Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tail-anchored membrane protein insertion into the endoplasmic reticulum

Key Points

  • Tail-anchored (TA) proteins are a diverse and functionally important class of membrane proteins that are targeted to the endoplasmic reticulum (ER) by a newly discovered post-translational Get (guided entry of TA proteins) and transmembrane domain (TMD)-recognition complex (TRC) pathway.

  • TRC protein of 40 kDa (TRC40; Get3 in yeast) is an evolutionarily conserved ATPase that binds the hydrophobic TMD of a TA protein during targeting to the ER; TMD binding is mediated by a large hydrophobic groove in the ATP-bound, closed conformation of TRC40 or Get3.

  • TA proteins are first captured at the ribosome by a multi-component pre-targeting complex, which sorts cargo for targeting to the ER (via TRC40 or Get3), the mitochondrial outer membrane (via an unknown pathway) or the proteasome (for degradation).

  • In yeast, the Get3–TA substrate complex is recruited to the ER membrane by Get2 and then transferred to Get1 in an ATPase-dependent reaction that opens Get3 to drive substrate release.

  • After TA substrate release, ATP re-binding dissociates Get3 from Get1 and recycles it to the cytosol.

Abstract

Membrane proteins are inserted into the endoplasmic reticulum (ER) by two highly conserved parallel pathways. The well-studied co-translational pathway uses signal recognition particle (SRP) and its receptor for targeting and the SEC61 translocon for membrane integration. A recently discovered post-translational pathway uses an entirely different set of factors involving transmembrane domain (TMD)-selective cytosolic chaperones and an accompanying receptor at the ER. Elucidation of the structural and mechanistic basis of this post-translational membrane protein insertion pathway highlights general principles shared between the two pathways and key distinctions unique to each.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane protein biosynthesis in eukaryotes.
Figure 2: Nucleotide-dependent conformational changes in the Get3 homodimer.
Figure 3: Substrate recognition by the post- and co-translational targeting machinery.
Figure 4: TA protein sorting by the TRC.
Figure 5: Targeting and substrate release at the ER membrane.
Figure 6: Alternative models for the insertion of TA proteins into the ER membrane.

Similar content being viewed by others

References

  1. Wallin, E. & von Heijne, G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7, 1029–1038 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Fagerberg, L., Jonasson, K., von Heijne, G., Uhlen, M. & Berglund, L. Prediction of the human membrane proteome. Proteomics 10, 1141–1149 (2010).

    CAS  PubMed  Google Scholar 

  3. White, S. H. & von Heijne, G. Transmembrane helices before, during, and after insertion. Curr. Opin. Struct. Biol. 15, 378–386 (2005).

    CAS  PubMed  Google Scholar 

  4. White, S. H. & von Heijne, G. How translocons select transmembrane helices. Annu. Rev. Biophys. 37, 23–42 (2008).

    CAS  PubMed  Google Scholar 

  5. Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T. & Pfanner, N. Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628–644 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Heiland, I. & Erdmann, R. Biogenesis of peroxisomes. Topogenesis of the peroxisomal membrane and matrix proteins. FEBS J. 272, 2362–2372 (2005).

    CAS  PubMed  Google Scholar 

  7. Inaba, T. & Schnell, D. J. Protein trafficking to plastids: one theme, many variations. Biochem. J. 413, 15–28 (2008).

    CAS  PubMed  Google Scholar 

  8. Shao, S. & Hegde, R. S. Membrane protein insertion at the endoplasmic reticulum. Annu. Rev. Cell Dev. Biol. 27, 25–56 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Palade, G. Intracellular aspects of the process of protein synthesis. Science 189, 347–358 (1975).

    CAS  PubMed  Google Scholar 

  10. Wickner, W. & Schekman, R. Protein translocation across biological membranes. Science 310, 1452–1456 (2005).

    CAS  PubMed  Google Scholar 

  11. Rapoport, T. A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450, 663–669 (2007).

    CAS  PubMed  Google Scholar 

  12. Blobel, G. & Dobberstein, B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J. Cell Biol. 67, 835–851 (1975).

    CAS  PubMed  Google Scholar 

  13. Blobel, G. & Dobberstein, B. Transfer of proteins across membranes. II. Reconstitution of functional rough microsomes from heterologous components. J. Cell Biol. 67, 852–862 (1975).

    CAS  PubMed  Google Scholar 

  14. Walter, P., Ibrahimi, I. & Blobel, G. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. J. Cell Biol. 91, 545–550 (1981).

    CAS  PubMed  Google Scholar 

  15. Hann, B. C. & Walter, P. The signal recognition particle in S. cerevisiae. Cell 67, 131–144 (1991).

    CAS  PubMed  Google Scholar 

  16. Gorlich, D., Prehn, S., Hartmann, E., Kalies, K. U. & Rapoport, T. A. A mammalian homolog of SEC61p and SECYp is associated with ribosomes and nascent polypeptides during translocation. Cell 71, 489–503 (1992).

    CAS  PubMed  Google Scholar 

  17. Hartmann, E. et al. Evolutionary conservation of components of the protein translocation complex. Nature 367, 654–657 (1994).

    CAS  PubMed  Google Scholar 

  18. Jungnickel, B., Rapoport, T. A. & Hartmann, E. Protein translocation: common themes from bacteria to man. FEBS Lett. 346, 73–77 (1994).

    CAS  PubMed  Google Scholar 

  19. Poritz, M. A. et al. An E. coli ribonucleoprotein containing 4.5S RNA resembles mammalian signal recognition particle. Science 250, 1111–1117 (1990).

    CAS  PubMed  Google Scholar 

  20. Stuart, R. A., Cyr, D. M., Craig, E. A. & Neupert, W. Mitochondrial molecular chaperones: their role in protein translocation. Trends Biochem. Sci. 19, 87–92 (1994).

    CAS  PubMed  Google Scholar 

  21. Soll, J. & Tien, R. Protein translocation into and across the chloroplastic envelope membranes. Plant Mol. Biol. 38, 191–207 (1998).

    CAS  PubMed  Google Scholar 

  22. Rapoport, T. A., Matlack, K. E., Plath, K., Misselwitz, B. & Staeck, O. Posttranslational protein translocation across the membrane of the endoplasmic reticulum. Biol. Chem. 380, 1143–1150 (1999).

    CAS  PubMed  Google Scholar 

  23. Mori, H. & Cline, K. Post-translational protein translocation into thylakoids by the Sec and ΔpH-dependent pathways. Biochim. Biophys. Acta 1541, 80–90 (2001).

    CAS  PubMed  Google Scholar 

  24. Ma, C., Agrawal, G. & Subramani, S. Peroxisome assembly: matrix and membrane protein biogenesis. J. Cell Biol. 193, 7–16 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Keenan, R. J., Freymann, D. M., Stroud, R. M. & Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70, 755–775 (2001).

    CAS  PubMed  Google Scholar 

  26. Grudnik, P., Bange, G. & Sinning, I. Protein targeting by the signal recognition particle. Biol. Chem. 390, 775–782 (2009).

    CAS  PubMed  Google Scholar 

  27. Walter, P. & Blobel, G. Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 77, 7112–7116 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Walter, P. & Blobel, G. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299, 691–698 (1982).

    CAS  PubMed  Google Scholar 

  29. Halic, M. et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427, 808–814 (2004).

    CAS  PubMed  Google Scholar 

  30. Zopf, D., Bernstein, H. D., Johnson, A. E. & Walter, P. The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J. 9, 4511–4517 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. High, S. & Dobberstein, B. The signal sequence interacts with the methionine-rich domain of the 54-kD protein of signal recognition particle. J. Cell Biol. 113, 229–233 (1991).

    CAS  PubMed  Google Scholar 

  32. Gilmore, R., Walter, P. & Blobel, G. Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J. Cell Biol. 95, 470–477 (1982).

    CAS  PubMed  Google Scholar 

  33. Meyer, D. I., Krause, E. & Dobberstein, B. Secretory protein translocation across membranes—the role of the 'docking protein'. Nature 297, 647–650 (1982).

    CAS  PubMed  Google Scholar 

  34. Simon, S. M. & Blobel, G. A protein-conducting channel in the endoplasmic reticulum. Cell 65, 371–380 (1991).

    CAS  PubMed  Google Scholar 

  35. Deshaies, R. J. & Schekman, R. A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J. Cell Biol. 105, 633–645 (1987).

    CAS  PubMed  Google Scholar 

  36. Becker, T. et al. Structure of monomeric yeast and mammalian Sec61 complexes interacting with the translating ribosome. Science 326, 1369–1373 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Menetret, J. F. et al. The structure of ribosome-channel complexes engaged in protein translocation. Mol. Cell 6, 1219–1232 (2000).

    CAS  PubMed  Google Scholar 

  38. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001).

    CAS  PubMed  Google Scholar 

  39. Ulbrandt, N. D., Newitt, J. A. & Bernstein, H. D. The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell 88, 187–196 (1997).

    CAS  PubMed  Google Scholar 

  40. Ott, M. et al. Mba1, a membrane-associated ribosome receptor in mitochondria. EMBO J. 25, 1603–1610 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nilsson, R. & van Wijk, K. J. Transient interaction of cpSRP54 with elongating nascent chains of the chloroplast-encoded D1 protein; 'cpSRP54 caught in the act'. FEBS Lett. 524, 127–133 (2002).

    CAS  PubMed  Google Scholar 

  42. Kutay, U., Hartmann, E. & Rapoport, T. A. A class of membrane proteins with a C-terminal anchor. Trends Cell Biol. 3, 72–75 (1993).

    CAS  PubMed  Google Scholar 

  43. Kutay, U., Ahnert-Hilger, G., Hartmann, E., Wiedenmann, B. & Rapoport, T. A. Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane. EMBO J. 14, 217–223 (1995). Demonstrates that a model TA protein is inserted into the ER via an SRP- and SEC61-independent post-translational process that requires ATP hydrolysis and a protease-sensitive microsomal factor (or factors).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Brambillasca, S. et al. Transmembrane topogenesis of a tail-anchored protein is modulated by membrane lipid composition. EMBO J. 24, 2533–2542 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yabal, M. et al. Translocation of the C terminus of a tail-anchored protein across the endoplasmic reticulum membrane in yeast mutants defective in signal peptide-driven translocation. J. Biol. Chem. 278, 3489–3496 (2003).

    CAS  PubMed  Google Scholar 

  46. Steel, G. J., Brownsword, J. & Stirling, C. J. Tail-anchored protein insertion into yeast ER requires a novel posttranslational mechanism which is independent of the SEC machinery. Biochemistry 41, 11914–11920 (2002).

    CAS  PubMed  Google Scholar 

  47. Beilharz, T., Egan, B., Silver, P. A., Hofmann, K. & Lithgow, T. Bipartite signals mediate subcellular targeting of tail-anchored membrane proteins in Saccharomyces cerevisiae. J. Biol. Chem. 278, 8219–8223 (2003).

    CAS  PubMed  Google Scholar 

  48. Kalbfleisch, T., Cambon, A. & Wattenberg, B. W. A bioinformatics approach to identifying tail-anchored proteins in the human genome. Traffic 8, 1687–1694 (2007).

    CAS  PubMed  Google Scholar 

  49. Kriechbaumer, V. et al. Subcellular distribution of tail-anchored proteins in Arabidopsis. Traffic 10, 1753–1764 (2009).

    CAS  PubMed  Google Scholar 

  50. Colombo, S. F., Longhi, R. & Borgese, N. The role of cytosolic proteins in the insertion of tail-anchored proteins into phospholipid bilayers. J. Cell Sci. 122, 2383–2392 (2009).

    CAS  PubMed  Google Scholar 

  51. Brambillasca, S., Yabal, M., Makarow, M. & Borgese, N. Unassisted translocation of large polypeptide domains across phospholipid bilayers. J. Cell Biol. 175, 767–777 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Abell, B. M., Rabu, C., Leznicki, P., Young, J. C. & High, S. Post-translational integration of tail-anchored proteins is facilitated by defined molecular chaperones. J. Cell Sci. 120, 1743–1751 (2007).

    CAS  PubMed  Google Scholar 

  53. Abell, B. M., Pool, M. R., Schlenker, O., Sinning, I. & High, S. Signal recognition particle mediates post-translational targeting in eukaryotes. EMBO J. 23, 2755–2764 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Abell, B. M. et al. Tail-anchored and signal-anchored proteins utilize overlapping pathways during membrane insertion. J. Biol. Chem. 278, 5669–5678 (2003).

    CAS  PubMed  Google Scholar 

  55. Stefanovic, S. & Hegde, R. S. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128, 1147–1159 (2007). Reports the discovery of the mammalian TA protein pathway and the identification of the TRC40 ATPase as the central cytosolic component.

    CAS  PubMed  Google Scholar 

  56. Favaloro, V., Spasic, M., Schwappach, B. & Dobberstein, B. Distinct targeting pathways for the membrane insertion of tail-anchored (TA) proteins. J. Cell Sci. 121, 1832–1840 (2008).

    CAS  PubMed  Google Scholar 

  57. Kurdi-Haidar, B. et al. Isolation of the ATP-binding human homolog of the ArsA component of the bacterial arsenite transporter. Genomics 36, 486–491 (1996).

    CAS  PubMed  Google Scholar 

  58. Chen, C. M., Misra, T. K., Silver, S. & Rosen, B. P. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 261, 15030–15038 (1986).

    CAS  PubMed  Google Scholar 

  59. Mukhopadhyay, R., Ho, Y. S., Swiatek, P. J., Rosen, B. P. & Bhattacharjee, H. Targeted disruption of the mouse Asna1 gene results in embryonic lethality. FEBS Lett. 580, 3889–3894 (2006).

    CAS  PubMed  Google Scholar 

  60. Auld, K. L. et al. The conserved ATPase Get3/Arr4 modulates the activity of membrane-associated proteins in Saccharomyces cerevisiae. Genetics 174, 215–227 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 (2005).

    CAS  PubMed  Google Scholar 

  62. Kao, G. et al. ASNA-1 positively regulates insulin secretion in C. elegans and mammalian cells. Cell 128, 577–587 (2007).

    CAS  PubMed  Google Scholar 

  63. Shen, J., Hsu, C. M., Kang, B. K., Rosen, B. P. & Bhattacharjee, H. The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance. Biometals 16, 369–378 (2003).

    CAS  PubMed  Google Scholar 

  64. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    CAS  PubMed  Google Scholar 

  65. Schuldiner, M. et al. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134, 634–645 (2008). Shows that Get proteins identified in references 60 and 61 are part of the TA pathway in yeast. Get3 is shown to be the TRC40 orthologue, and Get1 and Get2 are shown to form an ER-localized Get receptor complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jonikas, M. C. et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693–1697 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Copic, A. et al. Genomewide analysis reveals novel pathways affecting endoplasmic reticulum homeostasis, protein modification and quality control. Genetics 182, 757–769 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bozkurt, G. et al. Structural insights into tail-anchored protein binding and membrane insertion by Get3. Proc. Natl Acad. Sci. USA 106, 21131–21136 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hu, J., Li, J., Qian, X., Denic, V. & Sha, B. The crystal structures of yeast Get3 suggest a mechanism for tail-anchored protein membrane insertion. PLoS ONE 4, e8061 (2009).

    PubMed  PubMed Central  Google Scholar 

  71. Mateja, A. et al. The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461, 361–366 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Suloway, C. J., Chartron, J. W., Zaslaver, M. & Clemons, W. M. Jr. Model for eukaryotic tail-anchored protein binding based on the structure of Get3. Proc. Natl Acad. Sci. USA 106, 14849–14854 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yamagata, A. et al. Structural insight into the membrane insertion of tail-anchored proteins by Get3. Genes Cells 15, 29–41 (2010). References 69–73 describe the crystal structure of fungal Get3 in different nucleotide-bound states. Reference 71 reveals a large, hydrophobic groove in the Mg2+–ADP–AlF 4-bound complex. References 69 and 71 implicate this groove as the TMD-binding site by using mutational and biophysical analyses.

    CAS  PubMed  Google Scholar 

  74. Keenan, R. J., Freymann, D. M., Walter, P. & Stroud, R. M. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94, 181–191 (1998).

    CAS  PubMed  Google Scholar 

  75. Janda, C. Y. et al. Recognition of a signal peptide by the signal recognition particle. Nature 465, 507–510 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hainzl, T., Huang, S., Merilainen, G., Brannstrom, K. & Sauer-Eriksson, A. E. Structural basis of signal-sequence recognition by the signal recognition particle. Nature Struct. Mol. Biol. 18, 389–391 (2011).

    CAS  Google Scholar 

  77. Borgese, N., Brambillasca, S. & Colombo, S. How tails guide tail-anchored proteins to their destinations. Curr. Opin. Cell Biol. 19, 368–375 (2007).

    CAS  PubMed  Google Scholar 

  78. Mariappan, M. et al. A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466, 1120–1124 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, F., Brown, E. C., Mak, G., Zhuang, J. & Denic, V. A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Mol. Cell 40, 159–171 (2010). References 78 and 79 describe a cytosolic protein complex that captures TA proteins after synthesis and transfers them to Get3 or TRC40 for subsequent targeting to the ER membrane.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chartron, J. W., Suloway, C. J. M., Zaslaver, M. a. & Clemons, W. M. Structural characterization of the Get4/Get5 complex and its interaction with Get3. Proc. Natl Acad. Sci. USA 107, 12127–12132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Leznicki, P., Clancy, A., Schwappach, B. & High, S. Bat3 promotes the membrane integration of tail-anchored proteins. J. Cell Sci. 123, 2170–2178 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Winnefeld, M. et al. Human SGT interacts with Bag-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest. Exp. Cell Res. 312, 2500–2514 (2006).

    CAS  PubMed  Google Scholar 

  83. Hessa, T. et al. Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475, 394–397 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, Q. et al. A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol. Cell 42, 758–770 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Minami, R. et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J. Cell Biol. 190, 637–650 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Fleischer, T. C., Weaver, C. M., McAfee, K. J., Jennings, J. L. & Link, A. J. Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev. 20, 1294–1307 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cao, J. & Geballe, A. P. Coding sequence-dependent ribosomal arrest at termination of translation. Mol. Cell. Biol. 16, 603–608 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Berndt, U., Oellerer, S., Zhang, Y., Johnson, A. E. & Rospert, S. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc. Natl Acad. Sci. USA 106, 1398–1403 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bornemann, T., Jockel, J., Rodnina, M. V. & Wintermeyer, W. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nature Struct. Mol. Biol. 15, 494–499 (2008).

    CAS  Google Scholar 

  90. Liao, S., Lin, J., Do, H. & Johnson, A. E. Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90, 31–41 (1997).

    CAS  PubMed  Google Scholar 

  91. Lin, P. J., Jongsma, C. G., Pool, M. R. & Johnson, A. E. Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon. J. Cell Biol. 195, 55–70 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lin, P. J., Jongsma, C. G., Liao, S. & Johnson, A. E. Transmembrane segments of nascent polytopic membrane proteins control cytosol/ER targeting during membrane integration. J. Cell Biol. 195, 41–54 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Prilusky, J. & Bibi, E. Studying membrane proteins through the eyes of the genetic code revealed a strong uracil bias in their coding mRNAs. Proc. Natl Acad. Sci. USA 106, 6662–6666 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Nevo-Dinur, K., Nussbaum-Shochat, A., Ben-Yehuda, S. & Amster-Choder, O. Translation-independent localization of mRNA in E. coli. Science 331, 1081–1084 (2011).

    CAS  PubMed  Google Scholar 

  95. Mariappan, M. et al. The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477, 61–66 (2011). Defines the minimal set of factors required for TA protein insertion by biochemical reconstitution using purified, recombinant Get1, Get2 and Get3.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, F., Whynot, A., Tung, M. & Denic, V. The mechanism of tail-anchored protein insertion into the ER membrane. Mol. Cell 43, 738–750 (2011). References 95 and 96 describe a detailed biochemical analysis of targeting, substrate release and Get3 recycling.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Stefer, S. et al. Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex. Science 333, 758–762 (2011). References 95 and 97 provide structural snapshots of Get3 bound to cytosolic fragments of Get1 and Get2.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Egea, P. F. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215–221 (2004).

    CAS  PubMed  Google Scholar 

  99. Focia, P. J., Shepotinovskaya, I. V., Seidler, J. A. & Freymann, D. M. Heterodimeric GTPase core of the SRP targeting complex. Science 303, 373–377 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ataide, S. F. et al. The crystal structure of the signal recognition particle in complex with its receptor. Science 331, 881–886 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Heinrich, S. U., Mothes, W., Brunner, J. & Rapoport, T. A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233–244 (2000).

    CAS  PubMed  Google Scholar 

  102. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

    CAS  PubMed  Google Scholar 

  103. Tsukazaki, T. et al. Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455, 988–991 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Cannon, K. S., Or, E., Clemons, W. M. Jr, Shibata, Y. & Rapoport, T. A. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 169, 219–225 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Flower, A. M., Doebele, R. C. & Silhavy, T. J. PrlA and PrlG suppressors reduce the requirement for signal sequence recognition. J. Bacteriol. 176, 5607–5614 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Osborne, R. S. & Silhavy, T. J. PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains. EMBO J. 12, 3391–3398 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Jungnickel, B. & Rapoport, T. A. A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane. Cell 82, 261–270 (1995).

    CAS  PubMed  Google Scholar 

  108. Mothes, W., Prehn, S. & Rapoport, T. A. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J. 13, 3973–3982 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Martoglio, B., Hofmann, M. W., Brunner, J. & Dobberstein, B. The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell 81, 207–214 (1995).

    CAS  PubMed  Google Scholar 

  110. Do, H., Falcone, D., Lin, J., Andrews, D. W. & Johnson, A. E. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 85, 369–378 (1996).

    CAS  PubMed  Google Scholar 

  111. Connolly, T., Rapiejko, P. J. & Gilmore, R. Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor. Science 252, 1171–1173 (1991).

    CAS  PubMed  Google Scholar 

  112. Zhang, X., Rashid, R., Wang, K. & Shan, S. O. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 328, 757–760 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chang, Y.-W. et al. Crystal structure of Get4–Get5 complex and its interactions with Sgt2, Get3, and Ydj1. J. Biol. Chem. 285, 9962–9970 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Bozkurt, G. et al. The structure of Get4 reveals an α-solenoid fold adapted for multiple interactions in tail-anchored protein biogenesis. FEBS Lett. 584, 1509–1514 (2010).

    CAS  PubMed  Google Scholar 

  115. Chartron, J. W., Gonzalez, G. M. & Clemons, W. M. Jr. A structural model of SGT2 and its interactions with chaperones and GET4/GET5. J. Biol. Chem. 286, 34325–34334 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Borgese, N. & Righi, M. Remote origins of tail-anchored proteins. Traffic 11, 877–885 (2010).

    CAS  PubMed  Google Scholar 

  117. Sherrill, J., Mariappan, M., Dominik, P., Hegde, R. S. & Keenan, R. J. A conserved archaeal pathway for tail-anchored membrane protein insertion. Traffic 12, 1119–1123 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Vilardi, F., Lorenz, H. & Dobberstein, B. WRB is the receptor for TRC40/Asna1-mediated insertion of tail-anchored proteins into the ER membrane. J. Cell Sci. 124, 1301–1307 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the Hegde laboratory is supported by the Medical Research Council, UK. Research in the Keenan laboratory is supported by grants from the US National Institutes of Health (R01 GM086487), the Camille and Henry Dreyfus Foundation and the Edward Mallinckrodt, Jr Foundation. The authors thank members of their laboratories and other colleagues for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramanujan S. Hegde or Robert J. Keenan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Protein Databank

1RHZ

2WOJ

2WOO

3IQX

3KL4

3NBD

3ZS8

3ZS9

FURTHER INFORMATION

Ramanujan S. Hegde's homepage

Robert J. Keenan's homepage

Glossary

Chaperones

A large group of proteins that facilitate the folding, assembly, transport and degradation of non-native polypeptides by minimizing inappropriate interactions.

Ribosomal exit tunnel

An internal channel in the large subunit of the ribosome through which the nascent polypeptide travels before emerging into the cytosol. Various factors bound to the ribosome surface can affect the folding and/or targeting of the nascent polypeptide as it emerges from the exit tunnel.

Translocon

A membrane channel that is associated with the transport of polypeptides into or across cellular membranes.

SNARE

(Soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein (SNAP) receptor). A family of tail-anchored coiled-coil proteins that regulate fusion reactions and target specificity in vesicle trafficking.

Heat shock protein 70

(HSP70). A ubiquitous family of 70 kDa heat-shock proteins that serve as molecular chaperones to regulate polypeptide folding, translocation and degradation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegde, R., Keenan, R. Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat Rev Mol Cell Biol 12, 787–798 (2011). https://doi.org/10.1038/nrm3226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing