Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The FERM domain: organizing the structure and function of FAK

Key Points

  • Focal adhesion kinase (FAK) is a scaffold and kinase protein that binds to itself and cellular partners through its four-point-one, ezrin, radixin, moesin (FERM) domain. Recent data on FAK structure and the sequence of activation have been deduced, largely from crystallographic and biosensor studies. These data have revealed that the activation sequence involves the release of FERM–kinase interactions, subsequent conformational changes, protein binding and key phosphorylation events at specific subcellular locations.

  • The FERM domain of FAK binds to cellular protein and lipid partners, and these are variously involved in catalytic activation and/or recruitment of FAK into macromolecular complexes in cells — predominantly at cortical adhesion structures, but also in the nucleus.

  • Among cytoplasmic FAK FERM domain binding partners recognized thus far are: phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2; generated by the action of phosphatidylinositol-4-phosphate 5-kinase type-1γ (PtdIns(4)P5KIγ)), which binds to the FERM domain and may trigger the activation cascade, perhaps along with molecular clustering, actin-related protein 3 (ARP3), receptor for activated kinase C 1 (RACK1), epidermal growth factor receptor (EGFR), c-Met, ezrin, epithelial and endothelial tyrosine kinase (ETK; also known as BMX), possibly insulin receptor substrate 1 (IRS1), JNK/SAPK-associated protein 1 (JSAP1; also known as JIP3) , and the β subunits of integrin cell–extracellular matrix receptors.

  • FAK is required for optimal signalling from the tyrosine kinase receptors EGFR and c-Met, and modulates cortical actin and nascent adhesions by binding to the ARP2/3 complex and the molecular scaffold RACK1. The FERM domain is implicated in these important FAK functions.

  • The FERM domains of FAK and PYK2 also bind to the tumour suppressor protein p53 and its regulator MDM2 in the nucleus on receipt of stress signals such as cell detachment. p53 degradation and survival can be promoted through these FERM-mediated interactions.

  • The findings above imply that the FAK FERM domain may control and coordinate cellular responses at the cell cortex and in the nucleus, potentially linking regulation of cell migration with the life and death choices that cells have to make. We speculate that the FERM domain may act as a 'sensor' and 'shuttle' of information and events occurring in and between distinct subcellular locations. From data in the literature on other FERM domain-containing proteins (FDCPs) and from sequence gazing, we speculate that a 'cortex to nuclear' information shuttle may be a more general function of FERM domains in biology, which could be exploited for therapy.

Abstract

Focal adhesion kinase (FAK) is a scaffold and tyrosine kinase protein that binds to itself and cellular partners through its four-point-one, ezrin, radixin, moesin (FERM) domain. Recent structural work reveals that regulatory protein partners convert auto-inhibited FAK into its active state by binding to its FERM domain. Further, the identity of FAK FERM domain-interacting proteins yields clues as to how FAK coordinates diverse cellular responses, including cell adhesion, polarization, migration, survival and death, and suggests that FERM domains might mediate information transfer between the cell cortex and nucleus. Importantly, the FAK FERM domain might act as a paradigm for the actions of other FERM domain-containing proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenogram of FERM domains.
Figure 2: Model of FAK activation.
Figure 3: Working models for integrin mediated FAK activation.
Figure 4: FAK signalling in subcellular space.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Chishti, A. H. et al. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem. Sci. 23, 281–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Niewohner, J., Weber, I., Maniak, M., Müller-Taubenberger, A. & Gerisch, G. Talin-null cells of Dictyostelium are strongly defective in adhesion to particle and substrate surfaces and slightly impaired in cytokinesis. J. Cell Biol. 138, 349–361 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Octtaviani, E., Effler, J. C. & Robinson, D. N. Enlazin, a natural fusion of two classes of canonical cytoskeletal proteins, contributes to cytokinesis dynamics. Mol. Biol. Cell 17, 5275–5286 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Patel, H. et al. The multi-FERM-domain-containing protein FrmA is required for turnover of paxillin-adhesion sites during cell migration of Dictyostelium. J. Cell Sci. 121, 1159–1164 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Tsujioka, M., Machesky, L. M., Cole, S. L., Yahata, K. & Inouye, K. A unique talin homologue with a villin headpiece-like domain is required for multicellular morphogenesis in Dictyostelium. Curr. Biol. 9, 389–392 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Tuxworth, R. I. et al. A role for myosin VII in dynamic cell adhesion. Curr. Biol. 11, 318–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Pearson, M. A., Reczek, D., Bretscher, A. & Karplus, P. A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Tepass, U. FERM proteins in animal morphogenesis. Curr. Opin. Genet. Dev. 19, 357–367 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Ceccarelli, D. F., Song, H. K., Poy, F., Schaller, M. D. & Eck, M. J. Crystal structure of the FERM domain of focal adhesion kinase. J. Biol. Chem. 281, 252–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Lietha, D. et al. Structural basis for the autoinhibition of focal adhesion kinase. Cell 129, 1177–1187 (2007). This paper defines the structural determinants of FAK auto-inhibition and the sequence leading to activation, showing that the N-terminal FERM domain directly binds the kinase domain and blocks access to the catalytic site, thus protecting the activation loop from Src-mediated phosphorylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lim, S. T., Mikolon, D., Stupack, D. G. & Schlaepfer, D. D. FERM control of FAK function: implications for cancer therapy. Cell Cycle 7, 2306–2314 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Luo, M. & Guan, J. L. Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. Cancer Lett. 289, 127–139 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. van Nimwegen, M. J. & van de Water, B. Focal adhesion kinase: a potential target in cancer therapy. Biochem. Pharmacol. 73, 597–609 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, J. & Guan, J. L. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev. 28, 35–49 (2009).

    Article  PubMed  Google Scholar 

  15. Luo, M. et al. Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res. 69, 466–474 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ossovskaya, V., Lim, S. T., Ota, N., Schlaepfer, D. D. & Ilic, D. FAK nuclear export signal sequences. FEBS Lett. 582, 2402–2406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, S. Y. & Chen, H. C. Direct interaction of focal adhesion kinase (FAK) with Met is required for FAK to promote hepatocyte growth factor-induced cell invasion. Mol. Cell. Biol. 26, 5155–5167 (2006). This paper defines the binding sites for c-Met (the receptor for HGF) in the FAK FERM domain and shows that the c-Met–FAK interaction promotes FAK activation and HGF-induced cell motility and invasion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garces, C. A., Kurenova, E. V., Golubovskaya, V. M. & Cance, W. G. Vascular endothelial growth factor receptor-3 and focal adhesion kinase bind and suppress apoptosis in breast cancer cells. Cancer Res. 66, 1446–1454 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Sieg, D. J. et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nature Cell Biol. 2, 249–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. de Hoog, C. L., Foster, L. J. & Mann, M. RNA and RNA binding proteins participate in early stages of cell spreading through spreading initiation centers. Cell 117, 649–662 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Serrels, B. et al. Focal adhesion kinase controls actin assembly via a FERM-mediated interaction with the Arp2/3 complex. Nature Cell Biol. 9, 1046–1056 (2007). This paper demonstrates the binding between the FAK FERM domain and the ARP3 subunit of the ARP2/3 complex in a manner that depends on FAK auto-phosphorylation and, further, shows the importance of this complex in actin and adhesion regulation.

    Article  CAS  PubMed  Google Scholar 

  22. Hildebrand, J. D., Schaller, M. D. & Parsons, J. T. Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions. J. Cell Biol. 123, 993–1005 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Ashton, G. et al. Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signalling. Dev. Cell 19, 259–269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cooper, L. A., Shen, T. L. & Guan, J. L. Regulation of focal adhesion kinase by its amino-terminal domain through an autoinhibitory interaction. Mol. Cell. Biol. 23, 8030–8041 (2003). This was one of the key early papers showing that the N terminus of FAK could interact with its kinase domain with consequences for catalytic activity, suggesting that interactions with the FAK N terminus are important for regulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jacamo, R. O. & Rozengurt, E. A truncated FAK lacking the FERM domain displays high catalytic activity but retains responsiveness to adhesion-mediated signals. Biochem. Biophys. Res. Commun. 334, 1299–1304 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Cai, X. et al. Spatial and temporal regulation of focal adhesion kinase activity in living cells. Mol. Cell. Biol. 28, 201–214 (2008). This paper describes a biosensor for FAK conformational activation that is used to show localized FAK activity that can be regulated by acidic phospholipids, such as PtdIns(4,5)P 2.

    Article  CAS  PubMed  Google Scholar 

  27. Hamada, K., Shimizu, T., Matsui, T., Tsukita, S. & Hakoshima, T. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J. 19, 4449–4462 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Papusheva, E. et al. Dynamic conformational changes in the FERM domain of FAK are involved in focal-adhesion behavior during cell spreading and motility. J. Cell Sci. 122, 656–666 (2009). This paper also describes generation of a FAK biosensor, and shows that activation is enriched in growing or sliding focal adhesions in motile cells.

    Article  CAS  PubMed  Google Scholar 

  29. Boggon, T. J. & Eck, M. J. Structure and regulation of Src family kinases. Oncogene 23, 7918–7927 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Sicheri, F. & Kuriyan, J. Structures of Src-family tyrosine kinases. Curr. Opin. Struct. Biol. 7, 777–785 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Au-Yeung, B. B. et al. The structure, regulation, and function of ZAP-70. Immunol. Rev. 228, 41–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Deindl, S. et al. Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Cell 129, 735–746 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Ling, K., Schill, N. J., Wagoner, M. P., Sun, Y. & Anderson, R. A. Movin' on up: the role of PtdIns(4,5)P2 in cell migration. Trends Cell Biol. 16, 276–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Heck, J. N. et al. A conspicuous connection: structure defines function for the phosphatidylinositol-phosphate kinase family. Crit. Rev. Biochem. Mol. Biol. 42, 15–39 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Ling, K., Doughman, R. L., Firestone, A. J., Bunce, M. W. & Anderson, R. A. Type Iγ phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420, 89–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Di Paolo, G. et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γ by the FERM domain of talin. Nature 420, 85–89 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Ling, K. et al. Tyrosine phosphorylation of type Iγ phosphatidylinositol phosphate kinase by Src regulates an integrin-talin switch. J. Cell Biol. 163, 1339–1349 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de Pereda, J. M. et al. Structural basis for phosphatidylinositol phosphate kinase type Iγ binding to talin at focal adhesions. J. Biol. Chem. 280, 8381–8386 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Kong, X., Wang, X., Misra, S. & Qin, J. Structural basis for the phosphorylation-regulated focal adhesion targeting of type Iγ phosphatidylinositol phosphate kinase (PtdIns(4)P5KIγ) by talin. J. Mol. Biol. 359, 47–54 (2006). This paper describes the structural basis for phosphorylation-dependent control of targeting of PtdIns(4)P5KIγ (the PtdIns(4,5)P 2 -producing enzyme) to focal adhesions by association with talin 1.

    Article  CAS  PubMed  Google Scholar 

  40. Sun, Y., Ling, K., Wagoner, M. P. & Anderson, R. A. Type Iγ phosphatidylinositol phosphate kinase is required for EGF-stimulated directional cell migration. J. Cell Biol. 178, 297–308 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, L. M., Bailey, D. & Fernandez-Valle, C. Association of β1 integrin with focal adhesion kinase and paxillin in differentiating Schwann cells. J. Neurosci. 20, 3776–3784 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schaller, M. D., Otey, C. A., Hildebrand, J. D. & Parsons, J. T. Focal adhesion kinase and paxillin bind to peptides mimicking β integrin cytoplasmic domains. J. Cell Biol. 130, 1181–1187 (1995). This paper shows that FAK can bind to peptides from the cytoplasmic tail of β1 integrin in vitro , which would be consistent with a possible role for integrin clustering in the regulation of FAK activity.

    Article  CAS  PubMed  Google Scholar 

  43. Abbi, S. et al. Regulation of focal adhesion kinase by a novel protein inhibitor FIP200. Mol. Biol. Cell 13, 3178–3191 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carter, N., Nakamoto, T., Hirai, H. & Hunter, T. EphrinA1-induced cytoskeletal re-organization requires FAK and p130cas. Nature Cell Biol. 4, 565–573 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Miao, H., Burnett, E., Kinch, M., Simon, E. & Wang, B. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nature Cell Biol. 2, 62–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Carlucci, A. et al. Protein-tyrosine phosphatase PTPD1 regulates focal adhesion kinase autophosphorylation and cell migration. J. Biol. Chem. 283, 10919–10929 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nature Rev. Mol. Cell Biol. 7, 131–142 (2006).

    Article  CAS  Google Scholar 

  48. Avizienyte, E. & Frame, M. C. Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr. Opin. Cell Biol. 17, 542–547 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Zhai, J. et al. Direct interaction of focal adhesion kinase with p190RhoGEF. J. Biol. Chem. 278, 24865–24873 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Hildebrand, J. D., Taylor, J. M. & Parsons, J. T. An SH3 domain-containing GTPase-activating protein for Rho and Cdc42 associates with focal adhesion kinase. Mol. Cell. Biol. 16, 3169–3178 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, Y., Loijens, J. C., Martin, K. H., Karginov, A. V. & Parsons, J. T. The association of ASAP1, an ADP ribosylation factor-GTPase activating protein, with focal adhesion kinase contributes to the process of focal adhesion assembly. Mol. Biol. Cell 13, 2147–2156 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, X., Suetsugu, S., Cooper, L. A., Takenawa, T. & Guan, J. L. Focal adhesion kinase regulation of N-WASP subcellular localization and function. J. Biol. Chem. 279, 9565–9576 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Corsi, J. M. et al. Autophosphorylation-independent and -dependent functions of focal adhesion kinase during development. J. Biol. Chem. 284, 34769–34776 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lim, S. T. et al. Knock-in mutation reveals an essential role for focal adhesion kinase activity in blood vessel morphogenesis and cell motility-polarity but not cell proliferation. J. Biol. Chem. 285, 21526–21536 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cohen, L. A. & Guan, J. L. Residues within the first subdomain of the FERM-like domain in focal adhesion kinase are important in its regulation. J. Biol. Chem. 280, 8197–8207 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Serrels, B. et al. A complex between FAK, RACK1 and PDE4D5 controls spreading initiation and cancer cell polarity. Curr. Biol. 20, 1086–1092 (2010). This paper describes a complex between the FAK FERM domain and the molecular scaffold protein RACK1. The complex serves to recruit the cAMP phosphodiesterase PDE4D5 and control nascent adhesion assembly and cancer cell polarity.

    Article  CAS  PubMed  Google Scholar 

  57. McLean, G. W. et al. Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression. Genes Dev. 18, 2998–3003 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lahlou, H. et al. Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proc. Natl Acad. Sci. USA 104, 20302–20307 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kiely, P. A. et al. Phosphorylation of RACK1 on tyrosine 52 by c-Abl is required for insulin-like growth factor I-mediated regulation of focal adhesion kinase. J. Biol. Chem. 284, 20263–20274 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Long, W. et al. SRC-3Δ4 mediates the interaction of EGFR with FAK to promote cell migration. Mol. Cell 37, 321–332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen, R. et al. Regulation of the PH-domain-containing tyrosine kinase ETK by focal adhesion kinase through the FERM domain. Nature Cell Biol. 3, 439–444 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Frisch, S. M. & Ruoslahti, E. Integrins and anoikis. Curr. Opin. Cell Biol. 9, 701–706 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Reddig, P. J. & Juliano, R. L. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev. 24, 425–439 (2005).

    Article  PubMed  Google Scholar 

  64. Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Ilic, D. et al. Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J. Cell Biol. 143, 547–560 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lim, S. T. et al. Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation. Mol. Cell 29, 9–22 (2008). This paper demonstrates a kinase-independent nuclear function for FAK, namely the promotion of cell survival by regulation of the degradation of p53 through direct binding of the FERM domain to p53 and MDM2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Golubovskaya, V. M., Finch, R., Zheng, M., Kurenova, E. V. & Cance, W. G. The 7-amino-acid site in the proline-rich region of the N-terminal domain of p53 is involved in the interaction with FAK and is critical for p53 functioning. Biochem. J. 411, 151–160 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Park, A. Y., Shen, T. L., Chien, S. & Guan, J. L. Role of focal adhesion kinase Ser-732 phosphorylation in centrosome function during mitosis. J. Biol. Chem. 284, 9418–9425 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dong, J. M., Lau, L. S., Ng, Y. W., Lim, L. & Manser, E. Paxillin nuclear-cytoplasmic localization is regulated by phosphorylation of the LD4 motif: evidence that nuclear paxillin promotes cell proliferation. Biochem. J. 418, 173–184 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Ogawa, M., Hiraoka, Y. & Aiso, S. Nuclear translocation of Xenopus laevis paxillin. Biochem. Biophys. Res. Commun. 304, 676–683 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, Y. & Gilmore, T. D. Zyxin and paxillin proteins: focal adhesion plaque LIM domain proteins go nuclear. Biochim. Biophys. Acta 1593, 115–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Bretscher, A., Edwards, K. & Fehon, R. G. ERM proteins and merlin: integrators at the cell cortex. Nature Rev. Mol. Cell Biol. 3, 586–599 (2002).

    Article  CAS  Google Scholar 

  73. Diakowski, W., Grzybek, M. & Sikorski, A. F. Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily. Folia Histochem. Cytobiol 44, 231–248 (2006).

    CAS  PubMed  Google Scholar 

  74. Girault, J. A., Labesse, G., Mornon, J. P. & Callebaut, I. The N termini of FAK and JAKs contain divergent band 4.1 domains. Trends Biochem. Sci. 24, 54–57 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Dunty, J. M. et al. FERM domain interaction promotes FAK signaling. Mol. Cell. Biol. 24, 5353–5368 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dunty, J. M. & Schaller, M. D. The N termini of focal adhesion kinase family members regulate substrate phosphorylation, localization, and cell morphology. J. Biol. Chem. 277, 45644–45654 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Kohno, T., Matsuda, E., Sasaki, H. & Sasaki, T. Protein-tyrosine kinase CAKb/PYK2 is activated by binding Ca2+/calmodulin to FERM F2 a2 helix and thus forming its dimer. Biochem. J. 410, 513–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Lim, S. T. et al. PYK2 inhibition of p53 as an adaptive and intrinsic mechanism facilitating cell proliferation and survival. J. Biol. Chem. 285, 1743–1753 (2010). This paper shows that the FAK homologue PYK2 also functions in the nucleus to limit p53 levels and promote cell proliferation and survival.

    Article  CAS  PubMed  Google Scholar 

  79. Fais, S., De Milito, A. & Lozupone, F. The role of FAS to ezrin association in FAS-mediated apoptosis. Apoptosis 10, 941–947 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Liu, R. et al. Sisyphus, the Drosophila myosin XV homolog, traffics within filopodia transporting key sensory and adhesion cargos. Development 135, 53–63 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Weber, K. L., Sokac, A. M., Berg, J. S., Cheney, R. E. & Bement, W. M. A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431, 325–329 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Woolner, S., O'Brien, L. L., Wiese, C. & Bement, W. M. Myosin-10 and actin filaments are essential for mitotic spindle function. J. Cell Biol. 182, 77–88 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kunda, P., Pelling, A. E., Liu, T. & Baum, B. Moesin controls cortical rigidity, cell rounding, and spindle morphogenesis during mitosis. Curr. Biol. 18, 91–101 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Carreno, S. et al. Moesin and its activating kinase Slik are required for cortical stability and microtubule organization in mitotic cells. J. Cell Biol. 180, 739–746 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, W. et al. Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4DCAF1 in the nucleus. Cell 140, 477–490 (2010). This paper shows that, in stark contrast to FAK, the FDCP merlin accumulates in the nucleus in its closed, growth-inhibitory form and binds to the E3 ubiquitin ligase CRL4DCAF1, suppressing its activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Malinin, N. L., Plow, E. F. & Byzova, T. V. Kindlins in FERM adhesion. Blood 115, 4011–4017 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. McDowall, A. et al. Two mutations in the KINDLIN3 gene of a new leukocyte adhesion deficiency III patient reveal distinct effects on leukocyte function in vitro. Blood 115, 4834–4842 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Meves, A., Stremmel, C., Gottschalk, K. & Fassler, R. The Kindlin protein family: new members to the club of focal adhesion proteins. Trends Cell Biol. 19, 504–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Ussar, S. et al. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet. 4, e1000289 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Wu, C. Migfilin and its binding partners: from cell biology to human diseases. J. Cell Sci. 118, 659–664 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Lai-Cheong, J. E., Ussar, S., Arita, K., Hart, I. R. & McGrath, J. A. Colocalization of kindlin-1, kindlin-2, and migfilin at keratinocyte focal adhesion and relevance to the pathophysiology of Kindler syndrome. J. Invest. Dermatol. 128, 2156–2165 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kato, K. et al. Expression of the mitogen-inducible gene-2 (mig-2) is elevated in human uterine leiomyomas but not in leiomyosarcomas. Hum. Pathol. 35, 55–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Roberts, W. G. et al. Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res. 68, 1935–1944 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Walsh, C. et al. Oral delivery of PND-1186 FAK inhibitor decreases tumor growth and spontaneous breast to lung metastasis in pre-clinical models. Cancer Biol. Ther. 9, 778–790 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Siesser, P. M. & Hanks, S. K. The signaling and biological implications of FAK overexpression in cancer. Clin. Cancer Res. 12, 3233–3237 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Ng, E. W. & Adamis, A. P. Anti-VEGF aptamer (pegaptanib) therapy for ocular vascular diseases. Ann. N. Y Acad. Sci. 1082, 151–171 (2006). This paper describes pegaptanib, a 28-nucleotide RNA aptamer, which targets VEGF and has now been approved for the treatment of age-related macular degeneration, providing proof-of-principal of the value of nucleic acid aptamers in the treatment of disease.

    Article  CAS  PubMed  Google Scholar 

  97. Ng, E. W. et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nature Rev. Drug Discov. 5, 123–132 (2006).

    Article  CAS  Google Scholar 

  98. Lipinski, C. A. et al. Critical role of the FERM domain in PYK2 stimulated glioma cell migration. Biochem. Biophys. Res. Commun. 349, 939–947 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Meurice, N. et al. Structural conservation in band 4.1, ezrin, radixin, moesin (FERM) domains as a guide to identify inhibitors of the proline-rich tyrosine kinase 2. J. Med. Chem. 53, 669–677 (2010). This paper describes the use of site-directed mutagenesis and molecular modelling to design inhibitors that bind to the PYK2 FERM domain, and demonstrates that these are effective in suppressing PYK2-FERM-dependent glioma migration.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Golubovskaya, V. M. et al. A small molecule inhibitor, 1,2,4,5-benzenetetraamine tetrahydrochloride, targeting the y397 site of focal adhesion kinase decreases tumor growth. J. Med. Chem. 51, 7405–7416 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Poullet, P. et al. Ezrin interacts with focal adhesion kinase and induces its activation independently of cell-matrix adhesion. J. Biol. Chem. 276, 37686–37691 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Lebrun, P., Mothe-Satney, I., Delahaye, L., Van Obberghen, E. & Baron, V. Insulin receptor substrate-1 as a signaling molecule for focal adhesion kinase pp125FAK and pp60src. J. Biol. Chem. 273, 32244–32253 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Takino, T., Yoshioka, K., Miyamori, H., Yamada, K. M. & Sato, H. A scaffold protein in the c-Jun N-terminal kinase signaling pathway is associated with focal adhesion kinase and tyrosine-phosphorylated. Oncogene 21, 6488–6497 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Welman, A., Serrels, A., Brunton, V. G., Ditzel, M. & Frame, M. C. Two-color photoactivatable probe for selective tracking of proteins and cells. J. Biol. Chem. 285, 11607–11616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Batchelor, C. L., Woodward, A. M. & Crouch, D. H. Nuclear ERM (ezrin, radixin, moesin) proteins: regulation by cell density and nuclear import. Exp. Cell Res. 296, 208–222 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Kressel, M. & Schmucker, B. Nucleocytoplasmic transfer of the NF2 tumor suppressor protein merlin is regulated by exon 2 and a CRM1-dependent nuclear export signal in exon 15. Hum. Mol. Genet. 11, 2269–2278 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Muranen, T., Gronholm, M., Renkema, G. H. & Carpen, O. Cell cycle-dependent nucleocytoplasmic shuttling of the neurofibromatosis 2 tumour suppressor merlin. Oncogene 24, 1150–1158 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Bellissent-Waydelich, A., Vanier, M. T., Albiges-Rizo, C. & Simon-Assmann, P. Talin concentrates to the midbody region during mammalian cell cytokinesis. J. Histochem. Cytochem. 47, 1357–1368 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Hsu, E. C. et al. Suppression of hepatitis B viral gene expression by protein-tyrosine phosphatase PTPN3. J. Biomed. Sci. 14, 731–744 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. van Ham, M., Kemperman, L., Wijers, M., Fransen, J. & Hendriks, W. Subcellular localization and differentiation-induced redistribution of the protein tyrosine phosphatase PTP-BL in neuroblastoma cells. Cell. Mol. Neurobiol. 25, 1225–1244 (2005).

    Article  PubMed  Google Scholar 

  111. Wadham, C., Gamble, J. R., Vadas, M. A. & Khew-Goodall, Y. Translocation of protein tyrosine phosphatase Pez/PTPD2/PTP36 to the nucleus is associated with induction of cell proliferation. J. Cell Sci. 113, 3117–3123 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Welman for unpublished images. Work in the M.C.F. laboratory is funded by Cancer Research UK and Association for International Cancer Research, and in the M.J.E. laboratory by the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Margaret C. Frame or Michael J. Eck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Margaret C. Frame's homepage

Michael J. Eck's homepage

ClustalW2

NetNES

WoLF PSORT

Glossary

Guanine nucleotide exchange factor

A protein that facilitates the exchange of GDP for GTP in the nucleotide-binding pocket of a GTP-binding protein. Typically this includes the small GTPases of the Rho and Ras families in signal transduction pathways.

Phenogram

A computer-generated diagram depicting taxonomic relationships among organisms based on similarity of particular characteristics. This is usually independent of evolutionary history and without reference to the significance of characteristics used to generate the diagram.

Extracellular matrix

The part of animal tissue outside of, and between, cells. It provides structural support to cells and also provides extracellular cues. It comprises many components, including connective tissue made up of components such as collagen or fibronectin that are the ligands for integrin receptors.

Focal adhesion

An integrin-mediated cell–extracellular matrix substrate adhesion structure that anchors the ends of actin filaments (stress fibres) and mediates strong attachments to substrates. It also comprises the sites where integrin extracellular matrix receptors cluster and initiate signalling.

Src homology 2 domain

(SH2 domain). A signalling protein docking module that generally recognizes and binds to Tyr-phosphorylated amino acid stretches in other proteins in a sequence-specific context. It is present in many signalling proteins and thereby has a key role in relaying cascades of signal transduction by bringing together protein complexes.

Src homology 3 domain

(SH3 domain). A protein module of about 50 amino acids that recognizes and binds to sequences that are typically rich in proline.

Fluorescence resonance energy transfer

(FRET). The non-radiative transfer of energy from a donor fluorophore to an acceptor fluorophore that is typically <80 Å away. FRET will only occur between fluorophores in which the emission spectrum of the donor has a significant overlap with the excitation of the acceptor. FRET is used as an 'in cell' read-out of protein proximity.

Epithelial to mesenchymal transition

The morphological change of an epithelial-like cell into a mesenchymal-like cell, which is often coincident with more migratory and invasive properties.

Lamellipodia

Broad, flat protrusions at the leading edge of a moving cell that are enriched with a branched network of actin filaments, which give rise to the force to push lamelliopdia forward at the leading edge of motile cells.

Nascent integrin adhesion

Clusters of ligand-bound integrins and their intracellular protein partners that form transiently when cells first probe and contact their extracellular matrix. Clusters that stabilize may be precursors of mature focal adhesions.

Pleckstrin homology domain

(PH domain). A protein module of 100 amino acids that is found in many signalling proteins and that generally binds to phospholipids. Different PH domains interact with various phospholipids and are therefore involved in the targeting of the proteins to membranous structures.

E3 ubiquitin ligase

The third enzyme in a series of enzymes that are responsible for ubiquitylation and often the subsequent targeting of modified proteins for proteosomal degradation. E3 enzymes, which are numerous, provide platforms for binding target substrates, thereby conferring specificity to the process of targeted degradation in cells.

Centrosome

A specialized organelle that duplicates during interphase and that constitutes the centre of the mitotic spindle.

Aptamer

A nucleic acid- or peptide-based sequence, either engineered or natural, that forms a precise three-dimensional structure that can selectively bind to a target molecule.

Filopodia

Thin, transient actin protrusions that extend out from the cell surface and are formed by the elongation of bundled actin filaments in its core.

Inside-out signalling

The process of inside-out signalling refers to signals from within the cell, usually mediated by cytoplasmic proteins, that can rapidly change ligand binding by cell surface receptors. This promotes conformational changes in the receptors themselves that often lead to their activation. This term is commonly used for the binding of ligands to extracellular matrix components.

Outside-in signalling

The transduction of information from the extracellular environment to the inside of cells via transmembrane receptors, such as integrins or growth factor receptors. This results in initiation of intracellular signalling in response to environmental cues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frame, M., Patel, H., Serrels, B. et al. The FERM domain: organizing the structure and function of FAK. Nat Rev Mol Cell Biol 11, 802–814 (2010). https://doi.org/10.1038/nrm2996

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2996

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing