interaction at 2. 3 Å resolution. Cell 97, 635–646 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Lee, S. J., Matsuura, Y., Liu, S. M. & Stewart, M. Structural basis for nuclear import complex dissociation by RanGTP. Nature 435, 693–696 (2005). The structure of full-length yeast importin-β bound to RanGTP shows how Ran binding alters the pitch of the importin-β helicoid and facilitates release of the importin-α IBB domain.

    Article  CAS  PubMed  Google Scholar 

  75. Cingolani, G., Petosa, C., Weis, K. & Müller C. W. Structure of importin-β bound to the IBB domain of importin-α. Nature 399, 221–229 (1999). Structure of the IBB:importin-β complex showing how the 19 HEAT repeats of importin-β are arranged to form a helicoidal molecule that coils around the α-helical IBB domain. Comparison between different crystal forms indicated that importin-β might be flexible.

    Article  CAS  PubMed  Google Scholar 

  76. Görlich, D. et al. A novel class of RanGTP binding proteins. J. Cell Biol. 138, 65–80 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chook, Y. M. & Blobel, G. Structure of the nuclear transport complex karyopherin-β2–Ran x GppNHp. Nature 399, 230–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Bischoff, F. R. & Görlich, D. RanBP1 is crucial for the release of RanGTP from importin-β-related nuclear transport factors. FEBS Lett. 419, 249–254 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Cook, A. et al. The structure of the nuclear export receptor Cse1 in its cytosolic state reveals a closed conformation incompatible with cargo binding. Mol. Cell 18, 355–367 (2005). Direct demonstration of the dramatic conformational change in the yeast homologue of CAS, Cse1. In the absence of RanGTP and importin-α, the Cse1 helicoid adopts a closed conformation in which the N terminus becomes bound to a region near the centre of the molecule.

    Article  CAS  PubMed  Google Scholar 

  80. Fukuhara, N., Fernandez, E., Ebert, J., Conti, E. & Svergun, D. Conformational variability of nucleo-cytoplasmic transport factors. J. Biol. Chem. 279, 2176–2181 (2004). Low-angle X-ray scattering is used to show that several β-karyopherins can adopt different structures in solution, leading to the concept of these molecules having flexible structures.

    Article  CAS  PubMed  Google Scholar 

  81. Stewart, M. Molecular recognition in nuclear trafficking. Science 302, 1513–1514 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Görlich, D., Seewald, M. J. & Ribbeck, K. Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation. EMBO J. 22, 1088–1100 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Riddick, G. & Macara, I. G. A systems analysis of importin-α:β mediated nuclear protein import. J. Cell Biol. 168, 1027–1038 (2005). A comprehensive simulation of the classic nuclear protein import cycle that gives several novel and unanticipated functional insights.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Smith, A., Slepchenko, B. M., Schaff, J. C. Loew, L. M. & Macara, I. G. Systems analysis of Ran transport. Science 295, 488–491 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Becskei, A. & Mattaj, I. W. Quantitative models of nuclear transport. Curr. Opin. Cell Biol. 17, 27–34 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Akey, C. W. Structural plasticity of the nuclear pore complex. J. Mol. Biol. 248, 273–293 (1995).

    CAS  PubMed  Google Scholar 

  87. Akey, C. W. & Radermacher, M. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J. Cell Biol. 122, 1–19 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. Stoffler, D. et al. Cryo-electron microscopy provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol. 328, 119–130 (2003). Comprehensive analysis of NPC morphology using cryo-EM and tomography.

    Article  CAS  PubMed  Google Scholar 

  89. Lim, R. Y. H. & Fahrenkrog, B. The nuclear pore complex up close. Curr. Opin. Cell Biol. 18, 342–347 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Lim, R. Y., Aebi U. & Stoffler D. From the trap to the basket: getting to the bottom of the nuclear pore complex. Chromosoma 115, 15–26 (2006).

    Article  PubMed  Google Scholar 

  91. Beck, M. et al. Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306, 1387–1390 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Fahrenkrog, B. et al. Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex. J. Struct. Biol. 140, 254–267 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PloS Biol. 2, e380 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vetter, I. R., Nowak, C., Nishimoto, T., Kuhlmann, J. & Wittinghofer, A. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398, 39–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Stewart, M., Kent, H. M. & McCoy, A. J. Structural basis for molecular recognition between nuclear transport factor 2 (NTF2) and the GDP-bound form of the Ras-family GTPase, Ran. J. Mol. Biol. 277, 635–646 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Bullock, T. L., Clarkson, W. D., Kent, H. M. & Stewart, M. The 1.6 Å resolution crystal structure of nuclear transport factor 2 (NTF2). J. Mol. Biol. 260, 422–431 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Renault, L., Kuhlmann, J., Henkel, A. & Wittinghofer, A. Structural basis for guanine nucleotide exchange on ran by the regulator of chromosome condensation (RCC1). Cell 105, 245–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Hillig, R. C. et al. The crystal structure of rna1p: a new fold for a GTPase activating protein. Mol. Cell 3, 781–791 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Seewald, M. J., Korner, C., Wittinghofer, A. & Vetter, I. R. RanGAP mediates GTP hydrolysis without an arginine finger. Nature 415, 662–666 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information S1 (movie)

Structure of importin-a bound to the nucleoplasmin nuclear localization signal (NLS). Importin-α (green) is constructed from a tandem series of Armadillo (ARM) repeats that stack to form a gently curving banana-like molecule. NLSs (blue) bind to the inner concave surface. See also Figure 2b. (PDB accession number 1EYJ). (MOV 4209 kb)

Supplementary information S2 (movie)

Structure of importin-β complexed with the importin-α IBB (importin-β binding) domain. 'Importin-β' (cyan) is constructed from 19 tandem HEAT repeats, each of which contains two α-helices (See BOX 2). The HEAT repeats stack to form a helicoidal molecule that coils around the IBB domain α-helix (red) like a snake around its prey. (PDB accession number 1QGK). (MOV 8513 kb)

Supplementary information S3 (movie)

Structure of Ran showing the structural changes between the GDP- and GTP-bound states. The larger switch I and smaller switch II loops change conformation dramatically depending on the state of the bound nucleotide (GTPbound is red; GDP-bound is blue) and these changes control the way in which Ran interacts with its partners in the nuclear protein import pathway. The remainder of the Ran chain (shown as cyan for GTP-bound and yellow for GDP-bound) is virtually unchanged by the state of the bound nucleotide. (PDB accession files 1BYU (RanGDP) and 1RRP (RanGTP). Only residues 8-177 are shown. (MOV 6825 kb)

Supplementary information S4 (movie)

Conformational changes in importin-β between different functional states. Comparison of the structures of importin-β when bound to either the IBB domain (cyan) or RanGTP (yellow) shows the large conformational change that occurs between different functional states. When bound to RanGTP, the importin-β helicoid pitch increases dramatically so that it no longer matches the IBB domain's α-helix, thus leading to import complex disassembly (see also Figure 3c). IBB domain is red. (PDB accession codes 1QGK and 2BKU). (MOV 13233 kb)

Supplementary information S5 (movie)

Structure of the complex between yeast importin-β (Kap95p) and RanGTP. Importin-β (yellow) coils around RanGTP (cyan) interacting with it at three sites (see also Figure 3 a,b). GTP is shown in space-filling format. (PDB accession code 2BKU). (MOV 8743 kb)

Supplementary information S6 (movie)

Structure of the complex between Nup50 and importin-α. The Nup50 Nterminus (blue) binds to two sites on importin-α (green): a higher affinity site at the importin-α C-terminus (at the top of the molecule in this movie) and a lower affinity site that overlaps the NLS binding area (in the central region of the importin-α chain). Nup50 binding actively displaces nuclear localization signals (NLSs) from importin-α. (PDB accession code 2C1M). (MOV 3736 kb)

Supplementary information S7 (movie)

Structure of the CAS:importin-α:RanGTP nuclear export complex. CAS (yeast Cse1, yellow) coils around both RanGTP (cyan) and importin-α (green) in the complex. The IBB domain (blue) is sandwiched between CAS and importin-α. The binding of the IBB domain to the NLS binding sites is crucial for the formation of this complex and ensures that only cargo-free importin-α is exported to the nucleus, thus preventing futile transport cycles. (PDB accession code 1WA5). (MOV 9573 kb)

Supplementary information S8 (movie)

Structure of isolated CAS. Isolated CAS (cyan), corresponding to the species present in the cytoplasm after the export complex dissociates following RanGTP hydrolysis, assumes a "closed" conformation in which its N-terminus binds to a region near the centre of the molecule. (PDB accession code 1Z3H). (MOV 7422 kb)

Supplementary information S9 (movie)

Comparison between the open and closed forms of CAS. CAS undergoes a considerable conformational change between the open form assumed in the CAS:importin-α:RanGTP export complex (yellow) and the closed form (cyan) that results from the disassembly of this complex in the cytoplasm following GTP hydrolysis on Ran. The helicoidal pitch has changed substantially between the two forms (compare with S4, movie), consistent with the molecule being flexible. (PDB accession codes 1Z3H and 1WA5). (MOV 10126 kb)

Supplementary information S10 (movie)

Illustration of the conformational change in CAS between the open and closed states. The MolMov package (http://bioinfo.mbb.yale.edu/MolMovDB) was used to simulate the transition between the "open" and "closed" forms of CAS. (PDB accession codes 1Z3H and 1WA5). (MOV 3809 kb)

Supplementary information S11 (movie)

Structure of nuclear transport factor 2 (NTF2). NTF2 is a dimer constructed from two chains (cyan and yellow). Each chain generates a hydrophobic cavity to which RanGDP binds (see S12, movie), whereas a hydrophobic patch formed between the two NTF2 chains binds the FxFG repeats from nucleoporins. (PDB accession number 1GY6). (MOV 8015 kb)

Supplementary information S12 (movie)

Complex between nuclear transport factor 2 (NTF2) and RanGDP. Two RanGDP chains (red and yellow) bind to the hyrodophobic cavities in the NTF2 dimer (blue and cyan) to facilitate its transport into the nucleus for nucleotide exchange using RanGEF. GDP is shown as space-filling format. (PDB accession number 1A2K). (MOV 7023 kb)

Supplementary information S13 (movie)

Structure of the metazoan RanGEF, RCC1. RCC1 (cyan) is based on a seven-bladed propeller structure. It accelerates the rate of nucleotide exchange on Ran by stabilizing the nucleotide-free state. (PDB accession code 1A12). (MOV 3546 kb)

Supplementary information S14 (movie)

Structure of the yeast RanGAP, Rna1. RanGAP (green) is constructed from leucine-rich repeats (LLRs each based on an α-helix and a β-strand) and accelerates the rate of the Ran GTPase by 105. (PDB accession code 2CA6). (MOV 4027 kb)

Related links

Related links

FURTHER INFORMATION

Murray Stewart's homepage

Glossary

Coiled coil

A protein fold in which two α-helices coil around one another.

WD propeller

A protein fold formed by a series of repeating WD sequence motifs that structurally resemble the blades of a propeller.

α-helical solenoid

A protein fold formed by successive repeats, each of which contains a number of α-helices that form a loop that is like a coil of a spring or solenoid.

Adaptor proteins

Proteins that augment cellular responses by recruiting other proteins to a complex. They usually contain several protein:protein interaction domains.

Scanning Ala mutagenesis

A technique in which successive residues in a region of a sequence of a protein are mutated to Ala to define those that influence an activity, such as binding to another protein.

Random walk

The path followed by taking successive steps, each in a random direction relative to the previous step.

Entropy

The component of free energy due to the disorder or randomness of the system. Increases in entropy (disorder) lower the free energy, whereas increases in order (lower entropy) increase energy.

Enthalpy

The heat component of free energy that, in biological systems, is derived primarily from chemical bonds.

Le Chatelier's principle

Le Chatelier's principle states that if a dynamic equilibrium is disturbed by changing conditions, the position of equilibrium moves to counteract the change.

Thermal ratchet

A molecular mechanism by which the thermal (Brownian) motion of a particle is biased (or rectified) so that there is net movement in a particular direction. A thermal ratchet requires an input of energy in order not to violate the second law of thermodynamics.

Helicoidal pitch

The distance along the axis of a helicoid corresponding to a rotation of 360°.

Helicoid

A spiral that is shaped like the shell of a snail such that its radius decreases progressively along its axis.

Sensitivity analysis

A procedure to determine the sensitivity of the outcomes of a model to changes in its parameters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8, 195–208 (2007). https://doi.org/10.1038/nrm2114

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing