Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phagosome maturation: going through the acid test

Key Points

  • Eukaryotic cells engulf a variety of particles during their lifetime, including potentially pathogenic microorganisms and apoptotic cells. A person clears approximately 200 billion cells each day, making the removal of apoptotic cells one of the most common types of phagocytosis. Understanding how bacteria and apoptotic cells are phagocytosed and processed is a fundamentally important biological problem, both for normal homeostasis and disease.

  • Internalized particles are present in membrane-bound organelles that are termed phagosomes. The phagosome functions as more than just as an organelle for 'garbage disposal': proteins from the ingested target are degraded into peptides and presented on major histocompatibility complex (MHC) class II molecules (in the case of bacteria) for the generation of an immune response, whereas apoptotic cell-derived antigens are typically cross-presented on MHC class I molecules and are tolerogenic.

  • Phagosome maturation is the process by which a particle-containing phagosome 'matures' through a series of increasingly acidic membrane-bound structures, becoming an acidic phagolysosome before fusion with lysosomes. Proteomics approaches have identified a number of candidates localized to the phagosome, including the GTPases RAB5 and RAB7.

  • Recent studies in model systems, such as Drosophila melanogaster, Dictyostelium discoideum and Caenorhabditis elegans, have developed genetic models for the identification and characterization of proteins that are required for phagosome maturation. Studies in the nematode have led to the identification of a pathway for the maturation of apoptotic cell-containing phagosomes.

  • Following phagocytosis, apoptotic cells (and other particles) exist in phagosomes. The proteins on the intracellular face of the phagosome membrane change as the phagosome matures. Soon after uptake, the phagosome is coated with the GTPase RAB5, which is subsequently exchanged for RAB7 and eventually for lysosomal markers, such as LAMP1.

  • The regulation of phagosome maturation is complex, requiring a series of guanine nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs) and effectors. How RAB5 is regulated on the phagosome in vivo is just beginning to be described. The HOPS complex, a RAB7 activator and effector, is required for the maturation of the phagosome from the RAB7-positive stage.

  • A number of different bacterial pathogens have evolved mechanisms for co-opting phagosome maturation as a means of immune evasion or as a replicative niche. These bacteria target the machinery that regulates maturation, in some cases converting the phagosome into other types of organelles.

  • Future studies are expected to focus on signalling pathways that determine whether the immune response to an internalized particle would be immunogenic (in response to bacteria) or tolerogenic (in response to apoptotic cells). The identification of novel players, and their placement within a pathway for phagosome maturation, might be important for future development of new therapeutics that target intracellular pathogens (such as Mycobacterium tuberculosis).

Abstract

Phagosome maturation is the process by which internalized particles (such as bacteria and apoptotic cells) are trafficked into a series of increasingly acidified membrane-bound structures, leading to particle degradation. The characterization of the phagosomal proteome and studies in model organisms and mammals have led to the identification of numerous candidate proteins that cooperate to control the maturation of phagosomes containing different particles. A subset of these candidate proteins makes up the first pathway to be identified for the maturation of apoptotic cell-containing phagosomes. This suggests that a machinery that is distinct from receptor-mediated endocytosis is used in phagosome maturation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endocytosis as a paradigm for phagocytosis.
Figure 2: Activation of RAB5 during phagosome maturation.
Figure 3: Pathways for phagosome maturation and endocytosis.

Similar content being viewed by others

References

  1. van Lookeren Campagne, M., Wiesmann, C. & Brown, E. J. Macrophage complement receptors and pathogen clearance. Cell. Microbiol. 9, 2095–2102 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Underhill, D. M. & Ozinsky, A. Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20, 825–852 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Swanson, J. A. & Hoppe, A. D. The coordination of signaling during Fc receptor-mediated phagocytosis. J. Leukoc. Biol. 76, 1093–1103 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors: old friends and new family members. Immunity 24, 19–28 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Metzstein, M. M., Stanfield, G. M. & Horvitz, H. R. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet. 14, 410–416 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Lettre, G. & Hengartner, M. O. Developmental apoptosis in C. elegans: a complex CEDnario. Nature Rev. Mol. Cell Biol. 7, 97–108 (2006). References 5 and 6 are an excellent introduction to the field of apoptosis in the nematode. Reference 5 is a classic in the field and is an excellent introduction to the genetics of programmed cell death, whereas reference 6 extends and updates these findings.

    Article  CAS  Google Scholar 

  7. Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nature Rev. Mol. Cell Biol. 9, 231–241 (2008).

    Article  CAS  Google Scholar 

  8. Ravichandran, K. S. & Lorenz, U. Engulfment of apoptotic cells: signals for a good meal. Nature Rev. Immunol. 7, 964–974 (2007).

    Article  CAS  Google Scholar 

  9. Miyake, Y. et al. Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cell-associated antigens. J. Clin. Invest. 117, 2268–2278 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fadok, V. A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998). The first characterization of the anti-inflammatory cytokine response that is elicited by apoptotic cell recognition by phagocytes. This response occurs in both professional and non-professional phagocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bellone, M. et al. Processing of engulfed apoptotic bodies yields T cell epitopes. J. Immunol. 159, 5391–5399 (1997).

    CAS  PubMed  Google Scholar 

  12. Huang, F. P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Albert, M. L. et al. Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J. Exp. Med. 188, 1359–1368 (1998). Defects in apoptotic cell removal have long been associated with autoimmune disease; it was previously thought that the release of cellular contents led to the generation of an immune response. This study suggests that there are defects in the establishment or maintenance of tolerance rather than in the induction of an immune response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Swanson, J. A. Shaping cups into phagosomes and macropinosomes. Nature Rev. Mol. Cell Biol. 9, 639–649 (2008).

    Article  CAS  Google Scholar 

  15. Smith, A. C. et al. A network of Rab GTPases controls phagosome maturation and is modulated by Salmonella enterica serovar Typhimurium. J. Cell Biol. 176, 263–268 (2007). Uses dominant-negative approaches to identify the GTPases that are required for the maturation of Salmonella -containing phagosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beertsen, W. et al. Impaired phagosomal maturation in neutrophils leads to periodontitis in lysosomal-associated membrane protein-2 knockout mice. J. Immunol. 180, 475–482 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Kawane, K. et al. Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 443, 998–1002 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Wallet, M. A. et al. MerTK is required for apoptotic cell-induced T cell tolerance. J. Exp. Med. 205, 219–232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Albert, M. L., Jegathesan, M. & Darnell, R. B. Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nature Immunol. 2, 1010–1017 (2001).

    Article  CAS  Google Scholar 

  20. Ungewickell, E. J. & Hinrichsen, L. Endocytosis: clathrin-mediated membrane budding. Curr. Opin. Cell Biol. 19, 417–425 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Young, A. Structural insights into the clathrin coat. Semin. Cell Dev. Biol. 18, 448–458 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Hanyaloglu, A. C. & von Zastrow, M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu. Rev. Pharmacol. Toxicol. 48, 537–568 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005). This ground-breaking study used time-lapse microscopy to track endocytic vesicles as they acquired the GTPases RAB5 and RAB7. This work provides support for the direct exchange of RAB5 for RAB7 on the endosome; studies in the nematode have also observed this 'Rab conversion' during phagosome maturation.

    Article  CAS  PubMed  Google Scholar 

  24. Russell, M. R., Nickerson, D. P. & Odorizzi, G. Molecular mechanisms of late endosome morphology, identity and sorting. Curr. Opin. Cell Biol. 18, 422–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Luzio, J. P. et al. Lysosome–endosome fusion and lysosome biogenesis. J. Cell Sci. 113, 1515–1524 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. van Ijzendoorn, S. C. Recycling endosomes. J. Cell Sci. 119, 1679–1681 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Maxfield, F. R. & McGraw, T. E. Endocytic recycling. Nature Rev. Mol. Cell Biol. 5, 121–132 (2004).

    Article  CAS  Google Scholar 

  28. Yu, X., Odera, S., Chuang, C. H., Lu, N. & Zhou, Z. C. elegans dynamin mediates the signaling of phagocytic receptor CED-1 for the engulfment and degradation of apoptotic cells. Dev. Cell 10, 743–757 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, W. L., Mason, D., Schreiber, A. D. & Grinstein, S. Quantitative analysis of membrane remodeling at the phagocytic cup. Mol. Biol. Cell 18, 2883–2892 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Albert, M. L. Death-defying immunity: do apoptotic cells influence antigen processing and presentation? Nature Rev. Immunol. 4, 223–231 (2004).

    Article  CAS  Google Scholar 

  31. Blander, J. M. Signalling and phagocytosis in the orchestration of host defence. Cell. Microbiol. 9, 290–299 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  33. Desjardins, M., Huber, L. A., Parton, R. G. & Griffiths, G. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J. Cell Biol. 124, 677–688 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Garin, J. et al. The phagosome proteome: insight into phagosome functions. J. Cell Biol. 152, 165–180 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stuart, L. M. et al. A systems biology analysis of the Drosophila phagosome. Nature 445, 95–101 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Lennon-Dumenil, A. M. et al. Analysis of protease activity in live antigen-presenting cells shows regulation of the phagosomal proteolytic contents during dendritic cell activation. J. Exp. Med. 196, 529–540 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bryant, P. W., Lennon-Dumenil, A. M., Fiebiger, E., Lagaudriere-Gesbert, C. & Ploegh, H. L. Proteolysis and antigen presentation by MHC class II molecules. Adv. Immunol. 80, 71–114 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ramachandra, L., Boom, W. H. & Harding, C. V. Class II MHC antigen processing in phagosomes. Methods Mol. Biol. 445, 353–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Hackam, D. J. et al. Regulation of phagosomal acidification. Differential targeting of Na+/H+ exchangers, Na+/K+-ATPases, and vacuolar-type H+-ATPases. J. Biol. Chem. 272, 29810–29820 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Beyenbach, K. W. & Wieczorek, H. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J. Exp. Biol. 209, 577–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Kinchen, J. M. et al. A pathway for phagosome maturation during engulfment of apoptotic cells. Nature Cell Biol. 10, 556–566 (2008). Uses C. elegans as a model to screen for regulators of phagosome maturation, identifies a genetic pathway for phagosome maturation and shows evolutionary conservation of this pathway in mammals. This work also identifies an unexpected role for dynamin in the recruitment of VPS-34 and RAB-5 to the phagosome.

    Article  CAS  PubMed  Google Scholar 

  42. Clarke, M. et al. Dynamics of the vacuolar H+-ATPase in the contractile vacuole complex and the endosomal pathway of Dictyostelium cells. J. Cell Sci. 115, 2893–2905 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Fratti, R. A., Chua, J., Vergne, I. & Deretic, V. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl Acad. Sci. USA 100, 5437–5442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fratti, R. A., Vergne, I., Chua, J., Skidmore, J. & Deretic, V. Regulators of membrane trafficking and Mycobacterium tuberculosis phagosome maturation block. Electrophoresis 21, 3378–3385 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. McCoy, J. J. & Mann, B. J. Proteomic analysis of Gal/GalNAc lectin-associated proteins in Entamoeba histolytica. Exp. Parasitol. 110, 220–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Okada, M. et al. Proteomic analysis of phagocytosis in the enteric protozoan parasite Entamoeba histolytica. Eukaryot. Cell 4, 827–831 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Okada, M. et al. Kinetics and strain variation of phagosome proteins of Entamoeba histolytica by proteomic analysis. Mol. Biochem. Parasitol. 145, 171–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Jutras, I. et al. Modulation of the phagosome proteome by interferon-γ. Mol. Cell. Proteomics 7, 697–715 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Botelho, R. J., Hackam, D. J., Schreiber, A. D. & Grinstein, S. Role of COPI in phagosome maturation. J. Biol. Chem. 275, 15717–15727 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Peri, F. & Nusslein-Volhard, C. Live imaging of neuronal degradation by microglia reveals a role for V0-ATPase A1 in phagosomal fusion in vivo. Cell 133, 916–927 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Touret, N. et al. Quantitative and dynamic assessment of the contribution of the ER to phagosome formation. Cell 123, 157–170 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Lu, Q. et al. C. elegans Rab GTPase 2 is required for the degradation of apoptotic cells. Development 135, 1069–1080 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Yu, X., Lu, N. & Zhou, Z. Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells. PLoS Biol. 6, e61 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Mangahas, P. M., Yu, X., Miller, K. G. & Zhou, Z. The small GTPase Rab2 functions in the removal of apoptotic cells in Caenorhabditis elegans. J. Cell Biol. 180, 357–373 (2008). References 52–54 introduce time-lapse microscopy to the study of phagosome maturation in the whole organism and identify UNC-108/RAB-2 (references 52 and 54) and phagocytic signalling (reference 53) as being important for phagosome maturation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ullrich, O., Horiuchi, H., Bucci, C. & Zerial, M. Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Nature 368, 157–160 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Seabra, M. C. & Wasmeier, C. Controlling the location and activation of Rab GTPases. Curr. Opin. Cell Biol. 16, 451–457 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Grosshans, B. L., Ortiz, D. & Novick, P. Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl Acad. Sci. USA 103, 11821–11827 (2006). An excellent review of Rab effectors and their functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vieira, O. V. et al. Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol. Cell. Biol. 23, 2501–2514 (2003). Shows the requirements of kinase function (as inhibited by wortmannin) for fusion of phagosomes with late endosomes or lysosomes. Intriguingly, RAB7 can still be recruited to the phagosome, supporting a model for 'Rab conversion' on the phagosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McBride, H. M. et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98, 377–386 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Roberts, E. A., Chua, J., Kyei, G. B. & Deretic, V. Higher order Rab programming in phagolysosome biogenesis. J. Cell Biol. 174, 923–929 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kitano, M., Nakaya, M., Nakamura, T., Nagata, S. & Matsuda, M. Imaging of Rab5 activity identifies essential regulators for phagosome maturation. Nature 453, 241–245 (2008). Uses a Raichu–RAB5 biosensor probe to monitor RAB5 activation during apoptotic cell removal, and suggests that GAPEX5 is a major player in RAB5 activation during lactadherin and MFG-E8-mediated uptake.

    Article  CAS  PubMed  Google Scholar 

  62. Huynh, K. K. & Grinstein, S. Phagocytosis: dynamin's dual role in phagosome biogenesis. Curr. Biol. 18, R563–R565 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Vieira, O. V. et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155, 19–25 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bucci, C. et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715–728 (1992).

    Article  CAS  PubMed  Google Scholar 

  65. Hanayama, R. et al. Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304, 1147–1150 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Nielsen, E. et al. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J. Cell Biol. 151, 601–612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Christoforidis, S., McBride, H. M., Burgoyne, R. D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494–498 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Gengyo-Ando, K. et al. The SM protein VPS-45 is required for RAB-5-dependent endocytic transport in Caenorhabditis elegans. EMBO Rep. 8, 152–157 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vitale, G. et al. Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound Rab4 and Rab5. EMBO J. 17, 1941–1951 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Williams, R. L. & Urbe, S. The emerging shape of the ESCRT machinery. Nature Rev. Mol. Cell Biol. 8, 355–368 (2007).

    Article  CAS  Google Scholar 

  72. Fratti, R. A., Backer, J. M., Gruenberg, J., Corvera, S. & Deretic, V. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J. Cell Biol. 154, 631–644 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schnatwinkel, C. et al. The Rab5 effector Rabankyrin-5 regulates and coordinates different endocytic mechanisms. PLoS Biol. 2, e261 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Storrie, B. & Desjardins, M. The biogenesis of lysosomes: is it a kiss and run, continuous fusion and fission process? Bioessays 18, 895–903 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Rothman, J. H. & Stevens, T. H. Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway. Cell 47, 1041–1051 (1986).

    Article  CAS  PubMed  Google Scholar 

  76. Peplowska, K., Markgraf, D. F., Ostrowicz, C. W., Bange, G. & Ungermann, C. The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. Dev. Cell 12, 739–750 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Seals, D. F., Eitzen, G., Margolis, N., Wickner, W. T. & Price, A. A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc. Natl Acad. Sci. USA 97, 9402–9407 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Peterson, M. R., Burd, C. G. & Emr, S. D. Vac1p coordinates Rab and phosphatidylinositol 3-kinase signaling in Vps45p-dependent vesicle docking/fusion at the endosome. Curr. Biol. 9, 159–162 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Starr, T., Ng, T. W., Wehrly, T. D., Knodler, L. A. & Celli, J. Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic 9, 678–694 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Sun, J. et al. Mycobacterium bovis BCG disrupts the interaction of Rab7 with RILP contributing to inhibition of phagosome maturation. J. Leukoc. Biol. 82, 1437–1445 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Tisdale, E. J. A Rab2 mutant with impaired GTPase activity stimulates vesicle formation from pre-Golgi intermediates. Mol. Biol. Cell 10, 1837–1849 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tisdale, E. J. & Balch, W. E. Rab2 is essential for the maturation of pre-Golgi intermediates. J. Biol. Chem. 271, 29372–29379 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Tisdale, E. J., Bourne, J. R., Khosravi-Far, R., Der, C. J. & Balch, W. E. GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J. Cell Biol. 119, 749–761 (1992).

    Article  CAS  PubMed  Google Scholar 

  84. Chun, D. K., McEwen, J. M., Burbea, M. & Kaplan, J. M. UNC-108/Rab2 regulates post-endocytic trafficking in C. elegans. Mol. Biol. Cell 19, 2682–2695 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schuck, S. et al. Rab10 is involved in basolateral transport in polarized Madin–Darby canine kidney cells. Traffic 8, 47–60 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, C. C. et al. RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol. Biol. Cell 17, 1286–1297 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jancic, C. et al. Rab27a regulates phagosomal pH and NADPH oxidase recruitment to dendritic cell phagosomes. Nature Cell Biol. 9, 367–378 (2007). Highlights the importance of trafficking events for processing of internalized cargo: trafficking of RAB27A-positive vesicles to the phagosome slows acidification, allowing efficient proteolysis of proteins and loading of antigens for presentation.

    Article  CAS  PubMed  Google Scholar 

  88. Savina, A. et al. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126, 205–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Erwig, L. P. et al. Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin–radixin–moesin (ERM) proteins. Proc. Natl Acad. Sci. USA 103, 12825–12830 (2006). The first characterization of maturation relating to apoptotic cell removal. It also suggests a link between RhoA (the activity of which is downregulated during apoptotic cell engulfment) and ERM-family proteins for phagosome maturation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Eskelinen, E. L., Tanaka, Y. & Saftig, P. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol. 13, 137–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Huynh, K. K. et al. LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J. 26, 313–324 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Barbieri, M. A., Fernandez-Pol, S., Hunker, C., Horazdovsky, B. H. & Stahl, P. D. Role of rab5 in EGF receptor-mediated signal transduction. Eur. J. Cell Biol. 83, 305–314 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Barbieri, M. A. et al. Epidermal growth factor and membrane trafficking. EGF receptor activation of endocytosis requires Rab5a. J. Cell Biol. 151, 539–550 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lanzetti, L. et al. The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature 408, 374–377 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Howe, C. L., Valletta, J. S., Rusnak, A. S. & Mobley, W. C. NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras–MAPK pathway. Neuron 32, 801–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Blander, J. M. & Medzhitov, R. Regulation of phagosome maturation by signals from toll-like receptors. Science 304, 1014–1018 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Blander, J. M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440, 808–812 (2006). References 96 and 97 present evidence for a phagosome-autonomous model for maturation, in which receptor ligation during internalization determines the fate of the cargo and whether antigens will be presented on MHC class II molecules at the cell surface.

    Article  CAS  PubMed  Google Scholar 

  98. Kinchen, J. M. et al. Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans. Nature 434, 93–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Tosello-Trampont, A. C., Nakada-Tsukui, K. & Ravichandran, K. S. Engulfment of apoptotic cells is negatively regulated by Rho-mediated signaling. J. Biol. Chem. 278, 49911–49919 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Schrijvers, D. M., De Meyer, G. R., Kockx, M. M., Herman, A. G. & Martinet, W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 25, 1256–1261 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Gardai, S. J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123, 321–334 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Martins-Silva, C. et al. A rat homologue of CED-6 is expressed in neurons and interacts with clathrin. Brain Res. 1119, 1–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Ma, Z., Nie, Z., Luo, R., Casanova, J. E. & Ravichandran, K. S. Regulation of Arf6 and ACAP1 signaling by the PTB-domain-containing adaptor protein GULP. Curr. Biol. 17, 722–727 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhou, Z., Hartwieg, E. & Horvitz, H. R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104, 43–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Underhill, D. M. & Gantner, B. Integration of Toll-like receptor and phagocytic signaling for tailored immunity. Microbes Infect. 6, 1368–1373 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Taylor, P. R. et al. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901–944 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Yates, R. M. & Russell, D. G. Phagosome maturation proceeds independently of stimulation of toll-like receptors 2 and 4. Immunity 23, 409–417 (2005). Questions the phagosome-autonomous model and instead suggests that maturation does not depend on signalling from Toll-like receptors.

    Article  CAS  PubMed  Google Scholar 

  108. Houde, M. et al. Phagosomes are competent organelles for antigen cross-presentation. Nature 425, 402–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Stuart, L. M. & Ezekowitz, R. A. Phagocytosis and comparative innate immunity: learning on the fly. Nature Rev. Immunol. 8, 131–141 (2008).

    Article  CAS  Google Scholar 

  110. Franc, N. C., Heitzler, P., Ezekowitz, R. A. & White, K. Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science 284, 1991–1994 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Franc, N. C., Dimarcq, J. L., Lagueux, M., Hoffmann, J. & Ezekowitz, R. A. Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4, 431–443 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Awasaki, T. et al. Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50, 855–867 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Freeman, M. R., Delrow, J., Kim, J., Johnson, E. & Doe, C. Q. Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38, 567–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Kocks, C. et al. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123, 335–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Kurucz, E. et al. Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr. Biol. 17, 649–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Philips, J. A., Rubin, E. J. & Perrimon, N. Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 309, 1251–1253 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Tenor, J. L. & Aballay, A. A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity. EMBO Rep. 9, 103–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. O'Neill, L. A. When signaling pathways collide: positive and negative regulation of toll-like receptor signal transduction. Immunity 29, 12–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Kagan, J. C., Stein, M. P., Pypaert, M. & Roy, C. R. Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J. Exp. Med. 199, 1201–1211 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Machner, M. P. & Isberg, R. R. Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev. Cell 11, 47–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Machner, M. P. & Isberg, R. R. A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318, 974–977 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Ingmundson, A., Delprato, A., Lambright, D. G. & Roy, C. R. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450, 365–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Handa, Y. et al. Shigella IpgB1 promotes bacterial entry through the ELMO–Dock180 machinery. Nature Cell Biol. 9, 121–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Mercer, J. & Helenius, A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531–535 (2008). References 123 and 124 suggest that pathogens can co-opt phagocytic receptors for apoptotic cells to gain entry into the cell. Whether such a mode of entry also alters phagosome maturation remains to be determined.

    Article  CAS  PubMed  Google Scholar 

  125. Santic, M., Asare, R., Skrobonja, I., Jones, S. & Abu Kwaik, Y. Acquisition of the vacuolar ATPase proton pump and phagosome acidification are essential for escape of Francisella tularensis into the macrophage cytosol. Infect. Immun. 76, 2671–2677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Araki, N. Role of microtubules and myosins in Fc γ receptor-mediated phagocytosis. Front. Biosci. 11, 1479–1490 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Gardai, S. J., Bratton, D. L., Ogden, C. A. & Henson, P. M. Recognition ligands on apoptotic cells: a perspective. J. Leukoc. Biol. 79, 896–903 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Devitt, A. et al. Persistence of apoptotic cells without autoimmune disease or inflammation in CD14−/− mice. J. Cell Biol. 167, 1161–1170 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Reddien, P. W. & Horvitz, H. R. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biol. 2, 131–136 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Gumienny, T. L. et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107, 27–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Park, D. et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Albert, M. L., Kim, J. I. & Birge, R. B. αvβ5 integrin recruits the CrkII–Dock180–rac1 complex for phagocytosis of apoptotic cells. Nature Cell Biol. 2, 899–905 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Su, H. P. et al. Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP). J. Biol. Chem. 277, 11772–11779 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Su, H. P. et al. Identification and characterization of a dimerization domain in CED-6, an adapter protein involved in engulfment of apoptotic cells. J. Biol. Chem. 275, 9542–9549 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Liu, Q. A. & Hengartner, M. O. Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells in C. elegans. Cell 93, 961–972 (1998). References 130–136 identify intracellular signalling molecules that function during apoptotic cell removal in the nematode and mammals, and also provide insights into their mechanism of action.

    Article  CAS  PubMed  Google Scholar 

  137. Hamon, Y., Chambenoit, O. & Chimini, G. ABCA1 and the engulfment of apoptotic cells. Biochim. Biophys. Acta 1585, 64–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Kinchen, J. M. & Ravichandran, K. S. Journey to the grave: signaling events regulating removal of apoptotic cells. J. Cell Sci. 120, 2143–2149 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Voll, R. E. et al. Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  140. Park, S. Y. et al. Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ. 15, 192–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Kirsch, T. et al. Engulfment of apoptotic cells by microvascular endothelial cells induces proinflammatory responses. Blood 109, 2854–2862 (2007). The cytokine response of phagocytes to apoptotic cells is typically tolerogenic. However, this paper suggests that, in certain circumstances, the presence of apoptotic cells can elicit an inflammatory response.

    Article  CAS  PubMed  Google Scholar 

  142. Gerbod-Giannone, M. C. et al. TNFα induces ABCA1 through NF-κB in macrophages and in phagocytes ingesting apoptotic cells. Proc. Natl Acad. Sci. USA 103, 3112–3117 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Blachere, N. E., Darnell, R. B. & Albert, M. L. Apoptotic cells deliver processed antigen to dendritic cells for cross-presentation. PLoS Biol. 3, e185 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Perruche, S. et al. CD3-specific antibody-induced immune tolerance involves transforming growth factor-β from phagocytes digesting apoptotic T cells. Nature Med. 14, 528–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Wu, Y. C., Stanfield, G. M. & Horvitz, H. R. NUC-1, a Caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes Dev. 14, 536–548 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Parrish, J. Z., Yang, C., Shen, B. & Xue, D. CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO J. 22, 3451–3460 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Parrish, J. Z. & Xue, D. Functional genomic analysis of apoptotic DNA degradation in C. elegans. Mol. Cell 11, 987–996 (2003). References 145–147 report the characterization of DNAses that have roles during the degradation of apoptotic cells in the nematode.

    Article  CAS  PubMed  Google Scholar 

  148. Gagnon, E. et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131 (2002).

    Article  CAS  PubMed  Google Scholar 

  149. Kyei, G. B. et al. Rab14 is critical for maintenance of Mycobacterium tuberculosis phagosome maturation arrest. EMBO J. 25, 5250–5259 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Delprato, A. & Lambright, D. G. Structural basis for Rab GTPase activation by VPS9 domain exchange factors. Nature Struct. Mol. Biol. 14, 406–412 (2007).

    Article  CAS  Google Scholar 

  151. Cantalupo, G., Alifano, P., Roberti, V., Bruni, C. B. & Bucci, C. Rab-interacting lysosomal protein (RILP): the Rab7 effector required for transport to lysosomes. EMBO J. 20, 683–693 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Orth, J. D. & McNiven, M. A. Dynamin at the actin-membrane interface. Curr. Opin. Cell Biol. 15, 31–39 (2003). This excellent review describes the role of dynamin-2 in actin-related processes, such as maintenance of the actin cytoskeleton.

    Article  CAS  PubMed  Google Scholar 

  153. Wu, Y. C. & Horvitz, H. R. The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 93, 951–960 (1998).

    Article  CAS  PubMed  Google Scholar 

  154. Wu, Y. C. & Horvitz, H. R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501–504 (1998).

    Article  CAS  PubMed  Google Scholar 

  155. Brugnera, E. et al. Unconventional Rac-GEF activity is mediated through the Dock180–ELMO complex. Nature Cell Biol. 4, 574–582 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Pizarro-Cerda, J. et al. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect. Immun. 66, 5711–5724 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pizarro-Cerda, J., Moreno, E., Sanguedolce, V., Mege, J. L. & Gorvel, J. P. Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments. Infect. Immun. 66, 2387–2392 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Scidmore, M. A., Fischer, E. R. & Hackstadt, T. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J. Cell Biol. 134, 363–374 (1996).

    Article  CAS  PubMed  Google Scholar 

  159. Heinzen, R. A., Scidmore, M. A., Rockey, D. D. & Hackstadt, T. Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect. Immun. 64, 796–809 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Romano, P. S., Gutierrez, M. G., Beron, W., Rabinovitch, M. & Colombo, M. I. The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cell. Microbiol. 9, 891–909 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Beron, W., Gutierrez, M. G., Rabinovitch, M. & Colombo, M. I. Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect. Immun. 70, 5816–5821 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ma, H., Croudace, J. E., Lammas, D. A. & May, R. C. Expulsion of live pathogenic yeast by macrophages. Curr. Biol. 16, 2156–2160 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Alvarez, M. & Casadevall, A. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr. Biol. 16, 2161–2165 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Terebiznik, M. R. et al. Helicobacter pylori VacA toxin promotes bacterial intracellular survival in gastric epithelial cells. Infect. Immun. 74, 6599–6614 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Allen, L. A. Intracellular niches for extracellular bacteria: lessons from Helicobacter pylori. J. Leukoc. Biol. 66, 753–756 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Scianimanico, S. et al. Impaired recruitment of the small GTPase rab7 correlates with the inhibition of phagosome maturation by Leishmania donovani promastigotes. Cell. Microbiol. 1, 19–32 (1999).

    Article  CAS  PubMed  Google Scholar 

  167. Dermine, J. F., Goyette, G., Houde, M., Turco, S. J. & Desjardins, M. Leishmania donovani lipophosphoglycan disrupts phagosome microdomains in J774 macrophages. Cell. Microbiol. 7, 1263–1270 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Chua, J., Vergne, I., Master, S. & Deretic, V. A tale of two lipids: Mycobacterium tuberculosis phagosome maturation arrest. Curr. Opin. Microbiol. 7, 71–77 (2004).

    Article  CAS  PubMed  Google Scholar 

  169. Meresse, S., Steele-Mortimer, O., Finlay, B. B. & Gorvel, J. P. The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells. EMBO J. 18, 4394–4403 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank colleagues in the engulfment field and members of our laboratory for insightful discussions. This work was supported by grants from the National Institute of General Medical Sciences/National Institutes of Health and the Strategic Program for Asthma Research (K.S.R), and an Arthritis Foundation Postdoctoral Fellowship (J.M.K).

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Kodi S. Ravichandran's homepage

Glossary

Receptor-mediated endocytosis

The process by which a ligand-bound receptor is internalized into a membrane-bound vesicle. These vesicles sequentially acquire different Rab GTPases.

Pinocytosis

The process by which liquids and small particles are internalized by the cell.

Complement

A protein complex component of the innate immune system that can bind to foreign particles and initiate their phagocytosis.

Fc receptors

A group of proteins that bind to immunoglobulin (Ig)G-opsonized particles, leading to the activation of phagocytosis.

Rab GTPases

A family of proteins that cycle between GDP-bound inactive and GTP-bound active forms and have a role in targeting transport to membrane-bound organelles.

Recycling endosome

A membrane-bound organelle for the recycling of receptors following ligand dissociation.

Programmed cell death

The process by which a healthy cell is induced to die, undergoes apoptosis and is then cleared and degraded by a phagocyte.

Prenylated

The process by which a hydrocarbon moiety is attached to a conserved CAAX motif in the C terminus of GTPases.

Dynamin

A large GTPase that is involved in membrane scission, actin cytoskeletal dynamics and phagosome maturation.

Focal exocytosis

Small vesicles are targeted to the plasma membrane during phagocytosis. In turn, this is thought to produce a local increase in the volume of plasma membrane, thereby allowing the cell to extend its membrane around large particles.

FYVE domain

A zinc-finger-containing protein motif that binds to the membrane lipid phosphatidyl-inositol-3-phosphate. This results in the targeting of the FYVE-containing protein to the membrane.

Phox homology (PX) domain

A lipid- and protein-interaction domain that consists of 100–130 amino acids and is defined by sequences that are found in two components of the phagocyte NADPH oxidase (phox) complex.

Retrograde transport

Transport from the Golgi to the endoplasmic reticulum (ER). This process is the reverse of the normal mode of ER-to-Golgi transport.

Toll-like receptor

A transmembrane protein that recognizes bacterial pathogens and induces an inflammatory response.

ARF GTPases

(ADP-ribosylation factor). A family of small GTPases that regulate aspects of membrane trafficking that are related to the budding of vesicles from membranes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinchen, J., Ravichandran, K. Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 9, 781–795 (2008). https://doi.org/10.1038/nrm2515

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2515

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing