Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From unwinding to clamping — the DEAD box RNA helicase family

Key Points

  • RNA helicases of the DEAD box family are important players in RNA metabolism in most living organisms. Despite high conservation between DEAD box proteins, they participate in many different processes.

  • Recent structural and functional analyses have changed our perception of these fascinating enzymes. They clamp the RNA substrate in an ATP-dependent manner, which can lead to the formation of an RNA-binding complex or to local unwinding of double-stranded RNA. Whereas ATP-binding is necessary and sufficient for RNA binding or unwinding, ATP hydrolysis is required for the release and recycling of the enzyme.

  • The binding to the RNA substrate, or the unwinding of a duplex RNA and the hydrolysis of ATP and release of phosphate, must be tightly regulated by other proteins and small molecules. Therefore, DEAD box RNA helicases act in complexes that are sometimes very large.

  • Three processes that beautifully exemplify these different concepts are the formation of the exon junction complex, the export of mRNA and translation initiation.

  • In the exon junction complex, eukaryotic initiation factor 4AIII (eIF4AIII) is bound to the mRNA and the hydrolysis of ATP and release of phosphate are controlled by partner proteins.

  • The export of mRNA through the nuclear complex involves many proteins. This process is assisted by DEAD box protein 5 (Dbp5) in yeast (DDX19 and DDX25 in vertebrates), which is required for the recycling of export factors and the release of the mRNA into the cytoplasm. Its activity is controlled by nuclear pore complex proteins and the small metabolite inositol hexakisphosphate.

  • eIF4A, which was the first DEAD box protein to be characterized, is required for translation initiation. Its activity is stimulated by the interaction with eIF4G, which is a large scaffolding protein of the cap-binding complex, and inhibited by the tumour suppressor protein programmed cell death 4 (PDCD4), the small RNA BC1 or the small natural products pateamine A or hippuristanol.

Abstract

RNA helicases of the DEAD box family are present in all eukaryotic cells and in many bacteria and Archaea. These highly conserved enzymes are required for RNA metabolism from transcription to degradation and are therefore important players in gene expression. DEAD box proteins use ATP to unwind short duplex RNA in an unusual fashion and remodel RNA–protein complexes, but they can also function as ATP-dependent RNA clamps to provide nucleation centres that establish larger RNA–protein complexes. Structural, mechanistic and molecular biological studies have started to reveal how these conserved proteins can perform such diverse functions and how accessory proteins have a central role in their regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular processes involving DEAD box proteins.
Figure 2: Structure of the DEAD box helicase core and substrate interactions.
Figure 3: eIF4AIII clamps the EJC to the mRNA.
Figure 4: Regulation of eIF4A during translation initiation.
Figure 5: Dbp5 control of mRNA export.

Similar content being viewed by others

References

  1. Jankowsky, E. RNA helicases at work: binding and rearranging. Trends Biochem. Sci. 36, 19–29 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gorbalenya, A. E. & Koonin, E. V. Helicases: amino acid comparisons and structure–function relationships. Curr. Opin. Struct. Biol. 3, 419–429 (1993).

    CAS  Google Scholar 

  3. Fairman-Williams, M. E., Guenther, U. P. & Jankowsky, E. SF1 and SF2 helicases: family matters. Curr. Opin. Struct. Biol. 20, 313–324 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Singleton, M. R., Dillingham, M. S. & Wigley, D. B. Structure and mechanism of helicases and nucleic acid translocases. Ann. Rev. Biochem. 76, 23–50 (2007).

    CAS  PubMed  Google Scholar 

  5. Cordin, O., Banroques, J., Tanner, N. K. & Linder, P. The DEAD-box protein family of RNA helicases. Gene 367, 17–37 (2006).

    CAS  PubMed  Google Scholar 

  6. Jarmoskaite, I. & Russell, R. DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip.Rev. RNA 2, 135–152 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Abdelhaleem, M. Do human RNA helicases have a role in cancer? Biochim. Biophys. Acta 1704, 37–46 (2004).

    CAS  PubMed  Google Scholar 

  8. Caruthers, J. M. & McKay, D. B. Helicase structure and mechanism. Curr. Opin. Struct. Biol. 12, 123–133 (2002).

    CAS  PubMed  Google Scholar 

  9. Linder, P. et al. Birth of the D-E-A-D box. Nature 337, 121–122 (1989).

    CAS  PubMed  Google Scholar 

  10. Linder, P. Dead-box proteins: a family affair—active and passive players in RNP-remodeling. Nucleic Acids Res. 34, 4168–4180 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hilbert, M., Karow, A. R. & Klostermeier, D. The mechanism of ATP-dependent RNA unwinding by DEAD-box proteins. Biol. Chem. 390, 1237–1250 (2009).

    CAS  PubMed  Google Scholar 

  12. Strohmeier, J., Hertel, I., Diederichsen, U., Rudolph, M. G. & Klostermeier, D. Changing nucleotide specificity of the DEAD-box helicase Hera abrogates communication between the Q-motif and the P-loop. Biol. Chem. 392, 357–369 (2011).

    CAS  PubMed  Google Scholar 

  13. Del Campo, M. & Lambowitz, A. M. Structure of the yeast DEAD box protein Mss116p reveals two wedges that crimp RNA. Mol. Cell 35, 598–609 (2009).

    CAS  PubMed  Google Scholar 

  14. Sengoku, T., Nureki, O., Nakamura, A., Kobayashi, S. & Yokoyama, S. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125, 287–300 (2006). The structure of Vasa in the presence of RNA showed for the first time a kinking of the substrate, which is indicative of a local unwinding mechanism.

    CAS  PubMed  Google Scholar 

  15. Andersen, C. B. et al. Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313, 1968–1972 (2006).

    CAS  PubMed  Google Scholar 

  16. Bono, F., Ebert, J., Lorentzen, E. & Conti, E. The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126, 713–725 (2006).

    CAS  PubMed  Google Scholar 

  17. von Moeller, H., Basquin, C. & Conti, E. The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nature Struct. Biol. 16, 247–254 (2009).

    CAS  Google Scholar 

  18. Fan, J. S. et al. Solution and crystal structures of mRNA exporter Dbp5p and its interaction with nucleotides. J. Mol. Biol. 388, 1–10 (2009).

    PubMed  Google Scholar 

  19. Milner-White, E. J., Peitras, Z. & Luisi, B. F. An ancient anion-binding structural module in RNA and DNA helicases. Proteins 78, 1900–1908 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Banroques, J., Doère, M., Dreyfus, M., Linder, P. & Tanner, N. K. Motif III in superfamily 2 “helicases” helps convert the binding energy of ATP into a high-affinity RNA binding site in the yeast DEAD-box protein Ded1. J. Mol. Biol. 396, 949–966 (2010).

    CAS  PubMed  Google Scholar 

  21. Hardin, J. W., Hu, Y. X. & McKay, D. B. Structure of the RNA binding domain of a DEAD-box helicase bound to its ribosomal RNA target reveals a novel mode of recognition by an RNA recognition motif. J. Mol. Biol. 402, 412–427 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Klostermeier, D. & Rudolph, M. G. A novel dimerization motif in the C-terminal domain of the Thermus thermophilus DEAD box helicase Hera confers substantial flexibility. Nucleic Acids Res. 37, 421–430 (2009).

    CAS  PubMed  Google Scholar 

  23. Rudolph, M. G. & Klostermeier, D. The Thermus thermophilus DEAD box helicase Hera contains a modified RNA recognition motif domain loosely connected to the helicase core. RNA 15, 1993–2001 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Karow, A. R. & Klostermeier, D. A structural model for the DEAD box helicase YxiN in solution: localization of the RNA binding domain. J. Mol. Biol. 402, 629–637 (2010).

    CAS  PubMed  Google Scholar 

  25. Tanner, N. K. & Linder, P. DExD/H box RNA helicases. From generic motors to specific dissociation functions. Mol. Cell 8, 251–261 (2001).

    CAS  PubMed  Google Scholar 

  26. Jankowsky, E. & Fairman, M. RNA helicases — one fold for many functions. Curr. Opin. Struct. Biol. 17, 316–324 (2007).

    CAS  PubMed  Google Scholar 

  27. Kuhn, B., Abdel-Monem, M., Krell, H. & Hoffman-Berling, H. Evidence for two mechanisms for DNA unwinding catalyzed by DNA helicases. J. Biol. Chem. 254, 11343–11350 (1979).

    CAS  PubMed  Google Scholar 

  28. Rogers, G. W., Richter, N. J. & Merrick, W. C. Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J. Biol. Chem. 274, 12236–12244 (1999).

    CAS  PubMed  Google Scholar 

  29. Rogers, G. W. Jr, Lima, W. F. & Merrick, W. C. Further characterization of the helicase activity of eIF4A. Substrate specificity. J. Biol. Chem. 276, 12598–12608 (2001).

    CAS  PubMed  Google Scholar 

  30. Yang, Q. & Jankowsky, E. The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nature Struct. Mol. Biol. 13, 981–986 (2006).

    CAS  Google Scholar 

  31. Bizebard, T., Ferlenghi, I., Iost, I. & Dreyfus, M. Studies on three E. coli DEAD-box helicases point to an unwinding mechanism different from that of model DNA helicases. Biochemistry 43, 7857–7866 (2004).

    CAS  PubMed  Google Scholar 

  32. Pyle, A. M. Translocation and unwinding mechanisms of RNA and DNA helicases. Ann. Rev. Biophys. 37, 317–336 (2008).

    CAS  Google Scholar 

  33. Tijerina, P., Bhaskaran, H. & Russell, R. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone. Proc. Natl Acad. Sci. USA 103, 16698–16703 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, Q., Del Campo, M., Lambowitz, A. M. & Jankowsky, E. DEAD-box proteins unwind duplexes by local strand separation. Mol. Cell 28, 253–263 (2007).

    CAS  PubMed  Google Scholar 

  35. Chen, J. Y.-F. et al. Specific alterations of U1-C protein or U1 small nuclear RNA can eliminate the requirement of Prp28p, an essential DEAD box splicing factor. Mol. Cell 7, 227–232 (2001). In vivo indication of RNPase activity by a DEAD box protein.

    CAS  PubMed  Google Scholar 

  36. Staley, J. P. & Guthrie, C. An RNA switch at the 5′ splice site requires ATP and the DEAD box protein Prp28p. Mol. Cell 3, 55–64 (1999).

    CAS  PubMed  Google Scholar 

  37. Madej, M. J., Niemann, M., Huttenhofer, A. & Goringer, H. U. Identification of novel guide RNAs from the mitochondria of Trypanosoma brucei. RNA Biol. 5, 84–91 (2008).

    CAS  PubMed  Google Scholar 

  38. Tollervey, D. & Kiss, T. Function and synthesis of small nucleolar RNAs. Curr. Op. Cell Biol. 9, 337–342 (1997).

    CAS  PubMed  Google Scholar 

  39. Chen, Y. et al. The DEAD-box protein CYT-19 uses a single ATP to completely separate a short RNA duplex. Proc. Natl Acad. Sci. USA 105, 20203–20208 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Henn, A. et al. Pathway of ATP utilization and duplex rRNA unwinding by the DEAD-box helicase, DbpA. Proc. Natl Acad. Sci. USA 107, 4046–4050 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Aregger, R. & Klostermeier, D. The DEAD box helicase YxiN maintains a closed conformation during ATP hydrolysis. Biochemistry 48, 10679–10681 (2009).

    CAS  PubMed  Google Scholar 

  42. Liu, F., Putnam, A. & Jankowsky, E. ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. Proc. Natl Acad. Sci. USA 105, 20209–20214 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Henn, A., Cao, W., Hackney, D. D. & De La Cruz, E. M. The ATPase cycle mechanism of the DEAD-box rRNA helicase, DbpA. J. Mol. Biol. 377, 193–205 (2008).

    CAS  PubMed  Google Scholar 

  44. Nielsen, K. H. et al. Mechanism of ATP turnover inhibition in the EJC. RNA 15, 67–75 (2008).

    PubMed  Google Scholar 

  45. Del Campo, M. et al. Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones. J. Mol. Biol. 389, 674–693 (2009).

    CAS  PubMed  Google Scholar 

  46. Iost, I., Dreyfus, M. & Linder, P. Ded1p, a DEAD-box protein required for translation initiation in Saccharomyces cerevisiae, is an RNA helicase. J. Biol. Chem. 274, 17677–17683 (1999).

    CAS  PubMed  Google Scholar 

  47. Kistler, A. L. & Guthrie, C. Deletion of MUD2, the yeast homolog of U2AF65, can bypass the requirement for Sub2, an essential spliceosomal ATPase. Genes Dev. 15, 42–49 (2001). In vivo indication of RNPase activity by a DEAD box protein.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lund, M. K. & Guthrie, C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol. Cell 20, 645–651 (2005).

    CAS  PubMed  Google Scholar 

  49. Fairman, M. et al. Protein displacement by DExH/D RNA helicases without duplex unwinding. Science 304, 730–734 (2004). References 48 and 49 reported the removal of proteins from RNA by DEAD box proteins and opened the vision of the broad activity range that these proteins can have.

    CAS  PubMed  Google Scholar 

  50. Bowers, H. A. et al. Discriminatory RNP remodeling by the DEAD-box protein DED1. RNA 12, 903–912 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tran, E. J., Zhou, Y., Corbett, A. H. & Wente, S. R. The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Mol. Cell 28, 850–859 (2007).

    CAS  PubMed  Google Scholar 

  52. Jankowsky, E. & Bowers, H. Remodeling of ribonucleoprotein complexes with DExH/D RNA helicases. Nucleic Acids Res. 34, 4181–4188 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jankowsky, E., Gross, C. H., Shuman, S. & Pyle, A. M. Active disruption of an RNA–protein interaction by a DExH/D RNA helicase. Science 291, 121–125 (2001).

    CAS  PubMed  Google Scholar 

  54. Rossler, O. G., Straka, A. & Stahl, H. Rearrangement of structured RNA via branch migration structures catalysed by the highly related DEAD-box proteins p68 and p72. Nucleic Acids Res. 29, 2088–2096 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chamot, D., Colvin, K. R., Kujat-Choy, S. L. & Owttrim, G. W. RNA structural rearrangement via unwinding and annealing by the cyanobacterial RNA helicase, CrhR. J. Biol. Chem. 280, 2036–2044 (2005).

    CAS  PubMed  Google Scholar 

  56. Yang, Q. & Jankowsky, E. ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 44, 13591–13601 (2005).

    CAS  PubMed  Google Scholar 

  57. Halls, C. et al. Involvement of DEAD-box proteins in group I and group II intron splicing. biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity. J. Mol. Biol. 365, 835–855 (2007).

    CAS  PubMed  Google Scholar 

  58. Uhlmann-Schiffler, H., Jalal, C. & Stahl, H. Ddx42p—a human DEAD box protein with RNA chaperone activities. Nucleic Acids Res. 34, 10–22 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Valdez, B. C. Structural domains involved in the RNA folding activity of RNA helicase II/Gu protein. Eur. J. Biochem. 267, 6395–6402 (2000).

    CAS  PubMed  Google Scholar 

  60. Yang, Q., Fairman, M. E. & Jankowsky, E. DEAD-box-protein-assisted RNA structure conversion towards and against thermodynamic equilibrium values. J. Mol. Biol. 368, 1087–1100 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bhaskaran, H. & Russell, R. Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Nature 449, 1014–1018 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ballut, L. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nature Struct. Mol. Biol. 12, 861–869 (2005). Biochemical studies on eIF4AIII and EJC components demonstrated the importance of the clamping function of eIF4AIII.

    CAS  Google Scholar 

  63. Le Hir, H., Izaurralde, E., Maquat, L. E. & Moore, M. J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon–exon junctions. EMBO J. 19, 6860–6869 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Le Hir, H. & Andersen, G. R. Structural insights into the exon junction complex. Curr. Opin. Struct. Biol. 18, 112–119 (2008).

    CAS  PubMed  Google Scholar 

  65. Le Hir, H. & Séraphin, B. EJCs at the heart of translational control. Cell 133, 213–216 (2008).

    CAS  PubMed  Google Scholar 

  66. Shibuya, T., Tange, T. O., Sonenberg, N. & Moore, M. J. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nature Struct. Mol. Biol. 11, 346–351 (2004).

    CAS  Google Scholar 

  67. Palacios, I. M., Gatfield, D., St. Johnston, D. & Izaurralde, E. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427, 753–757 (2004).

    CAS  PubMed  Google Scholar 

  68. Ferraiuolo, M. A. et al. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc. Natl Acad. Sci. USA 101, 4118–4123 (2004). References 66–68 described the eIF4AIII-containing EJC as an RNA-bound quality control label.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sauliere, J. et al. The exon junction complex differentially marks spliced junctions. Nature Struct. Mol. Biol. 17, 1269–1271 (2010).

    CAS  Google Scholar 

  70. Gehring, N. H., Lamprinaki, S., Kulozik, A. E. & Hentze, M. W. Disassembly of exon junction complexes by PYM. Cell 137, 536–548 (2009).

    CAS  PubMed  Google Scholar 

  71. Noble, C. G. & Song, H. MLN51 stimulates the RNA-helicase activity of eIF4AIII. PLoS ONE 2, e303 (2007).

    PubMed  PubMed Central  Google Scholar 

  72. Shibuya, T., Tange, T. O., Stroupe, M. E. & Moore, M. J. Mutational analysis of human eIF4AIII identifies regions necessary for exon junction complex formation and nonsense-mediated mRNA decay. RNA 12, 360–374 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nashchekin, D., Zhao, J., Visa, N. & Daneholt, B. A novel Ded1-like RNA helicase interacts with the Y-box protein ctYB-1 in nuclear mRNP particles and in polysomes. J. Biol. Chem. 281, 14263–14272 (2006).

    CAS  PubMed  Google Scholar 

  74. Estruch, F. & Cole, C. N. An early function during transcription for the yeast mRNA export factor Dbp5p/Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. Mol. Biol. Cell 14, 1664–1676 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhao, J., Jin, S. B., Bjorkroth, B., Wieslander, L. & Daneholt, B. The mRNA export factor Dbp5 is associated with Balbiani ring mRNP from gene to cytoplasm. EMBO J. 21, 1177–1187 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Parsyan, A. et al. mRNA helicases: the tacticians of translational control. Nature Rev. Mol. Cell Biol. 12, 235–245 (2011).

    CAS  Google Scholar 

  77. Rogers, G. W., Komar, A. A. & Merrick, W. C. eIF4A: The godfather of the DEAD-box helicases. Progr. Nucl. Acids Res. 72, 307–331 (2002).

    CAS  Google Scholar 

  78. Li, Q. et al. Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII. Mol. Cell. Biol. 19, 7336–7346 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Linder, P. Yeast RNA helicases of the DEAD-box family involved in translation initiation. Biol. Cell 95, 157–167 (2003).

    CAS  PubMed  Google Scholar 

  80. Ray, B. K. et al. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J. Biol. Chem. 260, 7651–7658 (1985).

    CAS  PubMed  Google Scholar 

  81. von der Haar, T. & McCarthy, J. E. Intracellular translation initiation factor levels in Saccharomyces cerevisiae and their role in cap-complex function. Mol. Microbiol. 46, 531–544 (2002).

    CAS  PubMed  Google Scholar 

  82. Duncan, R. & Hershey, J. W. B. Identification and quantification of levels of protein synthesis initiation factors in crude HeLa cell lysates by two-dimentional polyacrylamide gel electrophoresis. J. Biol. Chem. 258, 7228–7235 (1983).

    CAS  PubMed  Google Scholar 

  83. Gingras, A. C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963 (1999).

    CAS  PubMed  Google Scholar 

  84. Rozovsky, N., Butterworth, A. C. & Moore, M. J. Interactions between eIF4AI and its accessory factors eIF4B and eIF4H. RNA 14, 2136–2148 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rogers, G. W. Jr, Richter, N. J., Lima, W. F. & Merrick, W. C. Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. J. Biol. Chem. 276, 30914–30922 (2001).

    CAS  PubMed  Google Scholar 

  86. Richter-Cook, N. J., Dever, T. E., Hensold, J. O. & Merrick, W. C. Purification and characterization of a new eukaryotic protein. J. Biol. Chem. 273, 7579–7587 (1998).

    CAS  PubMed  Google Scholar 

  87. Rozen, F. et al. Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol. Cell. Biol. 10, 1134–1144 (1990). Demonstrated for the first time strand separation activity by a DEAD box protein.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Marintchev, A. et al. Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell 136, 447–460 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Schütz, P. et al. Crystal structure of the yeast eIF4A–eIF4G complex: an RNA-helicase controlled by protein–protein interactions. Proc. Natl Acad. Sci. USA 105, 9564–9569 (2006).

    Google Scholar 

  90. Oberer, M., Marintchev, A. & Wagner, G. Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev. 19, 2212–2223 (2005). A structural explanation of the previously observed stimulation of the eIF4A DEAD box protein by another protein.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hilbert, M., Kebbel, F., Gubaev, A. & Klostermeier, D. eIF4G stimulates the activity of the DEAD box protein eIF4A by a conformational guidance mechanism. Nucleic Acids Res. 39, 2260–2270 (2011).

    CAS  PubMed  Google Scholar 

  92. Nielsen, K. H. et al. Synergistic activation of eIF4A by eIF4B and eIF4G. Nucleic Acids Res. 39, 2678–2689 (2011).

    CAS  PubMed  Google Scholar 

  93. Sonenberg, N. Cap-binding proteins of eukaryotic messenger RNA: functions in initiation and control of translation. Prog. Nucleic Acid Res. Mol. Biol. 35, 173–207 (1988).

    CAS  PubMed  Google Scholar 

  94. Svitkin, Y. V. et al. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7, 382–394 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Pestova, T. V. & Kolupaeva, V. G. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev. 16, 2906–2922 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Berthelot, K., Muldoon, M., Rajkowitsch, L., Hughes, J. & McCarthy, J. E. Dynamics and processivity of 40S ribosome scanning on mRNA in yeast. Mol. Microbiol. 51, 987–1001 (2004).

    CAS  PubMed  Google Scholar 

  97. Pisareva, V. P., Pisarev, A. V., Komar, A. A., Hellen, C. U. & Pestova, T. V. Translation initiation on mammalian mRNAs with structured 5′UTRs requires DExH-box protein DHX29. Cell 135, 1237–1250 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sonenberg, N. & Dever, T. E. Eukaryotic translation initiation factors and regulators. Curr. Opin. Struct. Biol. 13, 56–63 (2003).

    CAS  PubMed  Google Scholar 

  99. Gebauer, F. & Hentze, M. W. Molecular mechanisms of translational control. Nature Rev. Mol. Cell Biol. 5, 827–835 (2004).

    CAS  Google Scholar 

  100. Sonenberg, N. eIF4E, the mRNA cap-binding protein: from basic discovery to translational research. Biochem. Cell Biol. 86, 178–183 (2008).

    CAS  PubMed  Google Scholar 

  101. Polunovsky, V. A. & Bitterman, P. B. The cap-dependent translation apparatus integrates and amplifies cancer pathways. RNA Biol. 3, 10–17 (2006).

    CAS  PubMed  Google Scholar 

  102. Yang, H. S. et al. The transfromation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol. Cell. Biol. 23, 26–37 (2003).

    PubMed  PubMed Central  Google Scholar 

  103. Loh, P. G. et al. Structural basis for translational inhibition by the tumour suppressor Pdcd4. EMBO J. 28, 274–285 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Suzuki, C. et al. PDCD4 inhibits translation initiation by binding to eIF4A using both its MA3 domains. Proc. Natl Acad. Sci. USA 105, 3274–3279 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lindqvist, L. et al. Selective pharmacological targeting of a DEAD box RNA helicase. PLoS ONE 3, e1583 (2008).

    PubMed  PubMed Central  Google Scholar 

  106. Bordeleau, M. E. et al. RNA-mediated sequestration of the RNA helicase eIF4A by Pateamine A inhibits translation initiation. Chem. Biol. 13, 1287–1295 (2006).

    CAS  PubMed  Google Scholar 

  107. Low, W. K. et al. Inhibition of eukaryotic translation initiation by the marine natural product pateamine A. Mol. Cell 20, 709–722 (2005).

    CAS  PubMed  Google Scholar 

  108. Dang, Y. et al. Inhibition of nonsense-mediated mRNA decay by the natural product pateamine A through eukaryotic initiation factor 4AIII. J. Biol. Chem. 284, 23613–23621 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lin, D., Pestova, T. V., Hellen, C. U. & Tiedge, H. Translational control by a small RNA: dendritic BC1 RNA targets the eukaryotic initiation factor 4A helicase mechanism. Mol. Cell. Biol. 28, 3008–3019 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Snay-Hodge, C. A., Colot, H. V., Goldstein, A. L. & Cole, C. N. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J. 17, 2663–2676 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tseng, S. S. et al. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J. 17, 2651–2662 (1998). References 110 and 111 provided the first descriptions of the involvement of Dbp5 in mRNA export.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bolger, T. A., Folkmann, A. W., Tran, E. J. & Wente, S. R. The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation. Cell 134, 624–633 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Gross, T. et al. The DEAD-box RNA helicase Dbp5 functions in translation termination. Science 315, 646–649 (2007).

    CAS  PubMed  Google Scholar 

  114. Weirich, C. S. et al. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nature Cell Biol. 8, 668–676 (2006).

    CAS  PubMed  Google Scholar 

  115. Alcazar-Roman, A. R., Tran, E. J., Guo, S. & Wente, S. R. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nature Cell Biol. 8, 711–716 (2006).

    CAS  PubMed  Google Scholar 

  116. Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 18, 4332–4347 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Hodge, C. A., Colot, H. V., Stafford, P. & Cole, C. N. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J. 18, 5778–5788 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Weirich, C. S., Erzberger, J. P., Berger, J. M. & Weis, K. The N-terminal domain of Nup159 forms a β-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol. Cell 16, 749–760 (2004).

    CAS  PubMed  Google Scholar 

  119. Collins, R. et al. The DEXD/H-box RNA helicase DDX19 is regulated by an α-helical switch. J. Biol. Chem. 284, 10296–10300 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Strahm, Y. et al. The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr255p. EMBO J. 18, 5761–5777 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Montpetit, B. et al. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature 472, 238–242 (2011). Extensive analysis of Dbp5 structure–function revealed similarities with the eIF4A–eIF4G interaction.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ives, E. B., Nichols, J., Wente, S. R. & York, J. D. Biochemical and functional characterization of inositol 1,3,4,5,6-pentakisphosphate 2-kinases. J. Biol. Chem. 275, 36575–36583 (2000).

    CAS  PubMed  Google Scholar 

  123. Noble, K. N. et al. The Dbp5 cycle at the nuclear pore complex during mRNA export II: nucleotide cycling and mRNP remodeling by Dbp5 are controlled by Nup159 and Gle1. Genes Dev. 25, 1065–1077 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Hodge, C. A. et al. The Dbp5 cycle at the nuclear pore complex during mRNA export I: dbp5 mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1. Genes Dev. 25, 1052–1064 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Tritschler, F. et al. Structural basis for the mutually exclusive anchoring of P body components EDC3 and Tral to the DEAD box protein DDX6/Me31B. Mol. Cell 33, 661–668 (2009).

    CAS  PubMed  Google Scholar 

  126. Buchwald, G. et al. Insights into the recruitment of the NMD machinery from the crystal structure of a core EJC-UPF3b complex. Proc. Natl Acad. Sci. USA 107, 10050–10055 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Mohr, S., Stryker, J. M. & Lambowitz, A. M. A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell 109, 769–779 (2002).

    CAS  PubMed  Google Scholar 

  128. Mohr, S., Matsuura, M., Perlman, P. S. & Lambowitz, A. M. A DEAD-box protein alone promotes group II intron splicing and reverse splicing by acting as an RNA chaperone. Proc. Natl Acad. Sci. USA 103, 3569–3574 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Fedorova, O., Solem, A. & Pyle, A. M. Protein-facilitated folding of group II intron ribozymes. J. Mol. Biol. 397, 799–813 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Karunatilaka, K. S., Solem, A., Pyle, A. M. & Rueda, D. Single-molecule analysis of Mss116-mediated group II intron folding. Nature 467, 935–939 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Shen, H. et al. Distinct activities of the DExD/H-box splicing factor hUAP56 facilitate stepwise assembly of the spliceosome. Genes Dev. 22, 1796–1803 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kos, M. & Tollervey, D. The putative RNA helicase Dbp4p is required for release of the U14 snoRNA from preribosomes in Saccharomyces cerevisiae. Mol. Cell 20, 53–64 (2005).

    CAS  PubMed  Google Scholar 

  133. Fuller-Pace, F. V. DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res. 34, 4206–4215 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Klappacher, G. W. et al. An induced Ets repressor complex regulates growth arrest during terminal macrophage differentiation. Cell 109, 169–180 (2002).

    CAS  PubMed  Google Scholar 

  135. Watanabe, M. et al. A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor α coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. EMBO J. 20, 1341–1352 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Endoh, H. et al. Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor α. Mol. Cell. Biol. 19, 5363–5372 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Bates, G. J. et al. The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J. 24, 543–553 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Diges, C. M. & Uhlenbeck, O. C. Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA. EMBO J. 20, 5503–5512 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Bohnsack, M. T. et al. Prp43 bound at different sites on the pre-rRNA performs distinct functions in ribosome synthesis. Mol. Cell 36, 583–592 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Sekiguchi, T., Kurihara, Y. & Fukumura, J. Phosphorylation of threonine 204 of DEAD-box RNA helicase DDX3 by cyclin B/cdc2 in vitro. Biochem. Biophys. Res. Commun. 356, 668–673 (2007).

    CAS  PubMed  Google Scholar 

  141. Jankowsky, E. & Fairman-Williams, M. E. In: RNA Helicases Vol. 19 Ch. 1 (ed. Jankowsky, E.) 1–31 (Royal Society of Chemistry, Cambridge, 2010).

    Google Scholar 

  142. Caruthers, J. M., Johnson, E. R. & McKay, D. B. Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc. Natl Acad. Sci. USA 97, 13080–13085 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors's laboratories is supported by the Swiss National Science Foundation and the Canton of Geneva (P.L.) and by the US National Institutes of Health (RO1GM006770) and the Burroughs Wellcome Fund (E.J.). The authors acknowledge the comments by the referees and the many generous and stimulating interactions in the DEAD box RNA helicase field. The authors apologize to all colleagues whose important contributions could not be highlighted or discussed here.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrick Linder or Eckhard Jankowsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

The RNA Helicase Database

FURTHER INFORMATION

Patrick Linder's homepage

Eckhard Jankowsky's homepage

Glossary

Spliceosome

A large, dynamic complex that is composed of RNA and proteins and is involved in excising introns and joining the exons of pre-mRNA.

Small nuclear RNA

(snRNA). RNA molecules that serve as guides during pre-mRNA processing.

Small nucleolar RNA

(snoRNA). RNA molecules that serve as guides during pre-ribosomal RNA modification.

Mitochondrial RNA editing

Guide RNA-assisted insertion and modification of the sequence of mitochondrial mRNA in trypanosomes.

Transition state analogue

A compound that mimics the structure of the transition state, which is the state with the highest energy along the reaction coordinate.

ATP ground state

In helicases, this typically corresponds to the reaction state when ATP is bound by the enzyme but is not yet hydrolysed.

Nonsense-mediated RNA decay

(NMD). A process by which mRNA molecules that contain a stop codon within the open reading frame are subjected to rapid degradation to avoid synthesis of deleterious truncated proteins.

Nuclear speckles

Subnuclear structures that are enriched with pre-mRNA and many different proteins that are involved in splicing.

Next-generation sequencing

High-throughput sequencing technologies in which millions of (usually short) pieces of sequence are produced in parallel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linder, P., Jankowsky, E. From unwinding to clamping — the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12, 505–516 (2011). https://doi.org/10.1038/nrm3154

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing