Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Small non-coding RNAs in animal development

Key Points

  • The functional roles of small non-coding RNAs in vertebrates are beginning to be elucidated thanks to specific gene-deletion approaches.

  • miR-15, miR-16 and miR-430 are involved in modulation of the Nodal signalling pathway in different phases of vertebrate embryonic development.

  • miR-124 contributes to the adoption of neural cell fate by regulating the switch between PTB and nPTB, two regulators of alternative splicing.

  • miR-208 deletion results in a failure to produce cardiac hypertrophy in response to various stresses.

  • miR-181 and miR-155 have a complex regulatory role in lymphocyte maturation and the immune response.

  • piRNAs are a novel class of small non-coding RNAs that are expressed in the germline, and that are possibly involved in inhibiting the mobilization of transposons.

Abstract

The modulation of gene expression by small non-coding RNAs is a recently discovered level of gene regulation in animals and plants. In particular, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs) have been implicated in various aspects of animal development, such as neuronal, muscle and germline development. During the past year, an improved understanding of the biological functions of small non-coding RNAs has been fostered by the analysis of genetic deletions of individual miRNAs in mammals. These studies show that miRNAs are key regulators of animal development and are potential human disease loci.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MicroRNAs in neuronal development.
Figure 2: MicroRNAs in cardiac development.
Figure 3: Role of miR-181 and miR-155 in lymphocyte development.

Similar content being viewed by others

References

  1. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961).

    CAS  PubMed  Google Scholar 

  2. Esquela-Kerscher, A. & Slack, F. J. Oncomirs — microRNAs with a role in cancer. Nature Rev. Cancer 6, 259–269 (2006).

    CAS  Google Scholar 

  3. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    CAS  PubMed  Google Scholar 

  5. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    CAS  PubMed  Google Scholar 

  6. Yoo, A. S. & Greenwald, I. LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans. Science 310, 1330–1333 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    CAS  PubMed  Google Scholar 

  8. Hobert, O. Architecture of a microRNA-controlled gene regulatory network that diversifies neuronal cell fates. Cold Spring Harb. Symp. Quant. Biol. 71, 181–188 (2006).

    CAS  PubMed  Google Scholar 

  9. Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila microRNA targets. PLoS Biol. 1, e60 (2003).

    PubMed  PubMed Central  Google Scholar 

  10. Leaman, D. et al. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121, 1097–1108 (2005).

    CAS  PubMed  Google Scholar 

  11. Ronshaugen, M., Biemar, F., Piel, J., Levine, M. & Lai, E. C. The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings. Genes Dev. 19, 2947–2952 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Thompson, B. J. & Cohen, S. M. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126, 767–774 (2006).

    CAS  PubMed  Google Scholar 

  14. Xu, P., Vernooy, S. Y., Guo, M. & Hay, B. A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 13, 790–795 (2003).

    CAS  PubMed  Google Scholar 

  15. Lai, E. C., Tam, B. & Rubin, G. M. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev. 19, 1067–1080 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, X. & Carthew, R. W. A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123, 1267–1277 (2005).

    CAS  PubMed  Google Scholar 

  17. Varghese, J. & Cohen, S. M. microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes Dev. 21, 2277–2282 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  19. Abbott, A. L. et al. The let-7 microRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev. Cell 9, 403–414 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bushati, N. & Cohen, S. M. MicroRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007).

    CAS  PubMed  Google Scholar 

  21. Kloosterman, W. P. & Plasterk, R. H. The diverse functions of microRNAs in animal development and disease. Dev. Cell 11, 441–450 (2006).

    CAS  PubMed  Google Scholar 

  22. Molnar, A., Schwach, F., Studholme, D. J., Thuenemann, E. C. & Baulcombe, D. C. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447, 1126–1129 (2007).

    CAS  PubMed  Google Scholar 

  23. Zhao, T. et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev. 21, 1190–1203 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, Y., Han, J., Yeom, K. H., Jin, H. & Kim, V. N. Drosha in primary microRNA processing. Cold Spring Harb. Symp. Quant. Biol. 71, 51–57 (2006).

    CAS  PubMed  Google Scholar 

  25. Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The miRtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89–100 (2007).

    CAS  PubMed  Google Scholar 

  27. Berezikov, E., Chung, W. J., Willis, J., Cuppen, E. & Lai, E. C. Mammalian mirtron genes. Mol. Cell 28, 328–336 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pillai, R. S., Bhattacharyya, S. N. & Filipowicz, W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol. 17, 118–126 (2007).

    CAS  PubMed  Google Scholar 

  29. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    CAS  PubMed  Google Scholar 

  30. Rajewsky, N. & Socci, N. D. Computational identification of microRNA targets. Dev. Biol. 267, 529–535 (2004).

    CAS  PubMed  Google Scholar 

  31. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Long, D. et al. Potent effect of target structure on microRNA function. Nature Struct. Mol. Biol. 14, 287–294 (2007).

    CAS  Google Scholar 

  33. Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220 (2005).

    CAS  PubMed  Google Scholar 

  34. Vella, M. C., Reinert, K. & Slack, F. J. Architecture of a validated microRNA::target interaction. Chem. Biol. 11, 1619–1623 (2004).

    CAS  PubMed  Google Scholar 

  35. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rigoutsos, I. et al. Short blocks from the noncoding parts of the human genome have instances within nearly all known genes and relate to biological processes. Proc. Natl Acad. Sci. USA 103, 6605–6610 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Berezikov, E. et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 21–24 (2005).

    CAS  PubMed  Google Scholar 

  38. Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338–345 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    CAS  PubMed  Google Scholar 

  40. Stark, A., Brennecke, J., Bushati, N., Russell, R. B. & Cohen, S. M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution. Cell 123, 1133–1146 (2005).

    CAS  PubMed  Google Scholar 

  41. Farh, K. K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    CAS  PubMed  Google Scholar 

  42. Hornstein, E. & Shomron, N. Canalization of development by microRNAs. Nature Genet. 38 (Suppl.), S20–S24 (2006).

    CAS  PubMed  Google Scholar 

  43. Bartel, D. P. & Chen, C. Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nature Rev. Genet. 5, 396–400 (2004).

    CAS  PubMed  Google Scholar 

  44. Bernstein, E. et al. Dicer is essential for mouse development. Nature Genet. 35, 215–217 (2003).

    CAS  PubMed  Google Scholar 

  45. Kanellopoulou, C. et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Y., Medvid, R., Melton, C., Jaenisch, R. & Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genet. 39, 380–385 (2007).

    CAS  PubMed  Google Scholar 

  47. Giraldez, A. J. et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833–838 (2005).

    CAS  PubMed  Google Scholar 

  48. Murchison, E. P. et al. Critical roles for Dicer in the female germline. Genes Dev. 21, 682–693 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Muljo, S. A. et al. Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 202, 261–269 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tang, F. et al. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 21, 644–648 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yi, R. et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nature Genet. 38, 356–362 (2006).

    CAS  PubMed  Google Scholar 

  52. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007).

    CAS  PubMed  Google Scholar 

  53. Makeyev, E. V., Zhang, J., Carrasco, M. A. & Maniatis, T. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435–448 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Stern, C. D. Evolution of the mechanisms that establish the embryonic axes. Curr. Opin. Genet. Dev. 16, 413–418 (2006).

    CAS  PubMed  Google Scholar 

  55. Faure, S., Lee, M. A., Keller, T., ten Dijke, P. & Whitman, M. Endogenous patterns of TGFβ superfamily signaling during early Xenopus development. Development 127, 2917–2931 (2000).

    CAS  PubMed  Google Scholar 

  56. Agius, E., Oelgeschlager, M., Wessely, O., Kemp, C. & De Robertis, E. M. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127, 1173–1183 (2000).

    CAS  PubMed  Google Scholar 

  57. Martello, G. et al. MicroRNA control of Nodal signalling. Nature 449, 183–188 (2007).

    CAS  PubMed  Google Scholar 

  58. Choi, W. Y., Giraldez, A. J. & Schier, A. F. Target protectors reveal dampening and balancing of nodal agonist and antagonist by miR-430. Science 318, 271–274 (2007).

    CAS  PubMed  Google Scholar 

  59. Lipscombe, D. Neuronal proteins custom designed by alternative splicing. Curr. Opin. Neurobiol. 15, 358–363 (2005).

    CAS  PubMed  Google Scholar 

  60. Ule, J. & Darnell, R. B. RNA binding proteins and the regulation of neuronal synaptic plasticity. Curr. Opin. Neurobiol. 16, 102–110 (2006).

    CAS  PubMed  Google Scholar 

  61. Kosik, K. S. The neuronal microRNA system. Nature Rev. Neurosci. 7, 911–920 (2006).

    CAS  Google Scholar 

  62. Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A. & Tuschl, T. New microRNAs from mouse and human. RNA 9, 175–179 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sempere, L. F. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 5, R13 (2004).

    PubMed  PubMed Central  Google Scholar 

  64. Spellman, R. & Smith, C. W. Novel modes of splicing repression by PTB. Trends Biochem. Sci. 31, 73–76 (2006).

    CAS  PubMed  Google Scholar 

  65. Boutz, P. L. et al. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 21, 1636–1652 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Boutz, P. L., Chawla, G., Stoilov, P. & Black, D. L. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev. 21, 71–84 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Conaco, C., Otto, S., Han, J. J. & Mandel, G. Reciprocal actions of REST and a microRNA promote neuronal identity. Proc. Natl Acad. Sci. USA 103, 2422–2427 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Coulson, J. M. Transcriptional regulation: cancer, neurons and the REST. Curr. Biol. 15, R665–R668 (2005).

    CAS  PubMed  Google Scholar 

  69. Visvanathan, J., Lee, S., Lee, B., Lee, J. W. & Lee, S. K. The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 21, 744–749 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    CAS  PubMed  Google Scholar 

  71. Kwon, C., Han, Z., Olson, E. N. & Srivastava, D. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc. Natl Acad. Sci. USA 102, 18986–18991 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sokol, N. S. & Ambros, V. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev. 19, 2343–2354 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, J. F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genet. 38, 228–233 (2006).

    CAS  PubMed  Google Scholar 

  74. Yang, B. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Med. 13, 486–491 (2007).

    CAS  PubMed  Google Scholar 

  75. Clop, A. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genet. 38, 813–818 (2006).

    CAS  PubMed  Google Scholar 

  76. Olson, E. N. & Schneider, M. D. Sizing up the heart: development redux in disease. Genes Dev. 17, 1937–1956 (2003).

    CAS  PubMed  Google Scholar 

  77. van Rooij, E. et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA 103, 18255–18260 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. McCarthy, J. J. & Esser, K. A. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J. Appl. Physiol. 102, 306–313 (2007).

    CAS  PubMed  Google Scholar 

  79. Sayed, D., Hong, C., Chen, I. Y., Lypowy, J. & Abdellatif, M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 100, 416–424 (2007).

    CAS  PubMed  Google Scholar 

  80. Care, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nature Med. 13, 613–618 (2007).

    CAS  PubMed  Google Scholar 

  81. Cheng, Y. et al. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am. J. Pathol. 170, 1831–1840 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007). Demonstrates that miR-208 is required for cardiac hypertrophy.

    CAS  PubMed  Google Scholar 

  83. Ito, M. & Roeder, R. G. The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol. Metab. 12, 127–134 (2001).

    CAS  PubMed  Google Scholar 

  84. Fatica, A. et al. MicroRNAs and hematopoietic differentiation. Cold Spring Harb. Symp. Quant. Biol. 71, 205–210 (2006).

    CAS  PubMed  Google Scholar 

  85. Dahlberg, J. E. & Lund, E. Micromanagement during the innate immune response. Sci. STKE 2007, 387, pe25 (2007).

    Google Scholar 

  86. Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004).

    CAS  PubMed  Google Scholar 

  87. Monticelli, S. et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol. 6, R71 (2005).

    PubMed  PubMed Central  Google Scholar 

  88. Neilson, J. R., Zheng, G. X., Burge, C. B. & Sharp, P. A. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev. 21, 578–589 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li, Q. J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147–161 (2007). Shows that variations in the levels of miR-181 during T lymphocyte maturation regulates the sensitivity to TCR activation.

    CAS  PubMed  Google Scholar 

  90. Clurman, B. E. & Hayward, W. S. Multiple proto-oncogene activations in avian leukosis virus-induced lymphomas: evidence for stage-specific events. Mol. Cell. Biol. 9, 2657–2664 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Tam, W., Ben-Yehuda, D. & Hayward, W. S. bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol. Cell. Biol. 17, 1490–1502 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Metzler, M., Wilda, M., Busch, K., Viehmann, S. & Borkhardt, A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39, 167–169 (2004).

    CAS  PubMed  Google Scholar 

  93. Haasch, D. et al. T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC. Cell. Immunol. 217, 78–86 (2002).

    CAS  PubMed  Google Scholar 

  94. O'Connell, R. M., Taganov, K. D., Boldin, M. P., Cheng, G. & Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl Acad. Sci. USA 104, 1604–1609 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Iorio, M. V. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065–7070 (2005).

    CAS  PubMed  Google Scholar 

  96. Eis, P. S. et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl Acad. Sci. USA 102, 3627–3632 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. van den Berg, A. et al. High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer 37, 20–28 (2003).

    CAS  PubMed  Google Scholar 

  98. Kluiver, J. et al. Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 45, 147–153 (2006).

    CAS  PubMed  Google Scholar 

  99. Kluiver, J. et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 207, 243–249 (2005).

    CAS  PubMed  Google Scholar 

  100. Yanaihara, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189–198 (2006).

    CAS  PubMed  Google Scholar 

  101. Thai, T. H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007).

    CAS  PubMed  Google Scholar 

  102. Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007). This study, together with reference 101, describes the alterations of immune system functions in Mir-155 -null mutants.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999).

    CAS  PubMed  Google Scholar 

  104. Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. & Plasterk, R. H. MUT-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133–141 (1999).

    CAS  PubMed  Google Scholar 

  105. Lin, H. & Spradling, A. C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 2463–2476 (1997).

    CAS  PubMed  Google Scholar 

  106. Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12, 3715–3727 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Schupbach, T. & Wieschaus, E. Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129, 1119–1136 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Harris, A. N. & Macdonald, P. M. Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development 128, 2823–2832 (2001).

    CAS  PubMed  Google Scholar 

  109. Vagin, V. V. et al. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324 (2006).

    CAS  PubMed  Google Scholar 

  110. Saito, K. et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev. 20, 2214–2222 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).

    CAS  PubMed  Google Scholar 

  112. Gunawardane, L. S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315, 1587–1590 (2007). References 111 and 112 provide evidence for the current model of piRNA generation in D. melanogaster.

    CAS  PubMed  Google Scholar 

  113. Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350 (2003).

    CAS  PubMed  Google Scholar 

  114. Saito, K. et al. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi-interacting RNAs at their 3′ ends. Genes Dev. 21, 1603–1608 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Horwich, M. D. et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17, 1265–1272 (2007).

    CAS  PubMed  Google Scholar 

  116. Cook, H. A., Koppetsch, B. S., Wu, J. & Theurkauf, W. E. The Drosophila SDE3 homolog armitage is required for Oskar mRNA silencing and embryonic axis specification. Cell 116, 817–829 (2004).

    CAS  PubMed  Google Scholar 

  117. Klattenhoff, C. et al. Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev. Cell 12, 45–55 (2007).

    CAS  PubMed  Google Scholar 

  118. Chen, Y., Pane, A. & Schupbach, T. Cutoff and aubergine mutations result in retrotransposon upregulation and checkpoint activation in Drosophila. Curr. Biol. 17, 637–642 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Houwing, S. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 129, 69–82 (2007).

    CAS  PubMed  Google Scholar 

  120. Deng, W. & Lin, H. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell 2, 819–830 (2002).

    CAS  PubMed  Google Scholar 

  121. Kuramochi-Miyagawa, S. et al. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131, 839–849 (2004).

    CAS  PubMed  Google Scholar 

  122. Carmell, M. A. et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503–514 (2007).

    CAS  PubMed  Google Scholar 

  123. Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203–207 (2006).

    CAS  PubMed  Google Scholar 

  124. Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199–202 (2006).

    PubMed  Google Scholar 

  125. Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 20, 1709–1714 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Lau, N. C. et al. Characterization of the piRNA complex from rat testes. Science 313, 363–367 (2006).

    CAS  PubMed  Google Scholar 

  127. Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732–1743 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Betel, D., Sheridan, R., Marks, D. S. & Sander, C. Computational analysis of mouse piRNA sequence and biogenesis. PLoS Comput. Biol. 3, e222 (2007).

  129. Aravin, A. A., Sachidanandam, R., Girard, A., Fejes-Toth, K. & Hannon, G. J. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744–747 (2007). Describes features that are specific to the pools of piRNAs associated with different Piwi proteins in the mouse, showing similarities and differences between vertebrate and invertebrate piRNAs.

    CAS  PubMed  Google Scholar 

  130. Leung, A. K. & Sharp, P. A. microRNAs: a safeguard against turmoil? Cell 130, 581–585 (2007).

    CAS  PubMed  Google Scholar 

  131. Pillai, R. S. et al. Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309, 1573–1576 (2005).

    CAS  PubMed  Google Scholar 

  132. Kiriakidou, M. et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell 129, 1141–1151 (2007).

    CAS  PubMed  Google Scholar 

  133. Mathonnet, G. et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317, 1764–1767 (2007).

    CAS  PubMed  Google Scholar 

  134. Thermann, R. & Hentze, M. W. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447, 875–878 (2007).

    CAS  PubMed  Google Scholar 

  135. Chendrimada, T. P. et al. MicroRNA silencing through RISC recruitment of eIF6. Nature 447, 823–828 (2007).

    CAS  PubMed  Google Scholar 

  136. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).

    CAS  PubMed  Google Scholar 

  137. Maroney, P. A., Yu, Y., Fisher, J. & Nilsen, T. W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nature Struct. Mol. Biol. 13, 1102–1107 (2006).

    CAS  Google Scholar 

  138. Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21, 533–542 (2006).

    CAS  PubMed  Google Scholar 

  139. Nottrott, S., Simard, M. J. & Richter, J. D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nature Struct. Mol. Biol. 13, 1108–1114 (2006).

    CAS  Google Scholar 

  140. Valencia-Sanchez, M. A., Liu, J., Hannon, G. J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524 (2006).

    CAS  PubMed  Google Scholar 

  141. Wakiyama, M., Takimoto, K., Ohara, O. & Yokoyama, S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 21, 1857–1862 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Pane, A., Wehr, K. & Schupbach, T. zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev. Cell 12, 851–862 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Xiao, C. et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131, 146–159 (2007).

    CAS  PubMed  Google Scholar 

  145. Harfe, B. D., McManus, M. T., Mansfield, J. H., Hornstein, E. & Tabin, C. J. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl Acad. Sci. USA 102, 10898–10903 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Harris, K. S., Zhang, Z., McManus, M. T., Harfe, B. D. & Sun, X. Dicer function is essential for lung epithelium morphogenesis. Proc. Natl Acad. Sci. USA 103, 2208–2213 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. O'Rourke, J. R. et al. Essential role for Dicer during skeletal muscle development. Dev. Biol. 311, 359–368 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Cobb, B. S. et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J. Exp. Med. 201, 1367–1373 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Schaefer, A. et al. Cerebellar neurodegeneration in the absence of microRNAs. J. Exp. Med. 204, 1553–1558 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    CAS  PubMed  Google Scholar 

  151. Morita, S. et al. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics 89, 687–696 (2007).

    CAS  PubMed  Google Scholar 

  152. Miska, E. A. et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 3, e215 (2007).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Boehm for critical reading of the manuscript. G.S. was supported by the Anna Fuller Fund and a Sessel Postdoctoral Fellowship. F.S. was supported by grants from the National Institutes of Health, the McDonnell Foundation and the Ellison Medical Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Burkitt lymphoma

Hodgkin lymphoma

FURTHER INFORMATION

Frank J. Slack's homepage

Glossary

Piwi-interacting RNAs

(piRNAs). Short RNA molecules (24–30 nt long) that are processed in a Dicer- and Drosha-independent manner. They associate with Piwi proteins and have a role in transposon silencing in flies. In mammals, they are restricted mostly to male germ cells.

RNase III

One of a highly conserved family of endoribonucleases that cleave double-stranded RNA and have an important role in the maturation of ribosomal RNA, among other processes.

miRNA-induced silencing complex

(miRISC). A multicomponent gene regulatory complex that is activated by a microRNA (miRNA) associated with an Argonaute protein and that regulates gene expression, mediated by the sequence complementarity between the miRNA and the target mRNA.

Argonaute protein

One of a family of evolutionarily conserved proteins that are characterized by the presence of two homology domains (PAZ and PIWI). Argonaute proteins are essential for diverse RNA-silencing pathways.

P bodies

Cytoplasmic foci that are thought to store and degrade translationally repressed RNA.

Hyperplasia

Enlargement of an organ resulting from an increased number of its cells.

Deep sequencing techniques

Sequencing to high coverage, where coverage (or depth) corresponds to the average number of times that a nucleotide is sequenced.

Small interfering RNA

(siRNA). Short double-stranded RNA molecules (21–23 nt) that guide the cleavage and degradation of RNA that is complementary to one of its strands.

Germ-line stem cells

(GSCs). Cells that have the ability to self-renew and to generate differentiated cells that are restricted to the germ cell lineage.

Primordial germ cells

Embryonic cells that give rise to the germ cell lineage.

rasiRNA

Repeat-associated small interfering RNA that is derived from highly repetitive genomic loci. rasiRNA is involved in the establishment and maintenance of heterochromatin and transposon control.

Seminiferous tubules

Structures in the testis where spermatocytes mature.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefani, G., Slack, F. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9, 219–230 (2008). https://doi.org/10.1038/nrm2347

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2347

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing