Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Membrane recognition by phospholipid-binding domains

Key Points

  • At least 10 different types of globular protein domain are known that bind membrane phospholipids. Acidic phospholipids (especially phosphatidylserine and phosphoinositides) are the primary binding targets.

  • Phospholipid-binding domains vary widely in their degree of ligand specificity. Some are highly target specific, whereas others will bind to any acidic phospholipid.

  • Target-specific domains include conserved region-1 (C1) domains (which specifically recognize diacylglycerol), specific phosphoinositide-binding domains (certain pleckstrin homology (PH) domains, Phox homology (PX) domains, FYVE (Fab1, YOTB, Vac1, EEA1) domains and PROPPINs (β-propellers that bind phosphoinositides)), and certain phosphatidylserine-binding domains (especially extracellular domains). Membrane binding by these domains is typically dictated simply by the presence or absence of the (rare) target lipid in membranes.

  • The target lipids for highly specific membrane-binding proteins are often lipid second messengers (for example, diacylglycerol and phosphoinositide 3-kinase (PI3K) products).

  • Membrane association of domains without precise target specificity is typically regulated by soluble second messengers (Ca2+ for annexins and C2 domains) or by the local curvature of membranes.

  • Several phospholipid-binding domains (ENTH domains, BAR-family members and tandem C2 domains) appear to induce or sense membrane curvature.

  • Cooperation between binding sites is a frequently occurring theme in membrane-targeting events. The different sites may occur in the same domain (as in some PH and PX domains) or in different domains in a multidomain protein.

  • Domain–domain cooperation allows 'coincidence detection' in membrane association, whereby a given protein is only targeted to membranes that contain a particular combination of lipids (or lipids and proteins).

Abstract

Many different globular domains bind to the surfaces of cellular membranes, or to specific phospholipid components in these membranes, and this binding is often tightly regulated. Examples include pleckstrin homology and C2 domains, which are among the largest domain families in the human proteome. Crystal structures, binding studies and analyses of subcellular localization have provided much insight into how members of this diverse group of domains bind to membranes, what features they recognize and how binding is controlled. A full appreciation of these processes is crucial for understanding how protein localization and membrane topography and trafficking are regulated in cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domains that bind specific lipid targets.
Figure 2: Structures of target-specific phospholipid-binding domains.
Figure 3: Structures of phosphatidylserine-binding domains.
Figure 4: Structures of phospholipid-binding domains implicated in membrane curvature.
Figure 5: Multidomain cooperation.

Similar content being viewed by others

References

  1. Sheetz, M. P., Sable, J. E. & Dobereiner, H. G. Continuous membrane–cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 35, 417–434 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Teruel, M. N. & Meyer, T. Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. Cell 103, 181–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Behnia, R. & Munro, S. Organelle identity and the signposts for membrane traffic. Nature 438, 597–604 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605–611 (2005). Provides an important perspective on electrostatic considerations of binding to the membrane surface.

    Article  CAS  PubMed  Google Scholar 

  6. McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP2 and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Stephens, L., McGregor, A. & Hawkins, P. in Biology of Phosphoinositides (ed. Cockcroft, S.) (Oxford Univ. Press, Oxford, UK, 2000).

    Google Scholar 

  8. Colon-Gonzalez, F. & Kazanietz, M. G. C1 domains exposed: from diacylglycerol binding to protein–protein interactions. Biochim. Biophys. Acta 1761, 827–837 (2006). This review and references 11, 30, 39, 48, 62, 66 and 77 comprise a valuable set of recent reviews with more detail on each of the phospholipid-binding domains described here.

    Article  CAS  PubMed  Google Scholar 

  9. Lemmon, M. A. & Ferguson, K. M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J. 350, 1–18 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oancea, E., Teruel, M. N., Quest, A. F. & Meyer, T. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells. J. Cell Biol. 140, 485–498 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Várnai, P. & Balla, T. Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochim. Biophys. Acta 1761, 957–967 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, G., Kazanietz, M. G., Blumberg, P. M. & Hurley, J. H. Crystal structure of the Cys2 activator-binding domain of protein kinase Cδ in complex with phorbol ester. Cell 81, 917–924 (1995). One of the earliest structural views of how a specific membrane-targeting domain functions.

    Article  CAS  PubMed  Google Scholar 

  13. Kazanietz, M. G., Barchi, J. J., Omichinski, J. G. & Blumberg, P. M. Low affinity binding of phorbol esters to protein kinase C and its recombinant cysteine-rich region in the absence of phospholipids J. Biol. Chem. 270, 14679–14684 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Harlan, J. E., Hajduk, P. J., Yoon, H. S. & Fesik, S. W. Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371, 168–170 (1994). First report that some PH domains can bind phosphoinositides.

    Article  CAS  PubMed  Google Scholar 

  15. Lemmon, M. A., Ferguson, K. M., O'Brien, R., Sigler, P. B. & Schlessinger, J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc. Natl Acad. Sci. USA 92, 10472–10476 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garcia, P. et al. The pleckstrin homology domain of phospholipase C-δ1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry 34, 16228–16234 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Hirose, K., Kadowaki, S., Tanabe, M., Takeshima, H. & Iino, M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science 284, 1527–1530 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Kavran, J. M. et al. Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J. Biol. Chem. 273, 30497–30508 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Ferguson, K. M., Lemmon, M. A., Schlessinger, J. & Sigler, P. B. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell 83, 1037–1046 (1995). First structural view of specific phosphoinositide binding by a protein domain.

    Article  CAS  PubMed  Google Scholar 

  20. Flesch, F. M., Yu, J. W., Lemmon, M. A. & Burger, K. N. C. Membrane activity of the phospholipase C-δ1 pleckstrin homology (PH) domain. Biochem. J. 389, 435–441 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Fukuda, M., Kojima, T., Kabayama, H. & Mikoshiba, K. Mutation of the pleckstrin homology domain of Bruton's tyrosine kinase in immunodeficiency impaired inositol 1,3,4,5-tetrakisphosphate binding capacity. J. Biol. Chem. 271, 30303–30306 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Salim, K. et al. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. EMBO J. 15, 6241–6250 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klarlund, J. K. et al. Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 275, 1927–1930 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Franke, T. F., Kaplan, D. R., Cantley, L. C. & Toker, A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275, 665–668 (1997). References 24 and 25 were instrumental in establishing PH domains as effector domains of PI3K signalling.

    Article  CAS  PubMed  Google Scholar 

  26. Venkateswarlu, K., Oatey, P. B., Tavare, J. M. & Cullen, P. J. Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr. Biol. 8, 463–466 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Lindvall, J. M. et al. Bruton's tyrosine kinase: cell biology, sequence conservation, mutation spectrum, siRNA modifications, and expression profiling. Immunol. Rev. 203, 200–215 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Carpten, J. D. et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448, 439–444 (2007). Describes important pathological consequences of the promotion of aberrant membrane association by a PH domain.

    Article  CAS  PubMed  Google Scholar 

  29. Huang, Y. H. et al. Positive regulation of Itk PH domain function by soluble IP4 . Science 316, 886–889 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. DiNitto, J. P. & Lambright, D. G. Membrane and juxtamembrane targeting by PH and PTB domains. Biochim. Biophys. Acta 1761, 850–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Isakoff, S. J. et al. Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J. 17, 5374–5387 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferguson, K. M. et al. Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Mol. Cell 6, 373–384 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Ceccarelli, D. F. et al. Non-canonical interaction of phosphoinositides with pleckstrin homology domains of Tiam1 and ArhGAP9. J. Biol. Chem. 282, 13864–13874 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Hyvönen, M. et al. Structure of the binding site for inositol phosphates in a PH domain. EMBO J. 14, 4676–4685 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Slagsvold, T. et al. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. J. Biol. Chem. 280, 19600–19606 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Teo, H. et al. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell 125, 99–111 (2006). Structurally illustrates an unexpected occurrence of a split PH domain that also binds phosphoinositides.

    Article  CAS  PubMed  Google Scholar 

  37. Yu, J. W. et al. Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol. Cell 13, 677–688 (2004). Provides a valuable perspective on the likely diversity of PH domain function.

    Article  CAS  PubMed  Google Scholar 

  38. Lemmon, M. A. Pleckstrin homology domains: not just for phosphoinositides. Biochem. Soc. Trans. 32, 707–711 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Kutateladze, T. G. Phosphatidylinositol 3-phosphate recognition and membrane docking by the FYVE domain. Biochim. Biophys. Acta 1761, 868–877 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Misra, S. & Hurley, J. H. Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell 97, 657–666 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Dumas, J. J. et al. Multivalent endosome targeting by homodimeric EEA1. Mol. Cell 8, 947–958 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Kutateladze, T. & Overduin, M. Structural mechanism of endosome docking by the FYVE domain. Science 291, 1793–1796 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Stahelin, R. V. et al. Phosphatidylinositol 3-phosphate induces the membrane penetration of the FYVE domains of Vps27p and Hrs. J. Biol. Chem. 277, 26379–26388 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hayakawa, A. et al. Structural basis for endosomal targeting by FYVE domains. J. Biol. Chem. 279, 5958–5966 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Ponting, C. P. Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains? Plant Prot. Sci. 5, 2353–2357 (1996).

    Article  CAS  Google Scholar 

  47. Ellson, C. D., Andrews, S., Stephens, L. R. & Hawkins, P. T. The PX domain: a new phosphoinositide-binding module. J. Cell Sci. 115, 1099–1105 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Seet, L. F. & Hong, W. The Phox (PX) domain proteins and membrane traffic. Biochim. Biophys. Acta 1761, 878–896 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Yu, J. W. & Lemmon, M. A. All Phox homology (PX) domains from Saccharomyces cerevisiae specifically recognize phosphatidylinositol 3-phosphate. J. Biol. Chem. 276, 44179–44184 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Kanai, F. et al. The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nature Cell Biol. 3, 675–678 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Song, X. et al. Phox homology domains specifically bind phosphatidylinositol phosphates. Biochemistry 40, 8940–8944 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Bravo, J. et al. The crystal structure of the PX domain from p40phox bound to phosphatidylinositol 3-phosphate. Mol. Cell 8, 829–839 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Ellson, C. D. et al. PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nature Cell Biol. 3, 679–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Xu, Y., Hortsman, H., Seet, L., Wong, S. H. & Hong, W. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nature Cell Biol. 3, 658–666 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Zhong, Q. et al. Determinants of the endosomal localization of sorting nexin 1. Mol. Biol. Cell 16, 2049–2057 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Seaman, M. N., McCaffery, J. M. & Emr, S. D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Seaman, M. N. & Williams, H. P. Identification of the functional domains of yeast sorting nexins Vps5p and Vps17p. Mol. Biol. Cell 13, 2826–2840 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Michell, R. H., Heath, V. L., Lemmon, M. A. & Dove, S. K. Phosphatidylinositol 3,5-bisphosphate: metabolism and cellular functions. Trends Biochem. Sci. 31, 52–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Dove, S. K. et al. Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J. 23, 1922–1933 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jeffries, T. R., Dove, S. K., Michell, R. H. & Parker, P. J. PtdIns-specific MPR pathway association of a novel WD40 repeat protein, WIPI49. Mol. Biol. Cell 15, 2652–2663 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stromhaug, P. E., Reggiori, F., Guan, J., Wang, C. W. & Klionsky, D. J. Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol. Biol. Cell 15, 3553–3566 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stace, C. L. & Ktistakis, N. T. Phosphatidic acid- and phosphatidylserine-binding proteins. Biochim. Biophys. Acta 1761, 913–926 (2006). Provides a valuable review of the characteristics of phosphatidic acid-binding sequences.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao, C., Du, G., Skowronek, K., Frohman, M. A. & Bar-Sagi, D. Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nature Cell Biol. 9, 706–712 (2007).

    CAS  PubMed  Google Scholar 

  64. Karathanassis, D. et al. Binding of the PX domain of p47phox to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J. 21, 5057–5068 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Loewen, C. J. et al. Phospholipid metabolism regulated by a transcription factor sensing phosphatidic acid. Science 304, 1644–1647 (2004). Describes an intriguing mechanism of transcription-factor inhibition by sequestration at specific extranuclear membranes.

    Article  CAS  PubMed  Google Scholar 

  66. Cho, W. & Stahelin, R. V. Membrane binding and subcellular targeting of C2 domains. Biochim. Biophys. Acta 1761, 838–849 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Murray, D. & Honig, B. Electrostatic control of the membrane targeting of C2 domains. Mol. Cell 9, 145–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Verdaguer, N., Corbalan-Garcia, S., Ochoa, W. F., Fita, I. & Gomez-Fernandez, J. C. Ca2+ bridges the C2 membrane-binding domain of protein kinase Cα directly to phosphatidylserine. EMBO J. 18, 6329–6338 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Davletov, B., Perisic, O. & Williams, R. L. Calcium-dependent membrane penetration is a hallmark of the C2 domain of cytosolic phospholipase A2 whereas the C2A domain of synaptotagmin binds membranes electrostatically. J. Biol. Chem. 273, 19093–19096 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Sánchez-Bautista, S., Marin-Vicente, C., Gómez-Fernandez, J. C. & Corbalán-Garcia, S. The C2 domain of PKCα is a Ca2+-dependent PtdIns(4,5)P2 sensing domain: a new insight into an old pathway. J. Mol. Biol. 362, 901–914 (2006).

    Article  PubMed  CAS  Google Scholar 

  71. Gerke, V., Creutz, C. E. & Moss, S. E. Annexins: linking Ca2+ signalling to membrane dynamics. Nature Rev. Mol. Cell Biol. 6, 449–461 (2005).

    Article  CAS  Google Scholar 

  72. Swairjo, M. A., Concha, N. O., Kaetzel, M. A., Dedman, J. R. & Seaton, B. A. Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nature Struct. Biol. 2, 968–974 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Rescher, U., Ruhe, D., Ludwig, C., Zobiack, N. & Gerke, V. Annexin 2 is a phosphatidylinositol (4,5)-bisphosphate binding protein recruited to actin assembly sites at cellular membranes. J. Cell Sci. 117, 3473–3480 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Zwaal, R. F., Comfurius, P. & Bevers, E. M. Lipid–protein interactions in blood coagulation. Biochim. Biophys. Acta 1376, 433–453 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Huang, M. et al. Structural basis of membrane binding by Gla domains of vitamin K-dependent proteins. Nature Struct. Biol. 10, 751–756 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Macedo-Ribeiro, S. et al. Crystal structures of the membrane-binding C2 domain of human coagulation factor V. Nature 402, 434–439 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Itoh, T. & De Camilli, P. BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim. Biophys. Acta 1761, 897–912 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002). One of the first studies to link phosphoinositide-binding proteins to the possible induction of membrane curvature.

    Article  CAS  PubMed  Google Scholar 

  79. Ford, M. G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Itoh, T. et al. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291, 1047–1051 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R. & Owen, D. J. Molecular architecture and functional model of the endocytic AP2 complex. Cell 109, 523–535 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Stahelin, R. V. et al. Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains. J. Biol. Chem. 278, 28993–28999 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Zimmerberg, J. & Kozlov, M. M. How proteins produce cellular membrane curvature. Nature Rev. Mol. Cell Biol. 7, 9–19 (2006). Valuable perspectives on physical processes that are involved in inducing membrane curvature.

    Article  CAS  Google Scholar 

  84. Martens, S., Kozlov, M. M. & McMahon, H. T. How synaptotagmin promotes membrane fusion. Science 316, 1205–1208 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Takei, K., Slepnev, V. I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nature Cell Biol. 1, 33–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004). First structure of a BAR domain, which led to the current notion that these are sensors (or inducers) of membrane curvature.

    Article  CAS  PubMed  Google Scholar 

  88. Zimmerberg, J. & McLaughlin, S. Membrane curvature: how BAR domains bend bilayers. Curr. Biol. 14, R250–R252 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Masuda, M. et al. Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO J. 25, 2889–2897 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gallop, J. L. et al. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898–2910 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Henne, W. M. et al. Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15, 839–852 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Shimada, A. et al. Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129, 761–772 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Chitu, V. & Stanley, E. R. Pombe Cdc15 homology (PCH) proteins: coordinators of membrane–cytoskeletal interactions. Trends Cell Biol. 17, 145–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Itoh, T. et al. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev. Cell 9, 791–804 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Tsujita, K. et al. Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J. Cell Biol. 172, 269–279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Millard, T. H. et al. Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J. 24, 240–250 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mattila, P. K. et al. Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism. J. Cell Biol. 176, 953–964 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Klein, D. E., Lee, A., Frank, D. W., Marks, M. S. & Lemmon, M. A. The pleckstrin homology domains of dynamin isoforms require oligomerization for high affinity phosphoinositide binding. J. Biol. Chem. 273, 27725–27733 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Carlton, J. G. & Cullen, P. J. Coincidence detection in phosphoinositide signaling. Trends Cell Biol. 15, 540–547 (2005). Informative survey of mechanisms for coincidence detection in membrane binding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Carlton, J. et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr. Biol. 14, 1791–1800 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, Q. et al. CAPRI and RASAL impose different modes of information processing on Ras due to contrasting temporal filtering of Ca2+. J. Cell Biol. 170, 183–190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Godi, A. et al. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nature Cell Biol. 6, 393–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Levine, T. P. & Munro, S. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr. Biol. 12, 695–704 (2002). One of the first papers to suggest that certain PH domains may bind simultaneously to phospholipid and protein targets.

    Article  CAS  PubMed  Google Scholar 

  105. Tanford, C. The Hydrophobic Effect (Wiley, New York, 1980).

    Google Scholar 

  106. Stephens, L. R., Jackson, T. R. & Hawkins, P. T. Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-trisphosphate: a new intracellular signalling system? Biochim. Biophys. Acta 1179, 27–75 (1993).

    Article  CAS  PubMed  Google Scholar 

  107. Morris, J. B., Hinchliffe, K. A., Ciruela, A., Letcher, A. J. & Irvine, R. F. Thrombin stimulation of platelets causes an increase in phosphatidylinositol 5-phosphate revealed by mass assay. FEBS Lett. 475, 57–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Pendaries, C. et al. Emerging roles of phosphatidylinositol monophosphates in cellular signaling and trafficking. Adv. Enzyme Regul. 45, 201–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Mitra, P. et al. A novel phosphatidylinositol(3,4,5)P3 pathway in fission yeast. J. Cell Biol. 166, 205–211 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Maffucci, T., Brancaccio, A., Piccolo, E., Stein, R. C. & Falasca, M. Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation. EMBO J. 22, 4178–4189 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Pettitt, T. R., Dove, S. K., Lubben, A., Calaminus, S. D. & Wakelam, M. J. Analysis of intact phosphoinositides in biological samples. J. Lipid Res. 47, 1588–1596 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Narayan, K. & Lemmon, M. A. Determining selectivity of phosphoinositide-binding domains. Methods 39, 122–133 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dowler, S. et al. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem. J. 351, 19–31 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gozani, O. et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114, 99–111 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Weissenhorn, W. Crystal structure of the endophilin-A1 BAR domain. J. Mol. Biol. 351, 653–661 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Letunic, I. et al. SMART 5: domains in the context of genomes and networks. Nucleic Acids Res. 34, D257–D260 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Bhattacharyya, R. P., Remenyi, A., Yeh, B. J. & Lim, W. A. Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu. Rev. Biochem. 75, 655–680 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Fuentes-Prior, P., Fujikawa, K. & Pratt, K. P. New insights into binding interfaces of coagulation factors V and VIII and their homologues — lessons from high resolution crystal structures. Curr. Protein Pept. Sci. 3, 313–339 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank K. Ferguson and members of the Lemmon laboratory for comments on this review. Work in this area in my laboratory is funded by the National Institute of General Medical Sciences (NIGMS).

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

RCSB Protein Data Bank

1A8A

1CZS

1DSY

1H6H

1H0A

1HFA

1JOC

1MAI

1NL2

1O7K

1PTR

1URU

1Y2O

1ZWW

2EFK

2P0D

FURTHER INFORMATION

Mark A. Lemmon's homepage

SMART (simple modular architecture research tool)

Membrane targeting domains resource (University of Illinois at Chicago)

Structure gallery, Roger Williams laboratory web site

Harvey McMahon's laboratory web site

Jim Hurley's laboratory web site

Glossary

Inner leaflet

A lipid layer that faces the inside of the cell.

Stereospecificity

Specific recognition of a particular stereoisomer in a binding reaction.

Amphiphilicity

Possession of both hydrophobic and hydrophilic regions.

Second messengers

Molecules that act in a cell to promote responses to extracellular stimuli.

Phorbol esters

Polycyclic esters that are isolated from croton oil. The most common are phorbol-12-myristate-13-acetate and 12-O-tetradecanoyl-phorbol-13-acetate. These are both potent carcinogens or tumour promoters because they mimic diacylglycerol and thereby irreversibly activate protein kinase C.

Zinc finger

A small structural motif that is found in many proteins, including phospholipid-binding proteins, DNA-binding proteins and ubiquitin ligases. Zinc fingers are characterized by particular sequences of cysteines and histidines that coordinate bound Zn2+ ions. The bound Zn2+ ions are structurally crucial, and their ability to nucleate the protein structure obviates the need for a hydrophobic core.

Guanine nucleotide-exchange factor

A protein that facilitates the exchange of GDP for GTP in the nucleotide-binding pocket of a GTP-binding protein.

Agammaglobulinaemia

A disorder that is caused by an inability to make mature B cells and, as a result, antibodies. X-linked agammaglobulinaemia can arise from mutations in the PH domain of Bruton's tyrosine kinase (BTK) that block the ability of BTK to respond to phosphoinositide 3-kinase signalling. Activation of BTK is crucial for B-cell maturation.

GTPase-activating proteins

(GAPs). Proteins that stimulate the intrinsic ability of a GTPase to hydrolyse GTP to GDP. GAPs negatively regulate GTPases by converting them from active states (GTP bound) to inactive states (GDP bound).

Split PH domain

A pleckstrin homology (PH) domain with an interrupted sequence. Regions of polypeptide that are well separated in the primary sequence of a protein can interact with one another to form a globular PH domain fold. The interruptions are usually in the flexible loops of the PH domain and can harbour other domains.

ESCRT

(Endosomal sorting complex required for transport). The multiprotein ESCRT machinery (ESCRT-I, -II and -III) promotes inward vesiculation at the limiting membrane of the sorting endosome and selects cargo proteins for delivery to the intralumenal vesicles of multivesicular bodies.

Endosomes

Vesicles that are formed by invagination of the plasma membrane.

Multivesicular bodies

Endosomal intermediates in which small membrane vesicles are enclosed in a limiting membrane. The internal vesicles are thought to form by invagination and budding from the limiting membrane.

Phagosomes

Membrane-bound vesicles that contain microorganisms or particulate material from the extracellular environment.

Avidity

The overall measure of binding between a multivalent ligand and its receptors, which reflects the combined strength of multiple binding sites. Avidity was originally defined for antibodies, for which it refers to the overall strength of binding between multivalent antigens and antibodies.

Coiled-coil domain

A protein structural domain that often mediates subunit oligomerization. Coiled coils contain between two and five α-helices that twist around each other to form a supercoil.

Sorting nexin

Also known as SNX proteins. These proteins are characterized by the presence of Phox-homology (PX) domains and play roles in endosomal cargo sorting as well as other functions.

Retromer

A complex of five proteins (Vps35, Vps26, Vps29, Vps17 and Vps5 in yeast) that is important for recycling transmembrane proteins from endosomes to the trans-Golgi network.

Zwitterionic phospholipids

A phospholipid with a headgroup that is electrically neutral (no net charge), but that has formal positive and negative charges on different groups. For example, phosphatidylcholine has a positively charged choline headgroup and a negatively charged phosphate. Phosphatidylethanolamine and sphingomyelin are also zwitterionic phospholipids.

Fibrinolysis

The proteolysis of fibrin by plasmin in blood clots.

Prothrombin

A pro-enzyme form of thrombin (also known as factor II), a serine protease that is involved in the blood coagulation cascade by converting fibrinogen into insoluble fibrin.

Factors V, VII, VIII, IX and X

Coagulation factors. Factors VII, IX and X are serine protease pro-enzymes that are involved in the blood coagulation cascade. Once activated, factors V and VIII are cofactors for factor Xa and IXa, respectively.

Synaptotagmin

An integral membrane protein with two PKC-class C2 domains that acts as a Ca2+ sensor in Ca2+-triggered synaptic vesicle fusion with the plasma membrane.

Dynamin

A large self-assembling GTPase that plays a crucial role in the scission of endocytic vesicles from the plasma membrane.

Coated pit

An invagination in the plasma membrane, coated with clathrin on its cytoplasmic face, that becomes internalized and forms a clathrin-coated endocytic vesicle.

Filopodia

Thin, transient actin protrusions that extend out from the cell surface and that are formed by the elongation of bundled actin filaments that exist in its core.

SH2 domain

(Src homology 2). A small protein domain (110 amino acids) that is found in many signalling proteins and that recognizes phosphorylated tyrosine residues in a particular sequence context. SH2 domains are responsible for recruiting downstream signalling molecules to activated receptor tyrosine kinases at the cell surface.

SH3 domain

(Src homology 3). A small protein domain (50–60 amino acids) that recognizes proline-rich sequences that are important for the assembly of various different signalling complexes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemmon, M. Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9, 99–111 (2008). https://doi.org/10.1038/nrm2328

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2328

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing