Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Peroxisomal protein import and ERAD: variations on a common theme

This article has been updated

Abstract

Despite their distinct biological functions, there is a surprising similarity between the composition of the machinery that imports proteins into peroxisomes and the machinery that degrades endoplasmic reticulum (ER)-associated proteins. The basis of this similarity lies in the fact that both machineries make use of the same basic mechanistic principle: the tagging of a substrate by monoubiquitylation or polyubiquitylation and its subsequent recognition and ATP-dependent removal from a membrane by ATPases of the ATPases associated with diverse cellular activities (AAA) family of proteins. We propose that the ER-associated protein degradation (ERAD)-like removal of the peroxisomal import receptor is mechanically coupled to protein translocation into the organelle, giving rise to a new concept of export-driven import.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peroxisomal protein import and ERAD in yeast.
Figure 2: Molecular parallels between ERAD and the peroxisomal import pathway.
Figure 3: Export-driven protein import at peroxisomes.

Similar content being viewed by others

Change history

  • 17 November 2010

    We have updated the link to Ralf Erdmann's homepage in the online version of this article.

References

  1. McNew, J. A. & Goodman, J. M. An oligomeric protein is imported into peroxisomes in vivo. J. Cell Biol. 127, 1245–1257 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Glover, J. R., Andrews, D. W. & Rachubinski, R. A. Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc. Natl Acad. Sci. USA 91, 10541–10545 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Häusler, T., Stierhof, Y. D., Wirtz, E. & Clayton, C. Import of a DHFR Hybrid protein into gycosomes in vivo is not inhibited by the folate-analogue aminopterin. J. Cell Biol. 132, 311–324 (1996).

    Article  PubMed  Google Scholar 

  4. Brown, L. A. & Baker, A. Shuttles and cycles: transport of proteins into the peroxisome matrix. Mol. Membr. Biol. 25, 363–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Brocard, C. & Hartig, A. Peroxisome targeting signal 1: is it really a simple tripeptide? Biochim. Biophys. Acta 1763, 1565–1573 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Schliebs, W. & Kunau, W. H. PTS2 co-receptors: diverse proteins with common features. Biochim. Biophys. Acta 1763, 1605–1612 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Stanley, W. A. et al. Recognition of a functional peroxisome type 1 target by the dynamic import receptor Pex5p. Mol. Cell 24, 653–663 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Girzalsky, W., Saffian, D. & Erdmann, R. Peroxisomal protein translocation. Biochim. Biophys. Acta 1803, 724–731 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Schnell, D. J. & Hebert, D. N. Protein translocons: multifunctional mediators of protein translocation across membranes. Cell 112, 491–505 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Erdmann, R. & Schliebs, W. Peroxisomal matrix protein import: the transient pore model. Nature Rev. Mol. Cell Biol. 6, 738–742 (2005).

    Article  CAS  Google Scholar 

  11. Dammai, V. & Subramani, S. The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell 105, 187–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Ma, C., Schumann, U., Rayapuram, N. & Subramani, S. The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p. Mol. Biol. Cell 20, 3680–3689 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meinecke, M. et al. The peroxisomal importomer constitutes a large and highly dynamic pore. Nature Cell Biol. 12, 273–277 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Gouveia, A. M., Reguenga, C., Oliveira, M. E., Sa-Miranda, C. & Azevedo, J. E. Characterization of peroxisomal Pex5p from rat liver: Pex5p in the Pex5p-Pex14p membrane complex is a transmembrane protein. J. Biol. Chem. 275, 32444–32451 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Platta, H. W., Grunau, S., Rosenkranz, K., Girzalsky, W. & Erdmann, R. Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nature Cell Biol. 7, 817–822 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Miyata, N. & Fujiki, Y. Shuttling mechanism of peroxisome targeting signal type 1 receptor Pex5: ATP-independent import and ATP-dependent export. Mol. Cell Biol. 25, 10822–10832 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsumoto, N., Tamura, S. & Fujiki, Y. The pathogenic peroxin Pex26p recruits the Pex1p-Pex6p AAA ATPase complexes to peroxisomes. Nature Cell Biol. 5, 454–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Birschmann, I. et al. Pex15p of Saccharomyces cerevisiae provides a molecular basis for recruitment of the AAA Peroxin Pex6p to peroxisomal membranes. Mol. Biol. Cell 14, 2226–2236 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Platta, H. W. et al. Ubiquitination of the peroxisomal import receptor Pex5p is required for its recycling. J. Cell Biol. 177, 197–204 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carvalho, A. F. et al. Ubiquitination of mammalian Pex5p, the peroxisomal import receptor. J. Biol. Chem. 282, 31267–31272 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Platta, H. W. et al. Pex2 and Pex12 function as protein-ubiquitin ligases in peroxisomal protein import Mol. Cell Biol. 29, 5505–5516 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Williams, C., van den Berg, M., Geers, E. & Distel, B. Pex10p functions as an E3 ligase for the Ubc4p-dependent ubiquitination of Pex5p. Biochem. Biophys. Res. Commun. 374, 620–624 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Kiel, J. A., Emmrich, K., Meyer, H. E. & Kunau, W. H. Ubiquitination of the PTS1 receptor, Pex5p, suggests the presence of a quality control mechanism during peroxisomal matrix protein import. J. Biol. Chem. 280, 1921–1930 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Platta, H. W., Girzalsky, W. & Erdmann, R. Ubiquitination of the peroxisomal import receptor Pex5p. Biochem. J. 384, 37–45 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Purdue, P. E. & Lazarow, P. B. Pex18p is constitutively degraded during peroxisome biogenesis. J. Biol. Chem. 276, 47684–47689 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Leon, S. et al. Dynamics of the peroxisomal import cycle of PpPex20p: ubiquitin-dependent localization and regulation. J. Cell Biol. 172, 67–78 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leon, S. & Subramani, S. A conserved cysteine residue of Pichia pastoris Pex20p is essential for its recycling from the peroxisome to the cytosol. J. Biol. Chem. 282, 7424–7430 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Grou, C. P. et al. Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor. J. Biol. Chem. 283, 14190–14197 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Grou, C. P. et al. Properties of the ubiquitin-Pex5p thiol ester conjugate. J. Biol. Chem. 284, 10504–10513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Rapoport, T. A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450, 663–669 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Nakatsukasa, K. & Brodsky, J. L. The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic 9, 861–870 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gauss, R., Sommer, T. & Jarosch, E. The Hrd1p ligase complex forms a linchpin between ER-lumenal substrate selection and Cdc48p recruitment. EMBO J. 25, 1827–1835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huyer, G. et al. Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein. J. Biol. Chem. 279, 38369–38378 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Vashist, S. & Ng, D. T. Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J. Cell Biol. 165, 41–52 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feldman, M. & van der Goot, F. G. Novel ubiquitin-dependent quality control in the endoplasmic reticulum. Trends Cell Biol. 19, 357–363 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Hirsch, C., Gauss, R., Horn, S. C., Neuber, O. & Sommer, T. The ubiquitylation machinery of the endoplasmic reticulum. Nature 458, 453–460 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Kreft, S. G., Wang, L. & Hochstrasser, M. Membrane topology of the yeast endoplasmic reticulum-localized ubiquitin ligase Doa10 and comparison with its human ortholog TEB4 (MARCH-VI). J. Biol. Chem. 281, 4646–4653 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Sommer, T. & Jentsch, S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 365, 176–179 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Biederer, T., Volkwein, C. & Sommer, T. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278, 1806–1809 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Deak, P. M. & Wolf, D. H. Membrane topology and function of Der3/Hrd1p as a ubiquitin-protein ligase (E3) involved in endoplasmic reticulum degradation. J. Biol. Chem. 276, 10663–10669 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Gauss, R., Jarosch, E., Sommer, T. & Hirsch, C. A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nature Cell Biol. 8, 849–854 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Lilley, B. N. & Ploegh, H. L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834–840 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Wiertz, E. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Ploegh, H. L. A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448, 435–438 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Schuberth, C. & Buchberger, A. Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation. Nature Cell Biol. 7, 999–1006 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Koller, A. et al. Pex22p of Pichia pastoris, essential for peroxisomal matrix protein import, anchors the ubiquitin-conjugating enzyme, Pex4p, on the peroxisomal membrane. J. Cell. Biol. 146, 99–112 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schuberth, C., Richly, H., Rumpf, S. & Buchberger, A. Shp1 and Ubx2 are adaptors of Cdc48 involved in ubiquitin-dependent protein degradation. EMBO Rep. 5, 818–824 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kerssen, D. et al. Membrane association of the cycling peroxisome import receptor Pex5p. J. Biol. Chem. 281, 27003–27015 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Gouveia, A. M., Guimarães, C. P., Oliveira, M. E., Sá- Miranda, C. & Azevedo, J. E. Insertion of Pex5p into the peroxisomal membrane is cargo protein-dependent. J. Biol. Chem. 278, 4389–4392 (2002).

    Article  PubMed  Google Scholar 

  51. Wanders, R. J. Metabolic and molecular basis of peroxisomal disorders: a review. Am. J. Med. Genet. A. 126, 355–375 (2004).

    Article  Google Scholar 

  52. Imai, Y. et al. CHIP is associated with parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol. Cell 10, 55–67 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Gelman, M. S. & Kopito, R. R. Cystic fibrosis: premature degradation of mutant proteins as a molecular disease mechanism. Methods Mol. Biol. 232, 27–37 (2003).

    CAS  PubMed  Google Scholar 

  54. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Hanson, P. I. & Whiteheart, S. W. AAA+ proteins: have engine, will work. Nature Rev. Mol. Cell Biol. 6, 519–529 (2005).

    Article  CAS  Google Scholar 

  57. Erzberger, J. P. & Berger, J. M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu. Rev. Biophys. Biomol. Struct. 35, 95–114 (2006).

    Article  Google Scholar 

  58. Snider, J., Thibault, G. & Houry, W. A. The AAA+ superfamily of functionally diverse proteins. Genome Biol. 9, 216 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Wüthrich for technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft, Germany (SFB642).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Erdmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Ralf Erdmann's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schliebs, W., Girzalsky, W. & Erdmann, R. Peroxisomal protein import and ERAD: variations on a common theme. Nat Rev Mol Cell Biol 11, 885–890 (2010). https://doi.org/10.1038/nrm3008

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing