Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamics and diversity in autophagy mechanisms: lessons from yeast

Key Points

  • Eukaryotic cells have evolved a degradative pathway called autophagy that can deliver a large amount of cytoplasmic proteins and even whole organelles into lytic compartments, such as lysosomes in mammals or vacuoles in plant and yeast cells. Autophagy has vital roles in various physiological situations and is also involved in several pathological processes.

  • A number of physiological signals and stresses can induce autophagy. Following its induction, double membrane-bound vesicles called autophagosomes are newly formed in the cytoplasm to sequester materials (cargoes) to be degraded.

  • Two modes of cargo sequestration by autophagosomal membranes are suggested: non-selective (starvation-induced) autophagy, in which a portion of the cytoplasm is randomly engulfed, and selective autophagy, in which specific cargoes, such as toxic protein aggregates and superfluous or damaged organelles, are recognized and in many cases exclusively enwrapped by the membranes.

  • Studies in yeast have identified a unique subset of proteins called autophagy-related (Atg) proteins, which contain core components that are commonly required for membrane formation in all types of autophagy. These components constitute several subgroups, such as a protein kinase complex, a lipid kinase complex and two ubiquitin-like conjugation systems.

  • Atg proteins are concentrated at the site for membrane formation and organize a dynamic assembly called the preautophagosomal structure, in which Atg proteins specific for each type of autophagy (which differ in their induction signals and cargoes) are thought to serve as conductors that regulate the localization and activity of core machinery and determine the site and the mode of vesicle formation according to various situations.

Abstract

Autophagy is a fundamental function of eukaryotic cells and is well conserved from yeast to humans. The most remarkable feature of autophagy is the synthesis of double membrane-bound compartments that sequester materials to be degraded in lytic compartments, a process that seems to be mechanistically distinct from conventional membrane traffic. The discovery of autophagy in yeast and the genetic tractability of this organism have allowed us to identify genes that are responsible for this process, which has led to the explosive growth of this research field seen today. Analyses of autophagy-related (Atg) proteins have unveiled dynamic and diverse aspects of mechanisms that underlie membrane formation during autophagy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Autophagy in yeast.
Figure 2: Classification of Atg proteins.
Figure 3: The PAS as the assembly of Atg proteins.
Figure 4: The Atg1 subfamily.
Figure 5: Two PI3K complexes.
Figure 6: Two ubiquitin-like conjugation systems.
Figure 7: Model for the role of conductor proteins in PAS organization.

Similar content being viewed by others

References

  1. Deter, R. L., Baudhuin, P. & De Duve, C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J. Cell Biol. 35, C11–C16 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Klionsky, D. J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Rev. Mol. Cell Biol. 8, 931–937 (2007).

    Article  CAS  Google Scholar 

  3. Mizushima, N. Autophagy: process and function. Genes Dev. 21, 2861–2873 (2007).

    CAS  PubMed  Google Scholar 

  4. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takeshige, K., Baba, M., Tsuboi, S., Noda, T. & Ohsumi, Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J. Cell Biol. 119, 301–311 (1992). Reports the discovery of autophagy in yeast.

    CAS  PubMed  Google Scholar 

  6. Baba, M., Takeshige, K., Baba, N. & Ohsumi, Y. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J. Cell Biol. 124, 903–913 (1994).

    CAS  PubMed  Google Scholar 

  7. Baba, M., Osumi, M. & Ohsumi, Y. Analysis of the membrane structures involved in autophagy in yeast by freeze-replica method. Cell Struct. Funct. 20, 465–471 (1995). References 6 and 7 report the detailed morphological characterization of yeast autophagy.

    CAS  PubMed  Google Scholar 

  8. Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169–174 (1993). First report on autophagy-defective yeast mutants.

    CAS  PubMed  Google Scholar 

  9. Baba, M., Osumi, M., Scott, S. V., Klionsky, D. J. & Ohsumi, Y. Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J. Cell Biol. 139, 1687–1695 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Harding, T. M., Hefner-Gravink, A., Thumm, M. & Klionsky, D. J. Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. J. Biol. Chem. 271, 17621–17624 (1996).

    CAS  PubMed  Google Scholar 

  11. Thumm, M. et al. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 349, 275–280 (1994).

    CAS  PubMed  Google Scholar 

  12. Yuan, W., Tuttle, D. L., Shi, Y. J., Ralph, G. S. & Dunn, W. A. Jr. Glucose-induced microautophagy in Pichia pastoris requires the α-subunit of phosphofructokinase. J. Cell Sci. 110, 1935–1945 (1997).

    CAS  PubMed  Google Scholar 

  13. Sakai, Y., Koller, A., Rangell, L. K., Keller, G. A. & Subramani, S. Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J. Cell Biol. 141, 625–636 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mukaiyama, H. et al. Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells 7, 75–90 (2002).

    CAS  PubMed  Google Scholar 

  15. Titorenko, V. I., Keizer, I., Harder, W. & Veenhuis, M. Isolation and characterization of mutants impaired in the selective degradation of peroxisomes in the yeast Hansenula polymorpha. J. Bacteriol. 177, 357–363 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Klionsky, D. J. et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5, 539–545 (2003).

    CAS  PubMed  Google Scholar 

  17. Kamada, Y. et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150, 1507–1513 (2000). Shows dephosphorylation of Atg13 in response to nutrient starvation, which allows Atg13 to interact with Atg1, leading to stimulation of the kinase activity of Atg1.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152, 519–530 (2001). Identifies two distinct PtdIns 3-kinase complexes, one of which contains Atg14 as a specific component and is required for autophagy.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 (1998).

    CAS  PubMed  Google Scholar 

  20. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000). References 19 and 20 report the discovery of two ubiquitin-like protein conjugates required for autophagy, Atg12–Atg5 and Atg82013 PE, respectively.

    CAS  PubMed  Google Scholar 

  21. Shintani, T., Suzuki, K., Kamada, Y., Noda, T. & Ohsumi, Y. Apg2p functions in autophagosome formation on the perivacuolar structure. J. Biol. Chem. 276, 30452–30460 (2001).

    CAS  PubMed  Google Scholar 

  22. Wang, C. W. et al. Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J. Biol. Chem. 276, 30442–30451 (2001).

    CAS  PubMed  Google Scholar 

  23. Noda, T. et al. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J. Cell Biol. 148, 465–480 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Barth, H., Meiling-Wesse, K., Epple, U. D. & Thumm, M. Autophagy and the cytoplasm to vacuole targeting pathway both require Aut10p. FEBS Lett. 508, 23–28 (2001).

    CAS  PubMed  Google Scholar 

  25. Kirisako, T. et al. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J. Cell Biol. 147, 435–446 (1999). Reports the identification of Atg8 as a marker protein for the autophagosome and the isolation membrane.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Suzuki, K. et al. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20, 5971–5981 (2001). Reports the identification of the PAS.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Suzuki, K., Kubota, Y., Sekito, T. & Ohsumi, Y. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12, 209–218 (2007). Reveals that Atg proteins organize the PAS in a hierarchical manner.

    CAS  PubMed  Google Scholar 

  28. Cao, Y., Cheong, H., Song, H. & Klionsky, D. J. In vivo reconstitution of autophagy in Saccharomyces cerevisiae. J. Cell Biol. 182, 703–713 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Noda, T. & Ohsumi, Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 3963–3966 (1998).

    CAS  PubMed  Google Scholar 

  30. Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    CAS  PubMed  Google Scholar 

  31. Yorimitsu, T., Zaman, S., Broach, J. R. & Klionsky, D. J. Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 18, 4180–4189 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Budovskaya, Y. V., Stephan, J. S., Reggiori, F., Klionsky, D. J. & Herman, P. K. The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J. Biol. Chem. 279, 20663–20671 (2004).

    CAS  PubMed  Google Scholar 

  33. Matsuura, A., Tsukada, M., Wada, Y. & Ohsumi, Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192, 245–250 (1997).

    CAS  PubMed  Google Scholar 

  34. Funakoshi, T., Matsuura, A., Noda, T. & Ohsumi, Y. Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene 192, 207–213 (1997).

    CAS  PubMed  Google Scholar 

  35. Kabeya, Y. et al. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol. Biol. Cell 16, 2544–2553 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kawamata, T. et al. Characterization of a novel autophagy-specific gene, ATG29. Biochem. Biophys. Res. Commun. 338, 1884–1889 (2005).

    CAS  PubMed  Google Scholar 

  37. Kabeya, Y., Kawamata, T., Suzuki, K. & Ohsumi, Y. Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 356, 405–410 (2007).

    CAS  PubMed  Google Scholar 

  38. Kawamata, T., Kamada, Y., Kabeya, Y., Sekito, T. & Ohsumi, Y. Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol. Biol. Cell 19, 2039–2050 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheong, H., Nair, U., Geng, J. & Klionsky, D. J. The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 19, 668–681 (2008). References 38 and 39 show that the Atg1 kinase and its regulators collaboratively function to organize, or reorganize, the PAS in response to nutrient starvation.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheong, H. et al. Atg17 regulates the magnitude of the autophagic response. Mol. Biol. Cell 16, 3438–3453 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sekito, T., Kawamata, T., Ichikawa, R., Suzuki, K. & Ohsumi, Y. Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells 14, 525–538 (2009).

    CAS  PubMed  Google Scholar 

  42. Klionsky, D. J. The molecular machinery of autophagy: unanswered questions. J. Cell Sci. 118, 7–18 (2005).

    CAS  PubMed  Google Scholar 

  43. Hara, T. et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181, 497–510 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chan, E. Y., Longatti, A., McKnight, N. C. & Tooze, S. A. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol. Cell. Biol. 29, 157–171 (2009).

    CAS  PubMed  Google Scholar 

  45. Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang, Y. Y. & Neufeld, T. P. An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation. Mol. Biol. Cell 20, 2004–2014 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jung . et al. ULK–Atg13–FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992–2003 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ganley . et al. ULK1˙ATG13˙FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297–12305.

    CAS  Google Scholar 

  49. Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J. & Codogno, P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275, 992–998 (2000).

    CAS  PubMed  Google Scholar 

  50. Obara, K., Sekito, T., Niimi, K. & Ohsumi, Y. The Atg18–Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J. Biol. Chem. 283, 23972–23980 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88–91 (1993).

    CAS  PubMed  Google Scholar 

  52. Obara, K., Sekito, T. & Ohsumi, Y. Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol. Biol. Cell 17, 1527–1539 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dove, S. K. et al. Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J. 23, 1922–1933 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Stromhaug, P. E., Reggiori, F., Guan, J., Wang, C. W. & Klionsky, D. J. Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol. Biol. Cell 15, 3553–3566 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Efe, J. A., Botelho, R. J. & Emr, S. D. Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate. Mol. Biol. Cell 18, 4232–4244 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Obara, K., Noda, T., Niimi, K. & Ohsumi, Y. Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in S. cerevisiae. Genes Cells, 13, 537–547 (2008).

    CAS  PubMed  Google Scholar 

  57. Reggiori, F., Tucker, K. A., Stromhaug, P. E. & Klionsky, D. J. The Atg1–Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev. Cell 6, 79–90 (2004).

    CAS  PubMed  Google Scholar 

  58. Young, A. R. et al. Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J. Cell Sci. 119, 3888–3900 (2006).

    CAS  PubMed  Google Scholar 

  59. Xie, Z. & Klionsky, D. J. Autophagosome formation: core machinery and adaptations. Nature Cell Biol. 9, 1102–1109 (2007).

    CAS  PubMed  Google Scholar 

  60. He, C., Baba, M., Cao, Y. & Klionsky, D. J. Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol. Biol. Cell 19, 5506–5516 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mizushima, N. et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol. 152, 657–668 (2001). Demonstration of Atg5 localization on the isolation membrane and real-time visualization of the process of autophagosome formation in living cells using GFP-tagged Atg5.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kirisako, T. et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J. Cell Biol. 151, 263–276 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, J., Huang, W. P. & Klionsky, D. J. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J. Cell Biol. 152, 51–64 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165–178 (2007). Shows that Atg8–PE causes aggregation and hemifusion of liposomes in vitro and that these phenomena represent the function of Atg8 in autophagosome formation in vivo.

    Google Scholar 

  65. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yoshimoto, K. et al. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967–2983 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151–175 (2008).

    CAS  PubMed  Google Scholar 

  68. Ichimura, Y. et al. In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J. Biol. Chem. 279, 40584–40592 (2004).

    CAS  PubMed  Google Scholar 

  69. Xie, Z., Nair, U. & Klionsky, D. J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19, 3290–3298 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fujita, N. et al. An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure. Mol. Biol. Cell 19, 4651–4659 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sou, Y. S. et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol. Biol. Cell 19, 4762–4775 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mizushima, N., Noda, T. & Ohsumi, Y. Apg16p is required for the function of the Apg12p–Apg5p conjugate in the yeast autophagy pathway. EMBO J. 18, 3888–3896 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kuma, A., Mizushima, N., Ishihara, N. & Ohsumi, Y. Formation of the approximately 350-kDa Apg12–Apg5˙Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem. 277, 18619–18625 (2002).

    CAS  PubMed  Google Scholar 

  74. Mizushima, N. et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12–Apg5 conjugate. J. Cell Sci. 116, 1679–1688 (2003).

    CAS  PubMed  Google Scholar 

  75. Geng, J., Baba, M., Nair, U. & Klionsky, D. J. Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy. J. Cell Biol. 182, 129–140 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hanada, T. & Ohsumi, Y. Structure–function relationship of Atg12, a ubiquitin-like modifier essential for autophagy. Autophagy 1, 110–118 (2005).

    CAS  PubMed  Google Scholar 

  77. Hanada, T. et al. The Atg12–Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298–37302 (2007). Shows that the ubiquitin-like protein conjugate Atg12–Atg5 directly stimulates the conjugation reaction of the other ubiquitin-like protein Atg8 to PE.

    CAS  PubMed  Google Scholar 

  78. Fujioka, Y. et al. In vitro reconstitution of plant Atg8 and Atg12 conjugation systems essential for autophagy. J. Biol. Chem. 283, 1921–1928 (2008).

    CAS  PubMed  Google Scholar 

  79. Sou, Y. S., Tanida, I., Komatsu, M., Ueno, T. & Kominami, E. Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J. Biol. Chem. 281, 3017–3024 (2006).

    CAS  Google Scholar 

  80. Oh-oka, K., Nakatogawa, H. & Ohsumi, Y. Physiological pH and acidic phospholipids contribute to substrate specificity in lipidation of Atg8. J. Biol. Chem. 283, 21847–21852 (2008).

    CAS  PubMed  Google Scholar 

  81. Fujita, N. et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092–2100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kim, J., Scott, S. V., Oda, M. N. & Klionsky, D. J. Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway. J. Cell Biol. 137, 609–618 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Scott, S. V., Guan, J., Hutchins, M. U., Kim, J. & Klionsky, D. J. Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol. Cell 7, 1131–1141 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Shintani, T., Huang, W. P., Stromhaug, P. E. & Klionsky, D. J. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell 3, 825–837 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chang, C. Y. & Huang, W. P. Atg19 mediates a dual interaction cargo sorting mechanism in selective autophagy. Mol. Biol. Cell 18, 919–929 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Noda, N. N. et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13, 1211–1218 (2008).

    CAS  PubMed  Google Scholar 

  87. Bjorkoy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

    PubMed  PubMed Central  Google Scholar 

  88. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    CAS  PubMed  Google Scholar 

  89. Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149–1163 (2007).

    CAS  PubMed  Google Scholar 

  90. Shvets, E., Fass, E., Scherz-Shouval, R. & Elazar, Z. The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J. Cell Sci. 121, 2685–2695 (2008).

    CAS  PubMed  Google Scholar 

  91. Ichimura, Y. et al. Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem. 283, 22847–22857 (2008). References 86–91 establish the molecular framework for p62-mediated degradation of disease-related protein inclusions through autophagy and its pathological significance.

    CAS  PubMed  Google Scholar 

  92. Nice, D. C., Sato, T. K., Stromhaug, P. E., Emr, S. D. & Klionsky, D. J. Cooperative binding of the cytoplasm to vacuole targeting pathway proteins, Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-autophagosomal structure is required for selective autophagy. J. Biol. Chem. 277, 30198–30207 (2002).

    CAS  PubMed  Google Scholar 

  93. Kim, J. et al. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J. Cell Biol. 153, 381–396 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Shintani, T. & Klionsky, D. J. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J. Biol. Chem. 279, 29889–29894 (2004). Shows that PAS organization under nutrient-rich conditions, and thus Cvt vesicle formation, largely depends on the existence of the cargo molecule Ape1 in addition to the Cvt-specific proteins Atg11 and Atg19.

    CAS  PubMed  Google Scholar 

  95. Yorimitsu, T. & Klionsky, D. J. Atg11 links cargo to the vesicle-forming machinery in the cytoplasm to vacuole targeting pathway. Mol. Biol. Cell 16, 1593–1605 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Farre, J. C., Manjithaya, R., Mathewson, R. D. & Subramani, S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell 14, 365–376 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kanki, T. & Klionsky, D. J. Mitophagy in yeast occurs through a selective mechanism. J. Biol. Chem. 283, 32386–32393 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Otto, G. P., Wu, M. Y., Kazgan, N., Anderson, O. R. & Kessin, R. H. Dictyostelium macroautophagy mutants vary in the severity of their developmental defects. J. Biol. Chem. 279, 15621–15629 (2004).

    CAS  PubMed  Google Scholar 

  99. Fujiki, Y. et al. An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol. 143, 1132–1139 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genet. 36, 585–595 (2004).

    CAS  PubMed  Google Scholar 

  101. Kageyama, T., Suzuki, K. & Ohsumi, Y. Lap3 is a selective target of autophagy in yeast, Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 378, 551–557 (2009).

    CAS  PubMed  Google Scholar 

  102. Onodera, J. & Ohsumi, Y. Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae. J. Biol. Chem. 279, 16071–16076 (2004).

    CAS  PubMed  Google Scholar 

  103. Kraft, C., Deplazes, A., Sohrmann, M. & Peter, M. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nature Cell Biol. 10, 602–610 (2008). References 102 and 103 report that the cytoplasmic protein Ald6 and ribosomal proteins, respectively, are preferentially degraded in yeast by mechanisms that seem to be distinct from those previously suggested for other selective types of autophagy.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Ohsumi.

Glossary

Macroautophagy

The sequestration of cytosolic components in autophagosomes and their subsequent degradation when autophagosomes fuse with lysosomes.

Autophagosome

A double membrane-bound vesicle that is formed during autophagy. The vesicle sequesters materials to be degraded and delivers them to the lysosome in mammals or the vacuole in yeasts and plants.

Ubiquitin–26S proteasome system

The system that degrades selected proteins that are first marked with ubiquitin chains and then degraded by the multi-catalytic proteinase complex, the proteasome.

Autophagic body

The inner membrane-bound structure of the autophagosome that is released into the vacuolar lumen by fusion of the autophagosomal outer membrane with the vacuolar membrane.

Vacuolar protein sorting

A pathway that mediates the selective transport of a subset of proteins from the late Golgi compartment to the vacuole through the endosome.

E1

An enzyme that activates ubiquitin and ubiquitin-like proteins using ATP and transfers them to E2 enzymes.

E2

An enzyme that receives ubiquitin and ubiquitin-like proteins from E1 enzymes and conjugates them to target molecules.

Deconjugation enzyme

An enzyme that cleaves the isopeptide bond (the amide bond between autophagyrelated protein 8 (Atg8) and phosphatidylethanolamine) formed in ubiquitin and ubiquitin-like protein conjugates.

Hemifusion

Fusion between outer leaflets of membranes while inner leaflets remain intact. This is regarded as a common intermediate state in biological membrane fusion events.

E3

An enzyme that stimulates the conjugation reaction by E2 enzymes and is also involved in the selection of target molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakatogawa, H., Suzuki, K., Kamada, Y. et al. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10, 458–467 (2009). https://doi.org/10.1038/nrm2708

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2708

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing