Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The nucleoskeleton as a genome-associated dynamic 'network of networks'

Key Points

  • The cytoskeleton is mechanically anchored to various adhesion complexes that span the nuclear envelope, including LINC (links the nucleoskeleton and cytoskeleton) complexes and lamina-associated polypeptide 1 (LAP1)–luminal domain like LAP1 (LULL1)–torsin complexes. Nuclear envelope adhesions are, in turn, mechanically coupled to the nucleoskeleton.

  • Nuclear pore complexes (NPCs) are fundamentally connected to the genome and gene expression via pore-linked filaments, which branch and extend at least 350 nm into the nucleoplasm, connect to the nucleolus and mediate myosin- and actin-dependent export.

  • A-type and B-type lamins form separate networks of intermediate filaments. A long-term challenge in the field is to resolve how nuclear intermediate filaments organize in relation to the nuclear envelope, chromatin, NPCs and other nucleoskeletal structures and organelles. Lamins A, B1 and B2 have distinct tissue-specific expression patterns and cell-type-specific roles, including signalling. B-type lamins are mysterious contributors to genome function.

  • Emery–Dreifuss muscular dystrophy maps to six genes, including LMNA (which encodes A-type lamins) and emerin (EMD), identifying a group of proteins that may be responsible for mechanotransduction in muscle nuclei.

  • A matrix formed by nuclear mitotic apparatus (NuMA) proteins may provide a three-dimensional scaffold for other nucleoskeletal structures and chromosomes. The nucleoskeleton includes crosslinking proteins, such as spectrins and protein 4.1, which have links to NuMA and proposed elastic roles in the nucleoskeleton. Other spectrin-repeat nucleoskeletal proteins include nesprins (nuclear envelope spectrin-repeat proteins), muscle-specific A-kinase anchor protein (mAKAP) and bullous pemphigoid antigen 1 (BPAG1). Titin binds lamins directly and is essential for mitotic chromosome condensation.

  • Actin is required for transcription, chromatin remodelling, nuclear envelope assembly, nuclear export and movement within the nucleus. Actin forms unconventional polymers in the nucleus, and is regulated by more than 30 actin-binding proteins. The mechanisms by which actin polymers form and function in the nucleus are largely unknown and might be evolutionarily ancient.

  • Ten molecular motors (six myosins and four kinesins) localize in the nucleus. Nuclear myosin Ic is required for transcription by all three DNA-dependent RNA polymerases, as well as for other roles.

  • Open questions include the nuclear functions of several unconventional myosins, including myosin Va, myosin Vb, myosin VI, myosin XVI and myosin XVIIIb. Kinesins in the nucleus have enigmatic functions, possibly including roles in genome organization and movement.

  • During mitosis, the nucleoskeleton dynamically reorganizes to form the spindle matrix and actively support chromosome condensation and segregation.

  • Most nucleoskeletal components and functions are currently invisible to genome-scale analysis owing to lack of appropriate annotation for bioinformatics analysis. Use of the term nucleoskeleton for this field of research would therefore help to progress the field.

Abstract

In the cytosol, actin polymers, intermediate filaments and microtubules can anchor to cell surface adhesions and interlink to form intricate networks. This cytoskeleton is anchored to the nucleus through LINC (links the nucleoskeleton and cytoskeleton) complexes that span the nuclear envelope and in turn anchor to networks of filaments in the nucleus. The metazoan nucleoskeleton includes nuclear pore-linked filaments, A-type and B-type lamin intermediate filaments, nuclear mitotic apparatus (NuMA) networks, spectrins, titin, 'unconventional' polymers of actin and at least ten different myosin and kinesin motors. These elements constitute a poorly understood 'network of networks' that dynamically reorganizes during mitosis and is responsible for genome organization and integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nucleoskeleton and cytoskeleton form intricate networks that are linked by complexes at the nuclear envelope.
Figure 2: Nuclear envelope adhesion and nucleoskeletal proteins organize the genome and mediate mechanotransduction.
Figure 3: Nucleoskeletal proteins may affect elasticity and tension.
Figure 4: Regulation of nuclear actin dynamics by nuclear actin-binding proteins.
Figure 5: Nuclear myosin and kinesin motors regulate a range of activities in the nucleus.

Similar content being viewed by others

References

  1. Lazarides, E. & Weber, K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc. Natl Acad. Sci. USA 71, 2268–2272 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pederson, T. Half a century of “the nuclear matrix”. Mol. Biol. Cell 11, 799–805 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nickerson, J. Experimental observations of a nuclear matrix. J. Cell Sci. 114, 463–474 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Berezney, R. & Coffey, D. S. Nuclear matrix. Isolation and characterization of a framework structure from rat liver nuclei. J. Cell Biol. 73, 616–637 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gerace, L., Blum, A. & Blobel, G. Immunocytochemical localization of the major polypeptides of the nuclear pore complex-lamina fraction. Interphase and mitotic distribution. J. Cell Biol. 79, 546–566 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. Dittmer, T. A. & Misteli, T. The lamin protein family. Genome Biol. 12, 222 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hancock, R. A new look at the nuclear matrix. Chromosoma 109, 219–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Mika, S. & Rost, B. NMPdb: database of nuclear matrix proteins. Nucleic Acids Res. 33, D160–D163 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Aebi, U., Cohn, J., Buhle, L. & Gerace, L. The nuclear lamina is a meshwork of intermediate-type filaments. Nature 323, 560–564 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Worman, H. J., Ostlund, C. & Wang, Y. Diseases of the nuclear envelope. Cold Spring Harb. Perspect. Biol. 2, a000760 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Dahl, K. N., Kahn, S. M., Wilson, K. L. & Discher, D. E. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J. Cell Sci. 117, 4779–4786 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378 (2004). Describes the discovery that A-type lamins are required for expression of mechanosensitive genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lammerding, J. et al. Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281, 25768–25780 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Goldberg, M. W., Huttenlauch, I., Hutchison, C. J. & Stick, R. Filaments made from A- and B-type lamins differ in structure and organization. J. Cell Sci. 121, 215–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Hozak, P., Hassan, A. B., Jackson, D. A. & Cook, P. R. Visualization of replication factories attached to nucleoskeleton. Cell 73, 361–373 (1993). Shows that functional DNA replication foci are anchored to a nucleoskeleton.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nature Rev. Mol. Cell Biol. 10, 75–82 (2009).

    Article  CAS  Google Scholar 

  17. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nature Rev. Mol. Cell Biol. 10, 63–73 (2009).

    Article  CAS  Google Scholar 

  18. Guilak, F., Tedrow, J. R. & Burgkart, R. Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269, 781–786 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Luderus, M. E., den Blaauwen, J. L., de Smit, O. J., Compton, D. A. & van Driel, R. Binding of matrix attachment regions to lamin polymers involves single-stranded regions and the minor groove. Mol. Cell. Biol. 14, 6297–6305 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilson, K. L. & Foisner, R. Lamin-binding proteins. Cold Spring Harb. Perspect. Biol. 2, a000554 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Machado, C., Sunkel, C. E. & Andrew, D. J. Human autoantibodies reveal titin as a chromosomal protein. J. Cell Biol. 141, 321–333 (1998). Reveals that titin is present in the nucleus and associates with chromatin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Machado, C. & Andrew, D. J. D-titin: a giant protein with dual roles in chromosomes and muscles. J. Cell Biol. 151, 639–652 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Visa, N. & Percipalle, P. Nuclear functions of actin. Cold Spring Harb. Perspect. Biol. 2, a000620 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Cavellan, E., Asp, P., Percipalle, P. & Farrants, A. K. The WSTF–SNF2H chromatin remodeling complex interacts with several nuclear proteins in transcription. J. Biol. Chem. 281, 16264–16271 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Mazumdar, M. & Misteli, T. Chromokinesins: multitalented players in mitosis. Trends Cell Biol. 15, 349–355 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Meier, I. & Brkljacic, J. Adding pieces to the puzzling plant nuclear envelope. Curr. Opin. Plant Biol. 12, 752–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Pérez-Munive, C. & Moreno Diaz de la Espina, S. Nuclear spectrin-like proteins are structural actin-binding proteins in plants. Biol. Cell 103, 145–157 (2011).

    Article  PubMed  Google Scholar 

  28. Benavente, R. & Krohne G. Change of karyoskeleton during spermatogenesis of Xenopus: expression of lamin LIV, a nuclear lamina protein specific for the male germ line. Proc. Natl Acad. Sci. USA 82, 6176–6180 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

    Article  CAS  PubMed  Google Scholar 

  30. Maniotis, A. J., Chen, C. S. & Ingber, D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl Acad. Sci. USA 94, 849–854 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crisp, M. et al. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172, 41–53 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mejat, A. & Misteli, T. LINC complexes in health and disease. Nucleus 1, 40–52 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mellad, J. A., Warren, D. T. & Shanahan, C. M. Nesprins LINC the nucleus and cytoskeleton. Curr. Opin. Cell Biol. 23, 47–54 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Lombardi, M. L. et al. The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton. J. Biol. Chem. 286, 26743–26753 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nikolova-Krstevski, V. et al. Nesprin-1 and actin contribute to nuclear and cytoskeletal defects in lamin A/C-deficient cardiomyopathy. J. Mol. Cell. Cardiol. 50, 479–486 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Brosig, M., Ferralli, J., Gelman, L., Chiquet, M. & Chiquet-Ehrismann, R. Interfering with the connection between the nucleus and the cytoskeleton affects nuclear rotation, mechanotransduction and myogenesis. Int. J. Biochem. Cell Biol. 42, 1717–1728 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Morris, G. E. & Randles, K. N. Nesprin isoforms: are they inside or outside the nucleus? Biochem. Soc. Trans. 38, 278–280 (2010). Raises crucial unanswered questions about nesprins and nuclear envelope adhesions.

    Article  CAS  PubMed  Google Scholar 

  38. Gob, E., Schmitt, J., Benavente, R. & Alsheimer, M. Mammalian sperm head formation involves different polarization of two novel LINC complexes. PLoS ONE 5, e12072 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Luxton, G. W., Gomes, E. R., Folker, E. S., Vintinner, E. & Gundersen, G. G. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329, 956–959 (2010). Shows that the dynamic formation of LINC complexes helps to deploy the nucleus to a new position in the cell.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Folker, E. S., Ostlund, C., Luxton, G. W., Worman, H. J. & Gundersen, G. G. Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proc. Natl Acad. Sci. USA 108, 131–136 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, C. E., Perez, A., Perkins, G., Ellisman, M. H. & Dauer, W. T. A molecular mechanism underlying the neural-specific defect in torsinA mutant mice. Proc. Natl Acad. Sci. USA 107, 9861–9866 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nery, F. C. et al. TorsinA binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton. J. Cell Sci. 121, 3476–3486 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Vander Heyden, A. B., Naismith, T. V., Snapp, E. L., Hodzic, D. & Hanson, P. I. LULL1 retargets torsinA to the nuclear envelope revealing an activity that is impaired by the DYT1 dystonia mutation. Mol. Biol. Cell 20, 2661–2672 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jungwirth, M. T., Kumar, D., Jeong, D. Y. & Goodchild, R. E. The nuclear envelope localization of DYT1 dystonia torsinA-ΔE requires the SUN1 LINC complex component. BMC Cell Biol. 12, 24 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Strambio- De-Castillia, C., Niepel, M. & Rout, M. P. The nuclear pore complex: bridging nuclear transport and gene regulation. Nature Rev. Mol. Cell Biol. 11, 490–501 (2010).

    Article  CAS  Google Scholar 

  46. Liu, Q. et al. Functional association of Sun1 with nuclear pore complexes. J. Cell Biol. 178, 785–798 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Talamas, J. A. & Hetzer, M. W. POM121 and Sun1 play a role in early steps of interphase NPC assembly. J. Cell Biol. 194, 27–37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hase, M. E. & Cordes, V. C. Direct interaction with nup153 mediates binding of Tpr to the periphery of the nuclear pore complex. Mol. Biol. Cell 14, 1923–1940 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smythe, C., Jenkins, H. E. & Hutchison, C. J. Incorporation of the nuclear pore basket protein nup153 into nuclear pore structures is dependent upon lamina assembly: evidence from cell-free extracts of Xenopus eggs. EMBO J. 19, 3918–3931 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ball, J. R. et al. Sequence preference in RNA recognition by the nucleoporin Nup153. J. Biol. Chem. 282, 8734–8740 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Krull, S. et al. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J. 29, 1659–1673 (2010). Provides seminal insights into how NPCs avoid being blocked by heterochromatin, with implications for the assembly and function of PLFs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iwamoto, M., Asakawa, H., Hiraoka, Y. & Haraguchi, T. Nucleoporin Nup98: a gatekeeper in the eukaryotic kingdoms. Genes Cells 15, 661–669 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Ball, J. R. & Ullman, K. S. Versatility at the nuclear pore complex: lessons learned from the nucleoporin Nup153. Chromosoma 114, 319–330 (2005).

    Article  PubMed  Google Scholar 

  54. Griffis, E. R., Craige, B., Dimaano, C., Ullman, K. S. & Powers, M. A. Distinct functional domains within nucleoporins Nup153 and Nup98 mediate transcription-dependent mobility. Mol. Biol. Cell 15, 1991–2002 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kalverda, B., Pickersgill, H., Shloma, V. V. & Fornerod, M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140, 360–371 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Arlucea, J., Andrade, R., Alonso, R. & Arechaga, J. The nuclear basket of the nuclear pore complex is part of a higher-order filamentous network that is related to chromatin. J. Struct. Biol. 124, 51–58 (1998). Provides exquisitely detailed serial-section electron microscopy images of lacy filaments with eightfold symmetry emanating from the NPC, extending into the nucleus and associating with chromatin.

    Article  CAS  PubMed  Google Scholar 

  57. Cordes, V. C. et al. Intranuclear filaments containing a nuclear pore complex protein. J. Cell Biol. 123, 1333–1344 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Kiseleva, E. et al. Actin- and protein-4.1-containing filaments link nuclear pore complexes to subnuclear organelles in Xenopus oocyte nuclei. J. Cell Sci. 117, 2481–2490 (2004). Transmission electron microscopy images of PLF networks showing that they connect to the nucleolus and include actin and protein 4.1.

    Article  CAS  PubMed  Google Scholar 

  59. Obrdlik, A. et al. Nuclear myosin 1 is in complex with mature rRNA transcripts and associates with the nuclear pore basket. FASEB J. 24, 146–157 (2010). Demonstrates that nuclear MYO1C is present on PLFs and mediates nuclear export.

    Article  PubMed  CAS  Google Scholar 

  60. Cordes, V. C., Reidenbach, S., Rackwitz, H. R. & Franke, W. W. Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. J. Cell Biol. 136, 515–529 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hase, M. E., Kuznetsov, N. V. & Cordes, V. C. Amino acid substitutions of coiled-coil protein Tpr abrogate anchorage to the nuclear pore complex but not parallel, in-register homodimerization. Mol. Biol. Cell 12, 2433–2452 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fontoura, B. M., Dales, S., Blobel, G. & Zhong, H. The nucleoporin Nup98 associates with the intranuclear filamentous protein network of TPR. Proc. Natl Acad. Sci. USA 98, 3208–3213 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nalepa, G. & Harper, J. W. Visualization of a highly organized intranuclear network of filaments in living mammalian cells. Cell Motil. Cytoskeleton 59, 94–108 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Daneholt, B. Assembly and transport of a premessenger RNP particle. Proc. Natl Acad. Sci. USA 98, 7012–7017 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cisterna, B., Necchi, D., Prosperi, E. & Biggiogera, M. Small ribosomal subunits associate with nuclear myosin and actin in transit to the nuclear pores. FASEB J. 20, 1901–1903 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Zimowska, G., Aris, J. P. & Paddy, M. R. A Drosophila Tpr protein homolog is localized both in the extrachromosomal channel network and to nuclear pore complexes. J. Cell Sci. 110, 927–944 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Qi, H. et al. EAST interacts with Megator and localizes to the putative spindle matrix during mitosis in Drosophila. J. Cell Biochem. 95, 1284–1291 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Vaquerizas, J. M. et al. Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet. 6, e1000846 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ahmed, S. et al. DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nature Cell Biol. 12, 111–118 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Dechat, T. et al. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 22, 832–853 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ye, Q. & Worman, H. J. Protein–protein interactions between human nuclear lamins expressed in yeast. Exp. Cell Res. 219, 292–298 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Shimi, T. et al. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev. 22, 3409–3421 (2008). Demonstrates that A-type and B-type lamins form separate and distinct networks in cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McKeown, P. C. & Shaw, P. J. Chromatin: linking structure and function in the nucleolus. Chromosoma 118, 11–23 (2009).

    Article  PubMed  Google Scholar 

  74. Martin, C. et al. Lamin B1 maintains the functional plasticity of nucleoli. J. Cell Sci. 122, 1551–1562 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ben-Harush, K. et al. The supramolecular organization of the C. elegans nuclear lamin filament. J. Mol. Biol. 386, 1392–1402 (2009). A breakthrough analysis of the assembly and organization of nuclear intermediate filaments.

    Article  CAS  PubMed  Google Scholar 

  76. Herrmann, H., Kreplak, L. & Aebi, U. Isolation, characterization, and in vitro assembly of intermediate filaments. Methods Cell Biol. 78, 3–24 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Vlcek, S., Foisner, R. & Wilson, K. L. Lco1 is a novel widely expressed lamin-binding protein in the nuclear interior. Exp. Cell Res. 298, 499–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Wilson, K. L. & Berk, J. M. The nuclear envelope at a glance. J. Cell Sci. 123, 1973–1978 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dechat, T., Gesson, K. & Foisner, R. Lamina-independent lamins in the nuclear interior serve important functions. Cold Spring Harb. Symp. Quant. Biol. 75, 533–543 (2011).

    Article  Google Scholar 

  80. Snyers, L. et al. Lamina-associated polypeptide 2-α forms homo-trimers via its C terminus, and oligomerization is unaffected by a disease-causing mutation. J. Biol. Chem. 282, 6308–6315 (2007). Describes the discovery of a potential mechanism by which lamin A filaments localize in the nuclear interior.

    Article  CAS  PubMed  Google Scholar 

  81. Malhas, A., Saunders, N. J. & Vaux, D. J. The nuclear envelope can control gene expression and cell cycle progression via miRNA regulation. Cell Cycle 9, 531–539 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Andres, V. & Gonzalez, J. M. Role of A-type lamins in signaling, transcription, and chromatin organization. J. Cell Biol. 187, 945–957 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J. & Discher, D. E. Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl Acad. Sci. USA 104, 15619–15624 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. De Sandre-Giovannoli, A. et al. Lamin A truncation in Hutchinson–Gilford progeria. Science 300, 2055 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Dahl, K. N. et al. Distinct structural and mechanical properties of the nuclear lamina in Hutchinson–Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 103, 10271–10276 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wheeler, M. A. & Ellis, J. A. Molecular signatures of Emery–Dreifuss muscular dystrophy. Biochem. Soc. Trans. 36, 1354–1358 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Liang, W. C. et al. TMEM43 mutations in Emery–Dreifuss muscular dystrophy-related myopathy. Ann. Neurol. 69, 1005–1013 (2010).

    Article  CAS  Google Scholar 

  89. Gueneau, L. et al. Mutations of the FHL1 gene cause Emery–Dreifuss muscular dystrophy. Am. J. Hum. Genet. 85, 338–353 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bengtsson, L. & Otto, H. LUMA interacts with emerin and influences its distribution at the inner nuclear membrane. J. Cell Sci. 121, 536–548 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Bonne, G. et al. 108th ENMC international workshop, 3rd workshop of the MYO-CLUSTER project: EUROMEN, 7th international Emery–Dreifuss muscular dystrophy (EDMD) workshop, 13–15 September 2002, Naarden, The Netherlands. Neuromuscul. Disord. 13, 508–515 (2003).

    Article  PubMed  Google Scholar 

  92. Lammerding, J. et al. Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. J. Cell Biol. 170, 781–791 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Haque, F. et al. SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol. Cell. Biol. 26, 3738–3751 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mislow, J. M. et al. Nesprin-1α self-associates and binds directly to emerin and lamin A in vitro. FEBS Lett. 525, 135–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, Q. et al. Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J. Cell Sci. 118, 673–687 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Wheeler, M. A. et al. Distinct functional domains in nesprin-1α and nesprin-2β bind directly to emerin and both interactions are disrupted in X-linked Emery–Dreifuss muscular dystrophy. Exp. Cell Res. 313, 2845–2857 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Clements, L., Manilal, S., Love, D. R. & Morris, G. E. Direct interaction between emerin and lamin A. Biochem. Biophys. Res. Commun. 267, 709–714 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Holaska, J. M., Kowalski, A. K. & Wilson, K. L. Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol. 2, e231 (2004). Reveals that emerin caps actin filaments and proposes a network between spectrin, actin and emerin at the nuclear envelope.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Holaska, J. M. & Wilson, K. L. An emerin “proteome”: purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry 46, 8897–8908 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Holaska, J. M. Emerin and the nuclear lamina in muscle and cardiac disease. Circ. Res. 103, 16–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Muchir, A., Pavlidis, P., Bonne, G., Hayashi, Y. K. & Worman, H. J. Activation of MAPK in hearts of EMD null mice: similarities between mouse models of X-linked and autosomal dominant Emery–Dreifuss muscular dystrophy. Hum. Mol. Genet. 16, 1884–1895 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Neumann, S. et al. Nesprin-2 interacts with α-catenin and regulates Wnt signaling at the nuclear envelope. J. Biol. Chem. 285, 34932–34938 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tifft, K. E., Bradbury, K. A. & Wilson, K. L. Tyrosine phosphorylation of nuclear-membrane protein emerin by Src, Abl and other kinases. J. Cell Sci. 122, 3780–3790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu, J. et al. Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cycle progression, and spatial organization of nuclear pore complexes. Mol. Biol. Cell 11, 3937–3947 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T. & Weber, K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 114, 4557–4565 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Malhas, A., Lee, C. F., Sanders, R., Saunders, N. J. & Vaux, D. J. Defects in lamin B1 expression or processing affect interphase chromosome position and gene expression. J. Cell Biol. 176, 593–603 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tang, C. W. et al. The integrity of a lamin-B1-dependent nucleoskeleton is a fundamental determinant of RNA synthesis in human cells. J. Cell Sci. 121, 1014–1024 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Vergnes, L., Peterfy, M., Bergo, M. O., Young, S. G. & Reue, K. Lamin B1 is required for mouse development and nuclear integrity. Proc. Natl Acad. Sci. USA 101, 10428–10433 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ji, J. Y. et al. Cell nuclei spin in the absence of lamin B1. J. Biol. Chem. 282, 20015–20026 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Coffinier, C. et al. Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proc. Natl Acad. Sci. USA 107, 5076–5081 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Takamori, Y. et al. Differential expression of nuclear lamin, the major component of nuclear lamina, during neurogenesis in two germinal regions of adult rat brain. Eur. J. Neurosci. 25, 1653–1662 (2007). Shows that the expression of mRNA encoding lamins A, C, B1 and B2 varies dramatically in different cell types during brain development.

    Article  PubMed  Google Scholar 

  113. Harborth, J., Wang, J., Gueth-Hallonet, C., Weber, K. & Osborn, M. Self assembly of NuMA: multiarm oligomers as structural units of a nuclear lattice. EMBO J. 18, 1689–1700 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Radulescu, A. E. & Cleveland, D. W. NuMA after 30 years: the matrix revisited. Trends Cell Biol. 20, 214–222 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tang, T. K., Tang, C. J., Chen, Y. L. & Wu, C. W. Nuclear proteins of the bovine esophageal epithelium. II. The NuMA gene gives rise to multiple mRNAs and gene products reactive with monoclonal antibody W1. J. Cell Sci. 104, 249–260 (1993).

    Article  CAS  PubMed  Google Scholar 

  116. Kivinen, K., Taimen, P. & Kallajoki, M. Silencing of nuclear mitotic apparatus protein (NuMA) accelerates the apoptotic disintegration of the nucleus. Apoptosis 15, 936–945 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Abad, P. C. et al. NuMA influences higher order chromatin organization in human mammary epithelium. Mol. Biol. Cell 18, 348–361 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tabellini, G. et al. Further considerations on the intranuclear distribution of HMGI/Y proteins. Ital. J. Anat. Embryol. 106, 251–260 (2001).

    CAS  PubMed  Google Scholar 

  119. Gueth-Hallonet, C., Wang, J., Harborth, J., Weber, K. & Osborn, M. Induction of a regular nuclear lattice by overexpression of NuMA. Exp. Cell Res. 243, 434–452 (1998).

    Article  CAS  PubMed  Google Scholar 

  120. Baines, A. J. Evolution of spectrin function in cytoskeletal and membrane networks. Biochem. Soc. Trans. 37, 796–803 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Law, R. et al. Pathway shifts and thermal softening in temperature-coupled forced unfolding of spectrin domains. Biophys. J. 85, 3286–3293 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dingova, H., Fukalova, J., Maninova, M., Philimonenko, V. V. & Hozak, P. Ultrastructural localization of actin and actin-binding proteins in the nucleus. Histochem. Cell Biol. 131, 425–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Young, K. G. & Kothary, R. Spectrin repeat proteins in the nucleus. Bioessays 27, 144–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Tse, W. T. et al. A new spectrin, βIV, has a major truncated isoform that associates with promyelocytic leukemia protein nuclear bodies and the nuclear matrix. J. Biol. Chem. 276, 23974–23985 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Tang, Y. et al. Disruption of transforming growth factor-β signaling in ELF β-spectrin-deficient mice. Science 299, 574–577 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Sridharan, D. M., McMahon, L. W. & Lambert, M. W. αII-spectrin interacts with five groups of functionally important proteins in the nucleus. Cell Biol. Int. 30, 866–878 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Sridharan, D., Brown, M., Lambert, W. C., McMahon, L. W. & Lambert, M. W. Nonerythroid αII spectrin is required for recruitment of FANCA and XPF to nuclear foci induced by DNA interstrand cross-links. J. Cell Sci. 116, 823–835 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. McMahon, L. W., Zhang, P., Sridharan, D. M., Lefferts, J. A. & Lambert, M. W. Knockdown of αII spectrin in normal human cells by siRNA leads to chromosomal instability and decreased DNA interstrand cross-link repair. Biochem. Biophys. Res. Commun. 381, 288–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Krauss, S. W., Chen, C., Penman, S. & Heald, R. Nuclear actin and protein 4.1: essential interactions during nuclear assembly in vitro. Proc. Natl Acad. Sci. USA 100, 10752–10757 (2003). Reveals that actin and protein 4.1 are both required to assemble nuclear structure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Diakowski, W., Grzybek, M. & Sikorski, A. F. Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily. Folia Histochem. Cytobiol. 44, 231–248 (2006).

    CAS  PubMed  Google Scholar 

  131. Mattagajasingh, S. N., Huang, S. C. & Benz, E. J. Jr. Inhibition of protein 4.1 R and NuMA interaction by mutagenization of their binding-sites abrogates nuclear localization of 4.1 R. Clin. Transl. Sci. 2, 102–111 (2009). Shows that NuMA directly binds and localizes protein 4.1 in the nucleus. Also suggests that the NuMA matrix is linked to nucleoskeletal networks of actin, spectrin and protein 4.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Meyer, A. J., Almendrala, D. K., Go, M. M. & Krauss, S. W. Structural protein 4.1R is integrally involved in nuclear envelope protein localization, centrosome-nucleus association and transcriptional signaling. J. Cell Sci. 124, 1433–1444 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Simon, D. N., Zastrow, M. S. & Wilson, K. L. Direct actin binding to A- and B-type lamin tails and actin filament bundling by the lamin A tail. Nucleus 1, 264–272 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Randles, K. N. et al. Nesprins, but not Sun proteins, switch isoforms at the nuclear envelope during muscle development. Dev. Dyn. 239, 998–1009 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhen, Y. Y., Libotte, T., Munck, M., Noegel, A. A. & Korenbaum, E. NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J. Cell Sci. 115, 3207–3222 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Kapiloff, M. S., Jackson, N. & Airhart, N. mAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope. J. Cell Sci. 114, 3167–3176 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Pare, G. C., Easlick, J. L., Mislow, J. M., McNally, E. M. & Kapiloff, M. S. Nesprin-1α contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelope. Exp. Cell Res. 303, 388–399 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Young, K. G., Pool, M. & Kothary, R. Bpag1 localization to actin filaments and to the nucleus is regulated by its N-terminus. J. Cell Sci. 116, 4543–4555 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Yang, Y. et al. An essential cytoskeletal linker protein connecting actin microfilaments to intermediate filaments. Cell 86, 655–665 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. LeWinter, M. M., Wu, Y., Labeit, S. & Granzier, H. Cardiac titin: structure, functions and role in disease. Clin. Chim. Acta 375, 1–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Guo, W., Bharmal, S. J., Esbona, K. & Greaser, M. L. Titin diversity—alternative splicing gone wild. J. Biomed. Biotechnol. 2010, 753675 (2010).

    PubMed  PubMed Central  Google Scholar 

  142. Zastrow, M. S., Flaherty, D. B., Benian, G. M. & Wilson, K. L. Nuclear titin interacts with A- and B-type lamins in vitro and in vivo. J. Cell Sci. 119, 239–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Qi, J., Chi, L., Labeit, S. & Banes, A. J. Nuclear localization of the titin Z1Z2Zr domain and role in regulating cell proliferation. Am. J. Physiol. Cell Physiol. 295, C975–C985 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Schoenenberger, C. A., Mannherz, H. G. & Jockusch, B. M. Actin: from structural plasticity to functional diversity. Eur. J. Cell Biol. 90, 797–804 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Hofmann, W. A. Cell and molecular biology of nuclear actin. Int. Rev. Cell Mol. Biol. 273, 219–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Castano, E. et al. Actin complexes in the cell nucleus: new stones in an old field. Histochem. Cell Biol. 133, 607–626 (2010).

    Article  CAS  PubMed  Google Scholar 

  147. Gieni, R. S. & Hendzel, M. J. Actin dynamics and functions in the interphase nucleus: moving toward an understanding of nuclear polymeric actin. Biochem. Cell Biol. 87, 283–306 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Hofmann, W. et al. Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. J. Cell Biol. 152, 895–910 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Vartiainen, M. K., Guettler, S., Larijani, B. & Treisman, R. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316, 1749–1752 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Spencer, V. A. et al. Depletion of nuclear actin is a key mediator of quiescence in epithelial cells. J. Cell Sci. 124, 123–132 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Kruse, T. & Gerdes, K. Bacterial DNA segregation by the actin-like MreB protein. Trends Cell Biol. 15, 343–345 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Pendleton, A., Pope, B., Weeds, A. & Koffer, A. Latrunculin B or ATP depletion induces cofilin-dependent translocation of actin into nuclei of mast cells. J. Biol. Chem. 278, 14394–14400 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Stuven, T., Hartmann, E. & Gorlich, D. Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J. 22, 5928–5940 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Bohnsack, M. T., Stuven, T., Kuhn, C., Cordes, V. C. & Gorlich, D. A selective block of nuclear actin export stabilizes the giant nuclei of Xenopus oocytes. Nature Cell Biol. 8, 257–263 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. McDonald, D., Carrero, G., Andrin, C., de Vries, G. & Hendzel, M. J. Nucleoplasmic β-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J. Cell Biol. 172, 541–552 (2006). An insightful fluorescence recovery after photobleaching analysis reveals that 20% of nuclear actin is polymeric.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Millonig, R., Salvo, H. & Aebi, U. Probing actin polymerization by intermolecular cross-linking. J. Cell Biol. 106, 785–796 (1988).

    Article  CAS  PubMed  Google Scholar 

  157. Klenchin, V. A., Khaitlina, S. Y. & Rayment, I. Crystal structure of polymerization-competent actin. J. Mol. Biol. 362, 140–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Hofmann, W. A. et al. SUMOylation of nuclear actin. J. Cell Biol. 186, 193–200 (2009). Suggests that F-actin polymerization in the nucleus is blocked by actin sumoylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Domazetovska, A. et al. Mechanisms underlying intranuclear rod formation. Brain 130, 3275–3284 (2007).

    Article  PubMed  Google Scholar 

  160. Schulze, S. R. et al. A comparative study of Drosophila and human A-type lamins. PLoS ONE 4, e7564 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Chuang, C. H. & Belmont, A. S. Moving chromatin within the interphase nucleus-controlled transitions? Semin. Cell Dev. Biol. 18, 698–706 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Chuang, C. H. et al. Long-range directional movement of an interphase chromosome site. Curr. Biol. 16, 825–831 (2006). Describes the discovery that actin polymerization and nuclear MYO1C motor function are required to move chromatin within the nucleus.

    Article  CAS  PubMed  Google Scholar 

  163. Dundr, M. et al. Actin-dependent intranuclear repositioning of an active gene locus in vivo. J. Cell Biol. 179, 1095–1103 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Solovei, I. et al. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137, 356–368 (2009). Shows that heterochromatin can be dynamically and globally rearranged in non-dividing cells.

    Article  CAS  PubMed  Google Scholar 

  165. Pestic-Dragovich, L. et al. A myosin I isoform in the nucleus. Science 290, 337–341 (2000). Describes the first nuclear myosin motor.

    Article  CAS  PubMed  Google Scholar 

  166. Hofmann, W. A., Johnson, T., Klapczynski, M., Fan, J. L. & de Lanerolle, P. From transcription to transport: emerging roles for nuclear myosin I. Biochem. Cell Biol. 84, 418–426 (2006).

    Article  CAS  PubMed  Google Scholar 

  167. Fomproix, N. & Percipalle, P. An actin–myosin complex on actively transcribing genes. Exp. Cell Res. 294, 140–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Mehta, I. S., Amira, M., Harvey, A. J. & Bridger, J. M. Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol. 11, R5 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Philimonenko, V. V. et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nature Cell Biol. 6, 1165–1172 (2004). Reveals that actin and nuclear MYO1C are both required to assemble transcription-competent polymerases.

    Article  CAS  PubMed  Google Scholar 

  170. Percipalle, P. et al. The chromatin remodelling complex WSTF–SNF2h interacts with nuclear myosin 1 and has a role in RNA polymerase I transcription. EMBO Rep. 7, 525–530 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hofmann, W. A. et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nature Cell Biol. 6, 1094–1101 (2004).

    Article  CAS  PubMed  Google Scholar 

  172. Wu, X. et al. Regulation of RNA-polymerase-II-dependent transcription by N-WASP and its nuclear-binding partners. Nature Cell Biol. 8, 756–763 (2006).

    Article  PubMed  CAS  Google Scholar 

  173. Yoo, Y., Wu, X. & Guan, J. L. A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J. Biol. Chem. 282, 7616–7623 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Zuchero, J. B., Coutts, A. S., Quinlan, M. E., Thangue, N. B. & Mullins, R. D. p53-cofactor JMY is a multifunctional actin nucleation factor. Nature Cell Biol. 11, 451–459 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Ye, J., Zhao, J., Hoffmann-Rohrer, U. & Grummt, I. Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes Dev. 22, 322–330 (2008). Provides the clearest evidence yet that actomyosin motors function in RNA transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Obrdlik, A. & Percipalle, P. The F-actin severing protein cofilin-1 is required for RNA polymerase II transcription elongation. Nucleus 2, 72–79 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Gillespie, P. G. & Cyr, J. L. Myosin-1c, the hair cell's adaptation motor. Annu. Rev. Physiol. 66, 521–545 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Sweeney, H. L. & Houdusse, A. Myosin VI rewrites the rules for myosin motors. Cell 141, 573–582 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Vreugde, S. et al. Nuclear myosin VI enhances RNA polymerase II-dependent transcription. Mol. Cell 23, 749–755 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Roux, I. et al. Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses. Hum. Mol. Genet. 18, 4615–4628 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Jung, E. J., Liu, G., Zhou, W. & Chen, X. Myosin VI is a mediator of the p53-dependent cell survival pathway. Mol. Cell. Biol. 26, 2175–2186 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cho, S. J. & Chen, X. Myosin VI is differentially regulated by DNA damage in p53- and cell type-dependent manners. J. Biol. Chem. 285, 27159–27166 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Trybus, K. M. Myosin V from head to tail. Cell. Mol. Life Sci. 65, 1378–1389 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lindsay, A. J. & McCaffrey, M. W. Myosin Vb localises to nucleoli and associates with the RNA polymerase I transcription complex. Cell Motil. Cytoskeleton 66, 1057–1072 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Karcher, R. L. et al. Cell cycle regulation of myosin-V by calcium/calmodulin-dependent protein kinase II. Science 293, 1317–1320 (2001).

    Article  CAS  PubMed  Google Scholar 

  186. Pranchevicius, M. C. et al. Myosin Va phosphorylated on Ser1650 is found in nuclear speckles and redistributes to nucleoli upon inhibition of transcription. Cell Motil. Cytoskeleton 65, 441–456 (2008). Demonstrates that MYO5A has a role in transcription mediated by RNA polymerase I.

    Article  CAS  PubMed  Google Scholar 

  187. Grimsby, S. et al. Proteomics-based identification of proteins interacting with Smad3: SREBP-2 forms a complex with Smad3 and inhibits its transcriptional activity. FEBS Lett. 577, 93–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. Cameron, R. S. et al. Myosin16b: the COOH-tail region directs localization to the nucleus and overexpression delays S-phase progression. Cell Motil. Cytoskeleton 64, 19–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  189. Salamon, M. et al. Human MYO18B, a novel unconventional myosin heavy chain expressed in striated muscles moves into the myonuclei upon differentiation. J. Mol. Biol. 326, 137–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  190. Nishioka, M. et al. MYO18B, a candidate tumor suppressor gene at chromosome 22q12.1, deleted, mutated, and methylated in human lung cancer. Proc. Natl Acad. Sci. USA 99, 12269–12274 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Odronitz, F. & Kollmar, M. Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol. 8, R196 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Hofmann, W. A., Richards, T. A. & de Lanerolle, P. Ancient animal ancestry for nuclear myosin. J. Cell Sci. 122, 636–643 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Cruz, J. R. & Moreno Diaz de la Espina, S. Subnuclear compartmentalization and function of actin and nuclear myosin I in plants. Chromosoma 118, 193–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Hirokawa, N., Noda, Y., Tanaka, Y. & Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nature Rev. Mol. Cell Biol. 10, 682–696 (2009).

    Article  CAS  Google Scholar 

  195. Mazumdar, M., Sundareshan, S. & Misteli, T. Human chromokinesin KIF4A functions in chromosome condensation and segregation. J. Cell Biol. 166, 613–20 (2004). Reveals that chromatin condensation and organization requires a kinesin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wu, G. et al. A novel role of the chromokinesin Kif4A in DNA damage response. Cell Cycle 7, 2013–2020 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Midorikawa, R., Takei, Y. & Hirokawa, N. KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity. Cell 125, 371–383 (2006).

    Article  CAS  PubMed  Google Scholar 

  198. Levesque, A. A. & Compton, D. A. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell Biol. 154, 1135–1146 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Levesque, A. A., Howard, L., Gordon, M. B. & Compton, D. A. A functional relationship between NuMA and kid is involved in both spindle organization and chromosome alignment in vertebrate cells. Mol. Biol. Cell 14, 3541–3552 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhang, L. et al. PLK1 phosphorylates mitotic centromere-associated kinesin and promotes its depolymerase activity. J. Biol. Chem. 286, 3033–3046 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Cross, M. K. & Powers, M. A. Nup98 regulates bipolar spindle assembly through association with microtubules and opposition of MCAK. Mol. Biol. Cell 22, 661–672 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Macho, B. et al. CREM-dependent transcription in male germ cells controlled by a kinesin. Science 298, 2388–2390 (2002).

    Article  CAS  PubMed  Google Scholar 

  203. Galande, S., Purbey, P. K., Notani, D. & Kumar, P. P. The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr. Opin. Genet. Dev. 17, 408–414 (2007).

    Article  CAS  PubMed  Google Scholar 

  204. Alvarez, J. D. et al. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev. 14, 521–535 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Agrelo, R. et al. SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Dev. Cell 16, 507–516 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Han, H. J., Russo, J., Kohwi, Y. & Kohwi-Shigematsu, T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature 452, 187–193 (2008).

    Article  CAS  PubMed  Google Scholar 

  207. Zhao, X. D. et al. Overexpression of SATB1 in laryngeal squamous cell carcinoma. ORL J. Otorhinolaryngol. Relat. Spec. 72, 1–5 (2010).

    Article  CAS  PubMed  Google Scholar 

  208. Dobreva, G., Dambacher, J. & Grosschedl, R. SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. Genes Dev. 17, 3048–3061 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wang, S. et al. Down-regulated expression of SATB2 is associated with metastasis and poor prognosis in colorectal cancer. J. Pathol. 219, 114–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  210. Ottaviano, Y. & Gerace, L. Phosphorylation of the nuclear lamins during interphase and mitosis. J. Biol. Chem. 260, 624–632 (1985).

    Article  CAS  PubMed  Google Scholar 

  211. Zeng, C. NuMA: a nuclear protein involved in mitotic centrosome function. Microsc. Res. Tech. 49, 467–477 (2000).

    Article  CAS  PubMed  Google Scholar 

  212. Newport, J. & Spann, T. Disassembly of the nucleus in mitotic extracts: membrane vesicularization, lamin disassembly, and chromosome condensation are independent processes. Cell 48, 219–230 (1987).

    Article  CAS  PubMed  Google Scholar 

  213. Georgatos, S. D., Pyrpasopoulou, A. & Theodoropoulos, P. A. Nuclear envelope breakdown in mammalian cells involves stepwise lamina disassembly and microtubule driven deformation of the nuclear membrane. J. Cell Sci. 110, 2129–2140 (1997).

    Article  CAS  PubMed  Google Scholar 

  214. Margalit, A., Segura-Totten, M., Gruenbaum, Y. & Wilson, K. L. Barrier-to-autointegration factor is required to segregate and enclose chromosomes within the nuclear envelope and assemble the nuclear lamina. Proc. Natl Acad. Sci. USA 102, 3290–3295 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Liu, J. et al. MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 100, 4598–4603 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Haraguchi, T. et al. Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. J. Cell Sci. 121, 2540–2554 (2008).

    Article  CAS  PubMed  Google Scholar 

  217. Lenart, P. et al. A contractile nuclear actin network drives chromosome congression in oocytes. Nature 436, 812–818 (2005).

    Article  CAS  PubMed  Google Scholar 

  218. Ding, X. et al. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev. Cell 12, 863–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  219. Schmitt, J. et al. Transmembrane protein Sun2 is involved in tethering mammalian meiotic telomeres to the nuclear envelope. Proc. Natl Acad. Sci. USA 104, 7426–7431 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Zheng, Y. A membranous spindle matrix orchestrates cell division. Nature Rev. Mol. Cell. Biol. 11, 529–535 (2010).

    Article  CAS  Google Scholar 

  221. Johansen, K. M., Forer, A., Yao, C., Girton, J. & Johansen, J. Do nuclear envelope and intranuclear proteins reorganize during mitosis to form an elastic, hydrogel-like spindle matrix? Chromosome Res. 19, 345–365 (2011). Provides an innovative analysis of the mitotic functions of nucleoskeletal proteins.

    Article  CAS  PubMed  Google Scholar 

  222. Lince-Faria, M. et al. Spatiotemporal control of mitosis by the conserved spindle matrix protein Megator. J. Cell Biol. 184, 647–657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Ding, Y. et al. Chromator is required for proper microtubule spindle formation and mitosis in Drosophila. Dev. Biol. 334, 253–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  224. Chang, P., Coughlin, M. & Mitchison, T. J. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nature Cell Biol. 7, 1133–1139 (2005).

    Article  CAS  PubMed  Google Scholar 

  225. Castagnetti, S., Oliferenko, S. & Nurse, P. Fission yeast cells undergo nuclear division in the absence of spindle microtubules. PLoS Biol. 8, e1000512 (2010). Details the discovery that chromosome segregation and cell division require actin, not spindle microtubules, in fission yeast.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Kutay, U. & Hetzer, M. W. Reorganization of the nuclear envelope during open mitosis. Curr. Opin. Cell Biol. 20, 669–677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Metcalfe, S. et al. Wild-type p53 protein shows calcium-dependent binding to F-actin. Oncogene 18, 2351–2355 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. M. Berk for comments. We apologize to authors whose works could not be cited owing to space limitations. We gratefully acknowledge support from the US National Institutes of Health (RO1 GM48646 to K.L.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine L. Wilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Katherine L. Wilson's homepage

Glossary

Nucleoskeleton

A conceptual term that is analogous to cytoskeleton and refers to all of the protein-based structures in the interphase nucleus, many of which also function during mitosis as the spindle matrix.

Mechanotransduction

Changes in gene expression triggered when cells experience mechanical force.

Centrosome

An organelle that anchors the minus ends of microtubules and is typically located near the nucleus in the centre of the cell. Also known as the microtubule-organizing centre or, in yeast, the spindle pole body.

Heterochromatin

Chromatin that is either transcriptionally silent ('facultative' heterochromatin) or lacks genes ('constitutive' heterochromatin; for example, centromeric DNA). Heterochromatin is more compact than transcriptionally active chromatin (euchromatin) but less compact than mitotic chromosomes.

Nucleolus

A conserved organelle that assembles around ribosomal DNA genes and is the site of ribosomal RNA transcription and the assembly of ribosome subunits (the translation machinery).

Cajal bodies

Conserved organelles that are involved in the biogenesis of small nuclear ribonucleoprotein (snRNP) particles (the transcription machinery).

Quiescence

The state in which cells stop proliferating (exit the cell cycle) but continue to function (for example, neurons and most other cells).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, D., Wilson, K. The nucleoskeleton as a genome-associated dynamic 'network of networks'. Nat Rev Mol Cell Biol 12, 695–708 (2011). https://doi.org/10.1038/nrm3207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing