Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The MRE11 complex: at the crossroads of DNA repair and checkpoint signalling

Abstract

The Mre11 complex is a multisubunit nuclease that is composed of Mre11, Rad50 and Nbs1/Xrs2. Mutations in the genes that encode components of this complex result in DNA- damage sensitivity, genomic instability, telomere shortening and aberrant meiosis. The molecular defect that underlies these phenotypes has long been thought to be related to a DNA repair deficiency. However, recent studies have uncovered functions for the Mre11 complex in checkpoint signalling and DNA replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Components of the Mre11 complex.
Figure 2: Architecture of the Mre11 complex.
Figure 3: The DNA end-bridging activity of Rad50.
Figure 4: Functional organization of DNA-damage-induced checkpoint signalling in eukaryotes.
Figure 5: Model for the role of the Mre11 complex in DNA-damage signalling.

Similar content being viewed by others

References

  1. Cox, B. S. & Parry, J. M. The isolation, genetics and survival characteristics of ultraviolet light-sensitive mutants in yeast. Mutat. Res. 6, 37?55 (1968).

    Article  CAS  PubMed  Google Scholar 

  2. Suslova, N. G. & Zakharov, I. A. The gene-controlled radiation sensitivity of yeast. VII. Identification of the genes for the X-ray sensitivity. Genetika 6, 158?163 (1970).

    Google Scholar 

  3. Ajimura, M., Leem, S. H. & Ogawa, H. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133, 51?66 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ivanov, E. L., Sugawara, N., White, C. I., Fabre, F. & Haber, J. E. Mutations in XRS2 and RAD50 delay but do not prevent mating type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 3414?3425 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Johzuka, K. & Ogawa, H. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139, 1521?1532 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Richard, G. F., Goellner, G. M., McMurray, C. T. & Haber, J. E. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11?RAD50?XRS2 complex. EMBO J. 19, 2381?2390 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D'Amours, D. & Jackson, S. P. The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes Dev. 15, 2238?2249 (2001).This paper, with reference 105 , is the first demonstration of a checkpoint defect in yeast cells that are deficient in the Mre11 complex. This study also shows that Mre11 and Xrs2 are phosphorylated by Tel1 ? the yeast homologue of ATM ? in wild-type cells that are treated with DNA-damaging agents. Considered with previous evidence in humans, this study shows that the Mre11 complex has a conserved role in eukaryotic checkpoint signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carney, J. P. et al. The hMre11?hRad50 protein complex and Nijmegen breakage syndrome: linkage of double strand break repair to the cellular DNA damage response. Cell 93, 477?486 (1998).This study, with references 9 and 10 , shows that mutations in the gene that encodes Nbs1 are responsible for the Nijmegen breakage syndrome.

    Article  CAS  PubMed  Google Scholar 

  9. Matsuura, S. et al. Positional cloning of the gene for Nijmegen breakage syndrome. Nature Genet. 19, 179?181 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Varon, R. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93, 467?476 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. The International Nijmegen Breakage Syndrome Study Group. Nijmegen breakage syndrome. Arch. Dis. Child. 82, 400?406 (2000).

  12. Petrini, J. H. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol. 12, 293?296 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Nove, J., Little, J. B., Mayer, P. J., Troilo, P. & Nichols, W. W. Hypersensitivity of cells from a new chromosomal-breakage syndrome to DNA-damaging agents. Mutat. Res. 163, 255?262 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Stewart, G. S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577?587 (1999).This study shows that mutations in the gene that encodes human Mre11 result in ataxia-telangiectasia-like disease. The authors also show that this disease is associated with checkpoint defects and DNA repair proficiency.

    Article  CAS  PubMed  Google Scholar 

  15. Xiao, Y. H. & Weaver, D. T. Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res. 25, 2985?2991 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo, G. B. et al. Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc. Natl Acad. Sci. USA 96, 7376?7381 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu, J., Petersen, S., Tessarollo, L. & Nussenzweig, A. Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr. Biol. 11, 105?109 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Maser, R. S., Zinkel, R. & Petrini, J. H. J. An alternative mode of translation permits production of a variant NBS1 protein from the common Nijmegen breakage syndrome allele. Nature Genet. 27, 417?421 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Usui, T. et al. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95, 705?716 (1998).This report provides an extensive analysis of the biochemical properties of the Mre11 complex in yeast, and provides the first demonstration that Xrs2 physically interacts with Mre11.

    Article  CAS  PubMed  Google Scholar 

  20. Chamankhah, M. & Xiao, W. Formation of the yeast Mre11?Rad50?Xrs2 complex is correlated with DNA repair and telomere maintenance. Nucleic Acids Res. 27, 2072?2079 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Desai-Mehta, A., Cerosaletti, K. M. & Concannon, P. Distinct functional domains of nibrin mediate Mre11 binding, focus formation, and nuclear localization. Mol. Cell. Biol. 21, 2184?2191 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Furuse, M. et al. Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J. 17, 6412?6425 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Paull, T. T. & Gellert, M. The 3′ to 5′ exonuclease activity of Mre11 facilitates repair of DNA double strand breaks. Mol. Cell 1, 969?979 (1998).This represents the first demonstration of the nuclease activity of the Mre11 complex using purified components.

    Article  CAS  PubMed  Google Scholar 

  24. Sharples, G. J. & Leach, D. R. F. Structural and functional similarities between the SbcCD proteins of Escherichia coli and the Rad50 and Mre11 (Rad32) recombination and repair proteins of yeast. Mol. Microbiol. 17, 1215?1217 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Trujillo, K. M., Yuan, S. S. F., Lee, E. & Sung, P. Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J. Biol. Chem. 273, 21447?21450 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Trujillo, K. M. & Sung, P. DNA structure-specific nuclease activities in the Saccharomyces cerevisiae Rad50?Mre11 complex. J. Biol. Chem. 276, 35458?35464 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Paull, T. T. & Gellert, M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11?Rad50 complex. Genes Dev. 13, 1276?1288 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paull, T. T. & Gellert, M. A mechanistic basis for Mre11-directed DNA joining at microhomologies. Proc. Natl Acad. Sci. USA 97, 6409?6414 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Jager, M. et al. DNA-binding and strand-annealing activities of human Mre11: implications for its roles in DNA double-strand break repair pathways. Nucleic Acids Res. 29, 1317?1325 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Jager, M. et al. Human Rad50?Mre11 is a flexible complex that can tether DNA ends. Mol. Cell 8, 1129?1135 (2001).Along with references 31 and 39 , this study provides important insights into the general architecture and DNA-binding properties of the Mre11 complex.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, L., Trujillo, K., Ramos, W., Sung, P. & Tomkinson, A. E. Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol. Cell 8, 1105?1115 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Alani, E., Subbiah, S. & Kleckner, N. The yeast RAD50 gene encodes a predicted 153-kD protein containing a purine nucleotide-binding domain and two large heptad-repeat regions. Genetics 122, 47?57 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dolganov, G. M. et al. Human Rad50 is physically associated with human Mre11. Identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol. Cell. Biol. 16, 4832?4841 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alani, E., Padmore, R. & Kleckner, N. Analysis of wild type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61, 419?436 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Hopfner, K. P. et al. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101, 789?800 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Gorbalenya, A. E. & Koonin, E. V. Superfamily of UvrA-related NTP-binding proteins. Implications for rational classification of recombination/repair systems. J. Mol. Biol. 213, 583?591 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Hopfner, K. P. et al. Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105, 473?485 (2001).This structural analysis of the archaeal homologues of Mre11 and Rad50 provides important insights into the mechanistic aspects of the nuclease activity of Mre11.

    Article  CAS  PubMed  Google Scholar 

  38. Hirano, T. The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev. 16, 399?414 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Anderson, D. E., Trujillo, K. M., Sung, P. & Erickson, H. P. Structure of the Rad50?Mre11 DNA repair complex from Saccharomyces cerevisiae by electron microscopy. J. Biol. Chem. 276, 37027?37033 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Klein, H. L. & Kreuzer, K. N. Replication, recombination, and repair: going for the gold. Mol. Cell 9, 471?480 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Paques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349?404 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saeki, T., Machida, I. & Nakai, S. Genetic control of diploid recovery after γ-irradiation in the yeast Saccharomyces cerevisiae. Mutat. Res. 73, 251?265 (1980).

    Article  CAS  PubMed  Google Scholar 

  43. Malone, R. E. & Esposito, R. E. Recombinationless meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 1, 891?901 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ivanov, E. L., Korolev, V. G. & Fabre, F. XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132, 651?664 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kadyk, L. C. & Hartwell, L. H. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132, 387?402 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hofmann, K. & Bucher, P. The FHA domain: a putative nuclear signaling domain found in protein kinases and transcription factors. Trends Biochem. Sci. 20, 347?349 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Durocher, D., Henckel, J., Fersht, A. R. & Jackson, S. P. The FHA domain is a modular phosphopeptide recognition motif. Mol. Cell 4, 387?394 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Tauchi, H. et al. The forkhead-associated domain of NBS1 is essential for nuclear foci formation after irradiation but not essential for hRAD50?hMRE11?NBS1 complex DNA repair activity. J. Biol. Chem. 276, 12?15 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Bork, P. et al. A superfamily of conserved domains in DNA damage responsive cell cycle checkpoint proteins. FASEB J. 11, 68?76 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Nelms, B. E., Maser, R. S., MacKay, J. F., Lagally, M. G. & Petrini, J. H. J. In situ visualization of DNA double strand break repair in human fibroblasts. Science 280, 590?592 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Maser, R. S., Monsen, K. J., Nelms, B. E. & Petrini, J. H. J. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol. Cell. Biol. 17, 6087?6096 (1997).This provides the first demonstration of the subcellular relocalization of Mre11 to nuclear foci in response to DNA damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Limoli, C. L., Giedzinski, E., Morgan, W. F. & Cleaver, J. E. Polymerase η deficiency in the xeroderma pigmentosum variant uncovers an overlap between the S phase checkpoint and double-strand break repair. Proc. Natl Acad. Sci. USA 97, 7939?7946 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mirzoeva, O. K. & Petrini, J. H. DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol. Cell. Biol. 21, 281?288 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maser, R. S. et al. Mre11 complex and DNA replication: linkage to E2F and sites of DNA synthesis. Mol. Cell. Biol. 21, 6006?6016 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lombard, D. B. & Guarente, L. Nijmegen breakage syndrome disease protein and MRE11 at PML nuclear bodies and meiotic telomeres. Cancer Res. 60, 2331?2334 (2000).

    CAS  PubMed  Google Scholar 

  56. Wu, G., Lee, W.-H. & Chen, P.-L. NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. Implication of NBS1 in alternative lengthening of telomeres. J. Biol. Chem. 275, 30618?30622 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Paull, T. T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886?895 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Chen, H. T. et al. Response to RAG-mediated V(D)J cleavage by NBS1 and γ-H2AX. Science 290, 1962?1964 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660?665 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Limoli, C. L., Giedzinski, E., Bonner, W. M. & Cleaver, J. E. UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, γ-H2AX formation, and Mre11 relocalization. Proc. Natl Acad. Sci. USA 99, 233?238 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Dong, Z. W., Zhong, Q. & Chen, P.-L. The Nijmegen breakage syndrome protein is essential for Mre11 phosphorylation upon DNA damage. J. Biol. Chem. 274, 19513?19516 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Stewart, G. S. et al. Residual ataxia telangiectasia mutated protein function in cells from ataxia telangiectasia patients, with 5762ins137 and 7271T?G mutations, showing a less severe phenotype. J. Biol. Chem. 276, 30133?30141 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Gatei, M. et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nature Genet. 25, 115?119 (2000).Along with references 64?66 , this study shows that Nbs1 is a key target for phosphorylation by ATM during checkpoint signalling.

    Article  CAS  PubMed  Google Scholar 

  64. Lim, D. S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613?617 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Wu, X. H. et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405, 477?482 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Zhao, S. et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405, 473?477 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Costanzo, V. et al. Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol. Cell 8, 137?147 (2001).This study shows for the first time the essential role of the Mre11 complex in DNA replication in the absence of external DNA damage. This provides a potential explanation for the requirement for the Mre11 complex to maintain viability in higher eukaryotic cells.

    Article  CAS  PubMed  Google Scholar 

  68. Montelone, B. A., Hoekstra, M. F. & Malone, R. E. Spontaneous mitotic recombination in yeast: the hyper-recombinational rem1 mutations are alleles of the RAD3 gene. Genetics 119, 289?301 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zakharov, I. A., Kasinova, G. V. & Kovaltsova, S. V. Intragenic mitotic recombination induced by ultraviolet and γ rays in radiosensitive mutants of Saccharomyces cerevisiae yeasts. Genetika 19, 49?57 (1983).

    CAS  PubMed  Google Scholar 

  70. Neecke, H., Lucchini, G. & Longhese, M. P. Cell cycle progression in the presence of irreparable DNA damage is controlled by a Mec1-and Rad53-dependent checkpoint in budding yeast. EMBO J. 18, 4485?4497 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Samadashwily, G. M., Raca, G. & Mirkin, S. M. Trinucleotide repeats affect DNA replication in vivo. Nature Genet. 17, 298?304 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Freudenreich, C. H., Kantrow, S. M. & Zakian, V. A. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279, 853?856 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Lobachev, K. S., Gordenin, D. A. & Resnick, M. A. The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108, 183?193 (2002).This study provides an interesting link between the Mre11 complex and the repair of hairpin-associated double-stranded DNA breaks in vivo.

    Article  CAS  PubMed  Google Scholar 

  74. Leach, D. R., Okely, E. A. & Pinder, D. J. Repair by recombination of DNA containing a palindromic sequence. Mol. Microbiol. 26, 597?606 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Symington, L. S. Homologous recombination is required for the viability of rad27 mutants. Nucleic Acids Res. 26, 5589?5595 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Debrauwere, H., Loeillet, S., Lin, W., Lopes, J. & Nicolas, A. Links between replication and recombination in Saccharomyces cerevisiae: a hypersensitive requirement for homologous recombination in the absence of Rad27 activity. Proc. Natl Acad. Sci. USA 98, 8263?8269 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Klein, H. L. Mutations in recombinational repair and in checkpoint control genes suppress the lethal combination of srs2Δ with other DNA repair genes in Saccharomyces cerevisiae. Genetics 157, 557?565 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Malkova, A., Ross, L., Dawson, D., Hoekstra, M. F. & Haber, J. E. Meiotic recombination initiated by a double-strand break in rad50Δ yeast cells otherwise unable to initiate meiotic recombination. Genetics 143, 741?754 (1996).This paper provides an elegant demonstration that the Mre11 complex is not essential for the repair of meiotic DNA double-strand breaks once they have been induced.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cao, L., Alani, E. & Kleckner, N. A pathway for generation and processing of double strand breaks during meiotic recombination in Saccharomyces cerevisiae. Cell 61, 1089?1101 (1990).This paper provides the first demonstration of the dual role of the Mre11 complex in the formation and resection of meiotic double-stranded DNA breaks.

    Article  CAS  PubMed  Google Scholar 

  80. Nairz, K. & Klein, F. mre11S ? a yeast mutation that blocks double strand break processing and permits nonhomologous synapsis in meiosis. Genes Dev. 11, 2272?2290 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tsubouchi, H. & Ogawa, H. A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Mol. Cell. Biol. 18, 260?268 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Eijpe, M., Offenberg, H., Goedecke, W. & Heyting, C. Localisation of RAD50 and MRE11 in spermatocyte nuclei of mouse and rat. Chromosoma 109, 123?132 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Bressan, D. A., Baxter, B. K. & Petrini, J. H. J. The Mre11?Rad50?Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 7681?7687 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moreau, S., Ferguson, J. R. & Symington, L. S. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell. Biol. 19, 556?566 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schiestl, R. H., Zhu, J. & Petes, T. D. Effect of mutations in genes affecting homologous recombination on restriction enzyme mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 4493?4500 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Moore, J. K. & Haber, J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end joining repair of double strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 2164?2173 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Boulton, S. J. & Jackson, S. P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17, 1819?1828 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Manolis, K. G. et al. Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J. 20, 210?221 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Harfst, E., Cooper, S., Neubauer, S., Distel, L. & Grawunder, U. Normal V(D)J recombination in cells from patients with Nijmegen breakage syndrome. Mol. Immunol. 37, 915?929 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Yeo, T. C. et al. V(D)J rearrangement in Nijmegen breakage syndrome. Mol. Immunol. 37, 1131?1139 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Yamaguchi-Iwai, Y. et al. Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. EMBO J. 18, 6619?6629 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bartsch, S., Kang, L. E. & Symington, L. S. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. Mol. Cell. Biol. 20, 1194?1205 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Symington, L. S., Kang, L. E. & Moreau, S. Alteration of gene conversion tract length and associated crossing over during plasmid gap repair in nuclease-deficient strains of Saccharomyces cerevisiae. Nucleic Acids Res. 28, 4649?4656 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. De la Torre-Ruiz, M. A. & Lowndes, N. F. The Saccharomyces cerevisiae DNA damage checkpoint is required for efficient repair of double strand breaks by non-homologous end joining. FEBS Lett. 467, 311?315 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Taalman, R. D., Jaspers, N. G., Scheres, J. M., de Wit, J. & Hustinx, T. W. Hypersensitivity to ionizing radiation, in vitro, in a new chromosomal breakage disorder, the Nijmegen breakage syndrome. Mutat. Res. 112, 23?32 (1983).

    CAS  PubMed  Google Scholar 

  96. Shiloh, Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu. Rev. Genet. 31, 635?662 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Jongmans, W. et al. Nijmegen breakage syndrome cells fail to induce the p53 mediated DNA damage response following exposure to ionizing radiation. Mol. Cell. Biol. 17, 5016?5022 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Matsuura, K. et al. Radiation induction of p53 in cells from Nijmegen breakage syndrome is defective but not similar to ataxia telangiectasia. Biochem. Biophys. Res. Commun. 242, 602?607 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Yamazaki, V., Wegner, R. D. & Kirchgessner, C. U. Characterization of cell cycle checkpoint responses after ionizing radiation in Nijmegen breakage syndrome cells. Cancer Res. 58, 2316?2322 (1998).

    CAS  PubMed  Google Scholar 

  100. Antoccia, A. et al. Impaired p53-mediated DNA damage response, cell-cycle disturbance and chromosome aberrations in Nijmegen breakage syndrome lymphoblastoid cell lines. Int. J. Rad. Biol. 75, 583?591 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Buscemi, G. et al. Chk2 activation dependence on Nbs1 after DNA damage. Mol. Cell. Biol. 21, 5214?5222 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Falck, J., Petrini, J. H., Williams, B. R., Lukas, J. & Bartek, J. The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nature Genet. 30, 290?294 (2002).This paper provides a clear demonstration that the intra-S phase checkpoint in humans is controlled by two parallel pathways, one of which depends on the Mre11 complex.

    Article  PubMed  Google Scholar 

  103. Yazdi, P. T. et al. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 16, 571?582 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kim, S. T., Xu, B. & Kastan, M. B. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev. 16, 560?570 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Grenon, M., Gilbert, C. & Lowndes, N. F. Checkpoint activation in response to double-strand breaks requires the Mre11?Rad50?Xrs2 complex. Nature Cell Biol. 3, 844?847 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Lydall, D. & Weinert, T. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270, 1488?1491 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Lee, S. E. et al. Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399?409 (1998).This paper provides an elegant genetic analysis of the impact of Mre11-dependent resection of double-strand breaks on the adaptation to checkpoint-induced cell-cycle arrest.

    Article  CAS  PubMed  Google Scholar 

  108. Pellicioli, A., Lee, S. B., Lucca, C., Foiani, M. & Haber, J. E. Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol. Cell 7, 293?300 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Hartsuiker, E., Vaessen, E., Carr, A. M. & Kohli, J. Fission yeast Rad50 stimulates sister chromatid recombination and links cohesion with repair. EMBO J. 20, 6660?6671 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kironmai, K. M. & Muniyappa, K. Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae. Genes Cells 2, 443?455 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Nugent, C. I. et al. Telomere maintenance is dependent on activities required for end repair of double strand breaks. Curr. Biol. 8, 657?660 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Gallego, M. E. & White, C. I. RAD50 function is essential for telomere maintenance in Arabidopsis. Proc. Natl Acad. Sci. USA 98, 1711?1716 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ranganathan, V. et al. Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit. Curr. Biol. 11, 962?966 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Diede, S. J. & Gottschling, D. E. Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere. Curr. Biol. 11, 1336?1340 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Teng, S. C., Chang, J., McCowan, B. & Zakian, V. A. Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol. Cell 6, 947?952 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Chen, Q., Ijpma, A. & Greider, C. W. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol. Cell. Biol. 21, 1819?1827 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Le, S., Moore, J. K., Haber, J. E. & Greider, C. W. RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152, 143?152 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Signon, L., Malkova, A., Naylor, M. L., Klein, H. & Haber, J. E. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break. Mol. Cell. Biol. 21, 2048?2056 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhu, X. D., Kuster, B., Mann, M., Petrini, J. H. & Lange, T. D. Cell-cycle-regulated association of RAD50?MRE11?NBS1 with TRF2 and human telomeres. Nature Genet. 25, 347?352 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503?514 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work could not be cited due to space restrictions. We thank members of the Jackson laboratory for helpful discussions. D.D. was supported by scholarships from the Conseil de Recherche en Science Naturelle et en Génie (CRSNG) du Canada, from the Fond pour la Formation de Chercheurs et l'Aide à la Recherche du Québec (Fonds FCAR) and from Cancer Research UK (CRUK). The S.P.J. laboratory is supported by grants from CRUK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Jackson.

Related links

Related links

DATABASES

Interpro

BRCT

FHA domain

OMIM

ataxia-telangiectasia

Nijmegen breakage syndrome

<i>Saccharomyces</i> Genome Database

Dnl4

Lif1

MRE11

RAD1

Rad10

Rad14

RAD27

RAD50

RAD52

Smc1

SPO13

SRS2

Tel1

XRS2

Swiss-Prot

bacteriophage T4 gp47

Cdc25A

Chk2

H2AX

KU70

Mre11

Nbs1

p21waf1

PCNA

rad32

TERT

Trf2

Glossary

EPISTATIC

Mutations that are epistatic mask the phenotype of each other.

HYPOMORPHIC MUTATION

A mutation that does not completely inactivate the product of a gene.

STRAND-DISSOCIATION ACTIVITY

The activity of a protein that facilitates the dissociation of complementary strands of a duplex DNA molecule.

STRAND-ANNEALING ACTIVITY

The activity of a protein that facilitates the formation of duplex DNA from complementary single-stranded DNA molecules.

PHOSPHOESTERASE MOTIFS

Short, evolutionarily conserved amino-acid sequences that confer an ability to hydrolyse phosphoester bonds.

EXONUCLEASE

An enzyme that catalyses the stepwise removal of mononucleotides from the termini of a DNA molecule.

ENDONUCLEASE

An enzyme that catalyses the degradation of phosphodiester bonds within a DNA molecule.

WALKER A AND B MOTIFS

Short, evolutionarily conserved amino-acid sequences that confer nucleotide-binding activity.

ABC?UVRA SUPERFAMILY

A family of proteins that contain the ATP-binding cassette (ABC), which couples ATP-dependent energy production with conformational changes in proteins.

NON-HOMOLOGOUS END-JOINING

The joining of two DNA ends that share little or no sequence homology. Also known as illegitimate recombination.

HOMOLOGOUS RECOMBINATION

A multistep process that leads to a homology-dependent association between two distinct DNA molecules.

DNA LIGASE

An enzyme that catalyses the joining of DNA molecules with 5′-phosphate- and 3′-hydroxyl-ended termini.

PML BODIES

Discrete nuclear substructures that contain many proteins, including the promyelocytic leukaemia (PML) protein.

V(D)J RECOMBINATION

The recombination between variable (V), diversity (D) and joining (J) segments of an immunoglobulin gene locus.

CLASS-SWITCH RECOMBINATION

The recombination between the repetitive switch (S) sequences of the constant (C) region of an immunoglobulin gene locus.

ATAXIA-TELANGIECTASIA, MUTATED

(ATM). A protein kinase that phosphorylates various proteins in response to DNA double-strand breaks to bring about cell-cycle arrest.

LESION-BYPASS DNA SYNTHESIS

Mutation-prone replication through DNA lesions that otherwise block the normal progression of the replication fork.

NUCLEOTIDE-EXCISION REPAIR

(NER). The pathway that is responsible for the removal of bulky, helix-distorting lesions in DNA.

ALU REPEAT

A dispersed, intermediately repetitive, 300-bp DNA sequence. There are 1,000,000 copies of Alu repeats in the human genome.

EPISTASIS GROUP

The genetic interaction between a group of genes, in which the effects of an allele of one member gene of the group hide the effects of alleles of other genes in the group.

DNA HELICASE

An enzyme that catalyses DNA-strand dissociation in a duplex DNA molecule.

INTRA-S PHASE CHECKPOINT

The mechanism that orchestrates the cellular response to DNA damage during S phase. A defective intra-S phase checkpoint is also known as radioresistant DNA synthesis (RDS) in mammalian cells.

TELOMERASE

Reverse-transcriptase-like DNA polymerase that is responsible for the elongation of chromosome ends.

TYPE-II SURVIVORS

Telomerase-deficient cells that amplify telomere repeats at the ends of their chromosomes by a Rad52-dependent, Rad51-independent recombination mechanism.

T-LOOPS

Large duplex loops that sequester chromosome extremities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Amours, D., Jackson, S. The MRE11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mol Cell Biol 3, 317–327 (2002). https://doi.org/10.1038/nrm805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm805

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing