Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Common ground for protein translocation: access control for mitochondria and chloroplasts

Key Points

  • The vast majority of mitochondrial and chloroplast proteins are cytosolically synthesized and have to be translocated into the organelle.

  • Precursor proteins contain amino acid-based signals. These signals supply information allowing the proteins to target, and interact with, the cytosolic chaperones that provide guidance to organelles.

  • Translocases at the outer membrane of mitochondria and chloroplasts form the general entry gate into both organelles.

  • The translocases of both organelles consist of three receptors, which bind to the multitude of different precursor proteins and deliver them to a translocation pore formed by a protein with β-barrel structure.

  • Despite similarities with respect to their composition, the translocons differ with respect to signal length requirement and their energizing of the translocation event.

  • The mode of translocation is also distinct between the translocation machineries: mitochondrial import across the outer membrane is affinity-driven, whereas the passage of precursor proteins into chloroplasts is modulated by GTP binding and hydrolysis, and by phosphorylation events.

Abstract

Mitochondria and chloroplasts import the vast majority of their proteins across two membranes, and use translocases of the outer membrane as an entry gate. These translocases interact with the incoming precursor protein and guiding chaperone factors. Within the translocon, precursor-protein receptors dock to a central component that mediates both transfer through a cation-selective channel and initial sorting towards internal subcompartments. Despite these similarities, the mode of translocation differs between the two organelles: in chloroplasts, GTP-binding and hydrolysis by the receptors is required for transport, whereas in mitochondria passage of the preprotein is driven by its increasing affinity for the translocase subunits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein transport into mitochondria and chloroplasts.
Figure 2: Transport of precursor proteins from the cell cytosol into mitochondria and chloroplasts.
Figure 3: The translocon of the outer membrane of mitochondria and chloroplasts.
Figure 4: Signal length requirement and translocon initiation.

Similar content being viewed by others

References

  1. Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. Science 283, 1476–1481 (1999).

    CAS  PubMed  Google Scholar 

  2. McFadden, G. I. Endosymbiosis and evolution of the plant cell. Curr. Opin. Plant Biol. 2, 513–519 (1999).

    CAS  PubMed  Google Scholar 

  3. Saraste, M. Oxidative phosphorylation at the fin de siècle. Science 283, 1488–1493 (1999).

    CAS  PubMed  Google Scholar 

  4. Lill, R. & Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 77, 669–700 (2008).

    CAS  PubMed  Google Scholar 

  5. López-Juez, E. Plastid biogenesis, between light and shadows. J. Exp. Bot. 58, 11–26 (2007).

    PubMed  Google Scholar 

  6. Nelson, N. & Ben-Shem, A. The complex architecture of oxygenic photosynthesis. Nature Rev. Mol. Cell. Biol. 5, 971–982 (2004).

    CAS  Google Scholar 

  7. Sickmann, A. et al. The proteome of Sacchoromyces cerevisiae mitochondria. Proc. Natl Acad. Sci. USA 103, 13207–13212 (2003).

    Google Scholar 

  8. van Wijk, K. J. Plastid proteomics. Plant Physiol. Biochem. 42, 963–977 (2004).

    CAS  PubMed  Google Scholar 

  9. Wickner, W. & Schekman, R. Protein translocation across biological membranes. Science 310, 1452–1456 (2005).

    CAS  PubMed  Google Scholar 

  10. Grudnik, P., Bange, G. & Sinning, I. Protein targeting by the signal recognition particle. Biol. Chem. 390, 775–782 (2009).

    CAS  PubMed  Google Scholar 

  11. Schnell, D. J. & Hebert, D. N. Protein translocons: multifunctional mediators of protein translocation across membranes. Cell 112, 491–505 (2003).

    CAS  PubMed  Google Scholar 

  12. Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nature Rev. Mol. Cell Biol. 8, 195–208 (2007).

    CAS  Google Scholar 

  13. Carrie, C., Giraud, E. & Whelan, J. Protein transport in organelles: dual targeting of proteins to mitochondria and chloroplasts. FEBS J. 276, 1187–1195 (2009).

    CAS  PubMed  Google Scholar 

  14. Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T. & Pfanner, N. Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628–644 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Neupert, W. & Herrmann, J. M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76, 723–749 (2007).

    CAS  PubMed  Google Scholar 

  16. Bruce, B. D. The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. Biochim. Biophys. Acta 1541, 2–21 (2001).

    CAS  PubMed  Google Scholar 

  17. Li, H.-M. & Chiu, C.-C. Protein transport into chloroplasts. Annu. Rev. Plant Biol. 61, 157–180 (2010).

    CAS  PubMed  Google Scholar 

  18. Gakh, O., Cavadini, P. & Isaya, G. Mitochondrial processing peptidases. Biochim. Biophys. Acta 1592, 63–77 (2002).

    CAS  PubMed  Google Scholar 

  19. Richter, S. & Lamppa, G. K. Structural properties of the chloroplast stromal processing peptidase required for its function in transit peptide removal. J. Biol. Chem. 278, 39497–39502 (2003).

    CAS  PubMed  Google Scholar 

  20. Huang, S., Taylor, N. L., Whelan, J. & Millar, A. H. Refining the definition of plant mitochondrial presequences through analysis of sorting signals, N-terminal modifications, and cleavage motifs. Plant Physiol. 150, 1272–1285 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vögtle, F. N. et al. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139, 428–439 (2009).

    PubMed  Google Scholar 

  22. Martin, T. et al. A protein kinase family in Arabidopsis phosphorylates chloroplast precursor proteins. J. Biol. Chem. 281, 40216–40223 (2006).

    CAS  PubMed  Google Scholar 

  23. Schleiff, E. & Klösgen, R. B. Without a little help from 'my' friends: direct insertion of proteins into chloroplast membranes? Biochim. Biophys. Acta 1541, 22–33 (2001).

    CAS  PubMed  Google Scholar 

  24. van der Laan, M., Hutu, D. P. & Rehling, P. On the mechanism of preprotein import by the mitochondrial presequence translocase. Biochim. Biophys. Acta 1803, 732–739 (2010).

    CAS  PubMed  Google Scholar 

  25. Kutik, S. et al. Dissecting membrane insertion of mitochondrial β-barrel proteins. Cell 132, 1011–1024 (2008).

    CAS  PubMed  Google Scholar 

  26. Kleffmann, T. et al. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr. Biol. 14, 354–362 (2004).

    CAS  PubMed  Google Scholar 

  27. Armbruster, U. et al. Chloroplast proteins without cleavable transit peptides: rare exceptions or a major constituent of the chloroplast proteome? Mol. Plant 2, 1325–1335 (2009).

    CAS  PubMed  Google Scholar 

  28. Hachiya, N. et al. MSF, a novel cytoplasmic chaperone which functions in precursor targeting to mitochondria. EMBO J. 13, 5146–5154 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. May, T & Soll, J. 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12, 53–64 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yano, M., Terada, K. & Mori, M. AIP is a mitochondrial import mediator that binds to both import receptor Tom20 and preproteins. J. Cell. Biol. 163, 45–56 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Young, J. C., Hoogenraad, N. J. & Hartl, F. U. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50 (2003). This study showed the delivery of Hsp70- and Hsp90-guided precursor proteins to Tom70.

    CAS  PubMed  Google Scholar 

  32. Schemenewitz, A., Pollmann, S., Reinbothe, C. & Reinbothe, S. A substrate-independent, 14-3-3 protein-mediated plastid import pathway of NADPH:protochlorophyllide oxidoreductase A. Proc. Natl Acad. Sci. USA 104, 8538–8543 (2009).

    Google Scholar 

  33. Qbadou, S. et al. The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO J. 25, 1836–1847 (2006). This work defined the pathway that targets Hsp70- and Hsp90-guided precursors to Toc64.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Oecking, C. & Jaspert, T. Plant 14-3-3 proteins catch up with their mammalian orthologs. Curr. Opin. Plant Biol. 12, 760–765 (2009).

    CAS  PubMed  Google Scholar 

  35. Beddoe, T. & Lithgow, T. Delivery of nascent polypeptides to the mitochondrial surface. Biochim. Biophys. Acta 1592, 35–39 (2002).

    CAS  PubMed  Google Scholar 

  36. Bae, W. et al. AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis. Nature Cell Biol. 10, 220–227 (2008). This study reports the identification of the factor that targets proteins to the chloroplast outer envelope.

    CAS  PubMed  Google Scholar 

  37. Dhanoa, P. K. et al. Distinct pathways mediate the sorting of tail-anchored proteins to the plastid outer envelope. PLoS ONE 5, e10098 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. Shen, G. et al. ANKYRIN REPEAT-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membrane-bound ASCORBATE PEROXIDASE3 in Arabidopsis. Plant Cell 22, 811–831 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kellems, R. E., Allison, V. F. & Butow, R. A. Cytoplasmic type 80S ribosomes associated with yeast mitochondria. IV. Attachment of ribosomes to the outer membrane of isolated mitochondria. J. Cell Biol. 65, 1–14 (1975).

    CAS  PubMed  Google Scholar 

  40. Marc, P. et al. Genome-wide analysis of mRNAs targeted to yeast mitochondria. EMBO Rep. 3, 159–164 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Eliyahu, E. et al. Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner. Mol. Cell. Biol. 30, 284–294 (2010).

    CAS  PubMed  Google Scholar 

  42. Villarejo, A. et al. Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nature Cell Biol. 7, 1224–1231 (2005).

    PubMed  Google Scholar 

  43. Neuspiel, M. et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr. Biol. 18, 102–108 (2008).

    CAS  PubMed  Google Scholar 

  44. de Brito, O. M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610 (2008).

    PubMed  Google Scholar 

  45. Kormann, B. et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481 (2009).

    Google Scholar 

  46. Andersson, M. X., Goksör, M. & Sandelius, A. S. Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts. J. Biol. Chem. 282, 1170–1174 (2007).

    CAS  PubMed  Google Scholar 

  47. Oreb, M., Tews, I. & Schleiff, E. Policing Tic 'n' Toc, the doorway to chloroplasts. Trends Cell Biol. 18, 19–27 (2008).

    CAS  PubMed  Google Scholar 

  48. Jarvis, P. Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol. 179, 257–285 (2008).

    CAS  PubMed  Google Scholar 

  49. Dekker, P. J. T. et al. Preprotein translocase of the outer mitochondrial membrane: molecular dissection and assembly of the general import pore complex. Mol. Cell. Biol. 18, 6515–6524 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sherman, E. L., Go, N. E. & Nargang, F. E. Functions of the small proteins in the TOM complex of Neurospora crassa. Mol. Biol. Cell 16, 4172–4182 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dietmeier, K. et al. Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature 388, 195–200 (1997).

    CAS  PubMed  Google Scholar 

  52. Becker, T. et al. Assembly of the mitochondrial protein import channel: role of Tom5 in two-stage interaction of Tom40 with the SAM complex. Mol. Biol. Cell 21, 3106–3113 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jackson-Constan, D. & Keegstra, K. Arabidopsis genes encoding components of the chloroplastic protein import apparatus. Plant Physiol. 125, 1567–1576 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lister, R. et al. A transcriptomic and proteomic characterization of the Arabidopsis mitochondrial protein import apparatus and its response to mitochondrial dysfunction. Plant Physiol. 134, 777–789 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ivanova, Y., Smith, M. D., Chen, K. & Schnell, D. J. Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids. Mol. Biol. Cell 15, 3379–3392 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kubis, S. et al. Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell 16, 2059–2077 (2004). References 55 and 56 describe the different functions of the distinct Toc159 isoforms.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Inoue, H., Rounds, C. & Schnell, D. J. The molecular basis for distinct pathways for protein import into Arabidopsis chloroplasts. Plant Cell 22, 1947–1960 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Perry, A. J. et al. Structure, topology and function of the translocase of the outer membrane of mitochondria. Plant Physiol. Biochem. 46, 265–274 (2008).

    CAS  PubMed  Google Scholar 

  59. Ahting, U. et al. The TOMcore complex: the general import pore of the outer membrane of mitochondria. J. Cell Biol. 147, 959–968 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schleiff, E., Soll, J., Küchler, M., Kühlbrandt, W. & Harrer, R. Characterization of the translocon of the outer envelope of chloroplasts. J. Cell Biol. 160, 541–551 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Künkele, K. P. et al. The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 1009–1019 (1998). References 60 and 61 provide the first structural and functional analysis of purified TOM and TOC complexes.

    PubMed  Google Scholar 

  62. Model, K. et al. Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex. J. Mol. Biol. 316, 657–666 (2002).

    CAS  PubMed  Google Scholar 

  63. Model, K., Meisinger, C. & Kühlbrandt, W. Cryo-electron microscopy structure of a yeast mitochondrial preprotein translocase. J. Mol. Biol. 383, 1049–1057 (2008).

    CAS  PubMed  Google Scholar 

  64. van Wilpe, S. et al. Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature 401, 485–489 (1999). This study identified the multiple functions of Tom22 in precursor-protein binding, molecular organization of the translocase and pore regulation.

    CAS  PubMed  Google Scholar 

  65. Becker, T. et al. Preprotein recognition by the Toc complex. EMBO J. 23, 520–530 (2004). The first mechanistic analysis of translocation steps in the TOC complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee, J., Wang, F. & Schnell, D. J. Toc receptor dimerization participates in the initiation of membrane translocation during protein import into chloroplasts. J. Biol. Chem. 284, 31130–31141 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Jarvis, P. et al. An Arabidopsis mutant defective in the plastid general protein import apparatus. Science 282, 100–103 (1998). This study describes the phenotype and ultrastructural changes of the first identified mutant of the TOC machinery, the Ppi1 mutant.

    CAS  PubMed  Google Scholar 

  68. Oreb, M., Höfle, A., Mirus, O. & Schleiff, E. Phosphorylation regulates the assembly of chloroplast import machinery. J. Exp. Bot. 59, 2309–2316 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Aronsson, H., Combe, J., Patel, R. & Jarvis, P. In vivo assessment of the significance of phosphorylation of the Arabidopsis chloroplast protein import receptor, atToc33. FEBS Lett. 580, 649–655 (2006).

    CAS  PubMed  Google Scholar 

  70. Oreb, M. et al. Phospho-mimicry mutant of atToc33 affects early development of Arabidopsis thaliana. FEBS Lett. 581, 5945–5951 (2007).

    CAS  PubMed  Google Scholar 

  71. Saitoh, T. et al. Tom20 recognizes mitochondrial presequences through dynamic equilibrium among multiple bound states. EMBO J. 26, 4777–4787 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mirus, O. & Schleiff, E. The evolution of tetratricopeptide repeat domain containing receptors involved in protein translocation. Endocytobiosis Cell Res. 19, 31–50 (2009).

    Google Scholar 

  73. Wu, Y. & Sha, B. Crystal structure of yeast outer membrane translocon member Tom70p. Nature Struct. Mol. Biol. 13, 589–593 (2006).

    CAS  Google Scholar 

  74. Qbadou, S. et al. Toc64 — a preprotein-receptor at the outer membrane with bipartide function. J. Mol. Biol. 367, 1330–1346 (2007).

    CAS  PubMed  Google Scholar 

  75. Chew, O. et al. A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Lett. 557, 109–114 (2004).

    CAS  PubMed  Google Scholar 

  76. Yamamoto, H. et al. Role of Tom70 in import of presequence-containing mitochondrial proteins. J. Biol. Chem. 284, 31625–31646 (2009).

    Google Scholar 

  77. Hines, V. et al. Protein import into yeast mitochondria is accelerated by the outer membrane protein MAS70. EMBO J. 9, 3191–3200 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Aronsson, H. et al. Toc64/OEP64 is not essential for the efficient import of proteins into chloroplasts in Arabidopsis thaliana. Plant J. 52, 53–68 (2007).

    CAS  PubMed  Google Scholar 

  79. Ramage, L., Junne, T., Hahne, K., Lithgow, T. & Schatz, G. Functional cooperation of mitochondrial protein import receptors in yeast. EMBO J. 12, 4115–4123 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Moczko, M. et al. Deletion of the receptor MOM19 strongly impairs import of cleavable preproteins into Sacchoromyces cerevisae mitochondria. J. Biol. Chem. 269, 9045–9051 (1994).

    CAS  PubMed  Google Scholar 

  81. Constan, D., Patel, R., Keegstra, K. & Jarvis, P. An outer envelope membrane component of the plastid protein import apparatus plays an essential role in Arabidopsis. Plant J. 38, 93–106 (2004).

    CAS  PubMed  Google Scholar 

  82. Kessler, F. & Schnell, D. J. Chloroplast biogenesis: diversity and regulation of the protein import apparatus. Curr. Opin. Cell Biol. 21, 494–500 (2009).

    CAS  PubMed  Google Scholar 

  83. Yamano, K. et al. Tom20 and Tom22 share the common signal recognition pathway in mitochondrial protein import. J. Biol. Chem. 283, 3799–3807 (2008).

    CAS  PubMed  Google Scholar 

  84. Brix, J., Dietmeier, K. & Pfanner, N. Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22 and Tom70. J. Biol. Chem. 272, 20730–20735 (1997).

    CAS  PubMed  Google Scholar 

  85. Abe, Y. et al. Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100, 551–560 (2000). This study describes for the first time the structural basis of precursor recognition by a receptor of the TOM translocon.

    CAS  PubMed  Google Scholar 

  86. Keil, P. & Pfanner, N. Insertion of MOM22 into mitochondrial outer membrane strictly depends on surface receptors. FEBS Lett. 321, 197–200 (1993).

    CAS  PubMed  Google Scholar 

  87. Wallas, T. R., Smith, M. D., Sanchez-Nieto, S. & Schnell, D. J. The roles of Toc34 and Toc75 in targeting the Toc159 preprotein receptor to chloroplasts. J. Biol. Chem. 278, 44289–44297 (2003).

    CAS  PubMed  Google Scholar 

  88. Bauer, J. et al. The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature 403, 203–207 (2000).

    CAS  PubMed  Google Scholar 

  89. Hill, K. et al. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516–521 (1998).

    CAS  PubMed  Google Scholar 

  90. Hinnah, S. C., Hill, K., Wagner, R., Schlicher, T. & Soll, J. Reconstitution of a chloroplast protein import channel. EMBO J. 16, 7351–7360 (1997). References 89 and 90 present the first description of the reconstitution of Toc75 and Tom40, and their electrophysiological characterization.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hinnah, S. C., Wagner, R., Sveshnikova, N., Harrer, R. & Soll, J. The chloroplast protein import channel Toc75: pore properties and interaction with transit peptides. Biophys. J. 83, 899–911 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Becker, L. et al. Preprotein translocase of the outer mitochondrial membrane: reconstituted Tom40 forms a characteristic TOM pore. J. Mol. Biol. 353, 1011–1020 (2005).

    CAS  PubMed  Google Scholar 

  93. Poynor, M., Eckert, R. & Nussberger, S. Dynamics of the preprotein translocation channel of the outer membrane of mitochondria. Biophys. J. 95, 1511–1522 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Schleiff, E. & McBride, H. The central matrix loop drives import of uncoupling protein 1 into mitochondria. J. Cell Sci. 113, 2267–2272 (2000).

    CAS  PubMed  Google Scholar 

  95. Wiedemann, N., Pfanner, N. & Ryan, M. T. The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J. 20, 951–960 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dolezal, P., Likic, V., Tachezy, J. & Lithgow, T. Evolution of the molecular machines for protein import into mitochondria. Science 313, 314–318 (2006).

    CAS  PubMed  Google Scholar 

  97. Bayrhuber, M. et al. Structure of the human voltage-dependent anion channel. Proc. Natl Acad. Sci. USA 105, 15370–15375 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bredemeier, R. et al. Functional and phylogenetic properties of the pore-forming β-barrel transporters of the Omp85 family. J. Biol. Chem. 282, 1882–1890 (2007). A dissection of the electrophysiological properties of Sam50-like and Toc75-like Omp85 proteins.

    CAS  PubMed  Google Scholar 

  99. Bohnsack, M. T. & Schleiff, E. The evolution of protein targeting and translocation systems. Biochim. Biophys. Acta 1803, 1115–1130 (2010).

    CAS  PubMed  Google Scholar 

  100. Eckart, K. et al. A Toc75-like protein import channel is abundant in chloroplasts. EMBO Rep. 3, 557–562 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Patel, R., Hsu, S. C., Bedard, J., Inoue, K. & Jarvis, P. The Omp85-related chloroplast outer envelope protein OEP80 is essential for viability in Arabidopsis. Plant. Physiol. 148, 235–245 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim, S. et al. Structure and function of an essential component of the outer membrane protein assembly machine. Science 317, 961–964 (2007).

    CAS  PubMed  Google Scholar 

  103. Sánchez-Pulido, L., Devos, D., Genevrois, S., Vicente, M. & Valencia, A. POTRA: a conserved domain in the FtsQ family and a class of β-barrel outer membrane proteins. Trends Biochem. Sci. 28, 523–526 (2003).

    PubMed  Google Scholar 

  104. Koenig, P. et al. Conserved properties of polypeptide transport-associated (POTRA) domains derived from cyanobacterial Omp85. J. Biol. Chem. 285, 18016–18024 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Clantin, B. et al. Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. Science 317, 957–961 (2007).

    CAS  PubMed  Google Scholar 

  106. Ertel, F. et al. The evolutionarily related β-barrel polypeptide transporters from Pisum sativum and Nostoc PCC7120 contain two distinct functional domains. J. Biol. Chem. 280, 28281–28289 (2005).

    CAS  PubMed  Google Scholar 

  107. Dembowski, M., Künkele, K. P., Nargang, F. E., Neupert, W. & Rapaport, D. Assembly of Tom6 and Tom7 into the TOM core complex of Neurospora crassa. J. Biol. Chem. 276, 17679–17685 (2001).

    CAS  PubMed  Google Scholar 

  108. Esaki, M. et al. Tom40 protein import channel binds to non-native proteins and prevents their aggregation. Nature Struct. Mol. Biol. 10, 988–994 (2003).

    CAS  Google Scholar 

  109. Schmitt, S. et al. Role of Tom5 in maintaining the structural stability of the TOM complex of mitochondria. J. Biol. Chem. 280, 14499–14506 (2005).

    CAS  PubMed  Google Scholar 

  110. Schleiff, E., Jelic, M. & Soll, J. A GTP-driven motor moves proteins across the outer envelope of chloroplasts. Proc. Natl Acad. Sci. USA 100, 4604–4609 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Komiya, T. et al. Interaction of mitochondrial targeting signals with acidic receptor domains along the protein import pathway: evidence for the 'acid chain' hypothesis. EMBO J. 17, 3886–3898 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bolliger, L., Junne, T., Schatz, G. & Lithgow, T. Acidic receptor domains on both sides of the outer membrane mediate translocation of precursor proteins into yeast mitochondria. EMBO J. 14, 6318–6326 (1997).

    Google Scholar 

  113. Kouranov, A. & Schnell, D. J. Analysis of the interactions of preproteins with the import machinery over the course of protein import into chloroplasts. J. Cell Biol. 29, 1677–1685 (1997).

    Google Scholar 

  114. Jelic, M., Soll, J. & Schleiff, E. Two Toc34 homologues with different properties. Biochemistry 42, 5906–5916 (2003).

    CAS  PubMed  Google Scholar 

  115. Smith, M. D. et al. atToc159 is a selective transit peptide receptor for the import of nucleus-encoded chloroplast proteins. J. Cell Biol. 165, 323–334 (2004). This study explores the receptor function of Toc159.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lee, K. H., Kim, S. J., Lee, Y. J., Jin, J. B. & Hwang, I. The M domain of atToc159 plays an essential role in the import of proteins into chloroplasts and chloroplasts biogenesis. J. Biol. Chem. 278, 36794–36805 (2003).

    CAS  PubMed  Google Scholar 

  117. Wang, F., Agne, B., Kessler, F. & Schnell, D. J. The role of GTP binding and hydrolysis at the atToc159 preprotein receptor during protein import into chloroplasts. J. Cell Biol. 183, 87–99 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Agne, B. et al. A Toc159 import receptor mutant, defective in hydrolysis of GTP, supports preprotein import into chloroplasts. J. Biol. Chem. 284, 8670–8679 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Becker, T. et al. Toc12, a novel subunit of the intermembrane space preprotein translocon of chloroplasts. Mol. Biol. Cell 15, 5130–5144 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Matouschek, A. et al. Active unfolding of precursor proteins during mitochondrial protein import. EMBO J. 16, 6727–6736 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gaume, B. et al. Unfolding of preproteins upon import into mitochondria. EMBO J. 17, 6497–6507 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hageman, J. et al. Protein import into and sorting inside the chloroplast are independent processes. Plant Cell 2, 479–494 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Bionda, T. et al. Chloroplast import signals: the length requirement for translocation in vitro and in vivo. J. Mol. Biol. 402, 510–523 (2010).

    CAS  PubMed  Google Scholar 

  124. Sato, T., Esaki, M., Fernandez, J. M. & Endo, T. Comparison of the protein-unfolding pathways between mitochondrial protein import and atomic-force microscopy measurements. Proc. Natl Acad. Sci. USA 102, 17999–18004 (2005). This study compares the mitochondrial translocation routes of N-terminal- and C-terminal-fused signals with the biophysical properties of the passenger.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Oguro, T. et al. Structural stabilities of different regions of the titin I27 domain contribute differently to unfolding upon mitochondrial protein import. J. Mol. Biol. 385, 811–819 (2009).

    CAS  PubMed  Google Scholar 

  126. Ruprecht, M. et al. On the impact of precursor unfolding during protein import into chloroplasts. Mol. Plant 3, 499–508 (2010). This study compares the translocation route of N-terminal chloroplast signals with the biophysical properties of the passenger.

    CAS  PubMed  Google Scholar 

  127. Fulgosi, H. & Soll, J. The chloroplast protein import receptors Toc34 and Toc159 are phosphorylated by distinct protein kinases. J. Biol. Chem. 277, 8934–8940 (2002).

    CAS  PubMed  Google Scholar 

  128. Agne, B. et al. The acidic A-domain of Arabidopsis TOC159 occurs as a hyperphosphorylated protein. Plant Physiol. 153, 1016–1030 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Esaki, M. et al. Mitochondrial protein import. Requirement of presequence elements and TOM components for precursor binding to the TOM complex. J. Biol. Chem. 279, 45701–45707 (2004).

    CAS  PubMed  Google Scholar 

  130. Gabriel, K., Egan, B. & Lithgow, T. Tom40, the import channel of the mitochondrial outer membrane, plays an active role in sorting proteins. EMBO J. 22, 2380–2386 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Moczko, M. et al. The intermembrane space domain of mitochondrial Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences. Mol. Cell. Biol. 17, 6574–6584 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Chacinska, A. et al. Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120, 817–829 (2005).

    CAS  PubMed  Google Scholar 

  133. Chacinska, A. et al. Mitochondrial translocation contact sites: separation of dynamic and stabilizing elements of a TOM-TIM preprotein supercomplex. EMBO J. 22, 5370–5381 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Nielsen, E., Akita, M., Davila-Aponte, J. & Keegstra, K. Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO J. 16, 935–946 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Akita, M., Nielsen, E. & Keegsta, K. Identification of protein complexes in the chloroplastic envelope membranes via chemical cross-linking. J. Cell Biol. 136, 983–994 (1997). References 133, 134, 135 describe the initial identification of the TOM–TIM23 and TOC–TIC supercomplexes.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Yi, L. & Dalbey, R. E. Oxa1/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria. Mol. Membr. Biol. 22, 101–111 (2005).

    CAS  PubMed  Google Scholar 

  137. Herrmann, J. M. & Köhl, R. Catch me if you can! Oxidative protein trapping in the intermembrane space of mitochondria. J. Cell Biol. 176, 559–563 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Soll, J. & Schleiff, E. Protein import into chloroplasts. Nature Rev. Mol. Cell Biol. 5, 198–208 (2004).

    CAS  Google Scholar 

  139. Kovacheva, S., Bédard, J., Wardle, A., Patel, R. & Jarvis, P. Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import. Plant J. 50, 364–379 (2007).

    CAS  PubMed  Google Scholar 

  140. Shi, L.-X. & Theg, S. M. A stromal heat shock protein 70 system functions in protein import into chloroplasts in the moss Physcomitrella patens. Plant Cell 22, 205–220 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Su, P.-H. & Li, H. Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts. Plant Cell 22, 1516–1531 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

T.B. thanks N. Pfanner for support. The work was supported by Baden-Württemberg Stiftung (T.B.), the Deutsche Forschungsgemeinschaft (DFG) in the frame of the Sonderforschungsbereich SFB746 (T.B.), the Volkswagen-foundation (E.S.) and the DFG in the frame of the Sonderforschungsbereich SFB807/P17 (E.S.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Thomas Becker's homepage

Enrico Schleiff's homepage

Glossary

Endosymbiosis

Endosymbiosis is the process in which a free-living bacteria — the ancestral endosymbiont — was enclosed by a cell and, during evolution, became integrated into the cellular network. By transfer of most of its genetic content to the host, the nucleus lost its independence and became an organelle.

Thylakoid membrane

A component of chloroplasts, the thylakoid membrane is a specialized membranous compartment where photosynthesis occurs.

Oxygenic photosynthesis

Oxygenic photosynthesis is the conversion of carbon dioxide and water into organic compounds, especially sugars, and oxygen by the thylakoid and stromal enzymes, including the photosystems.

Amphiphilic α-helix

An amphiphilic α-helix is a helix in which one side is composed of hydrophobic amino acids and the other of hydrophilic amino acids.

β-barrel proteins

β-barrel proteins are membrane proteins that are typically found in the outer membrane of mitochondria, of chloroplasts and of Gram-negative bacteria. These proteins form a membrane-inserted barrel composed of β-strands.

14-3-3 proteins

Proteins that are expressed in eukaryotic cells and that bind preferentially to phosphorylated regions in diverse proteins involved in signal transduction and protein translocation.

Tetratricopeptide repeat

(TPR). A structural motif, found in a wide variety of proteins, that is composed of 34 amino acids. TPRs are involved in intra- and inter-molecular interactions.

Ankyrin

Ankyrin repeats are structurally but not functionally conserved units of 33 amino acids that consist of two α-helices separated by a loop, and comprise one of the most common structural motifs identified in bacterial, archaeal and eukaryotic proteins.

ERMES complex

(Endoplasmic reticulummitochondria encounter structure complex). This is the complex that tethers mitochondria and the endoplasmic reticulum. It is composed of the two mitochondrial membrane proteins Mdm34 and Mdm10, the integral endoplasmic reticulum membrane protein Mmm1 and the peripheral protein Mdm12.

Chemical crosslinking

Chemical crosslinking is the introduction of synthetic bonds that link two proteins in close proximity by chemical molecules — for example, by maleimide, which reacts with the thiol group of cysteines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schleiff, E., Becker, T. Common ground for protein translocation: access control for mitochondria and chloroplasts. Nat Rev Mol Cell Biol 12, 48–59 (2011). https://doi.org/10.1038/nrm3027

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3027

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing