Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Yeast and apoptosis

Abstract

Even though yeast lack much of the molecular machinery that is responsible for apoptosis in metazoans, they can be a powerful tool in apoptosis research. The ectopic expression of several animal apoptosis proteins in yeast can help us to discover new genes — and chemical compounds — that modulate the cell-death pathways of higher eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Caspase-dependent and -independent pathways of cell death in mammalian cells.

Similar content being viewed by others

References

  1. Engelberg-Kulka, H. & Glaser, G. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu. Rev. Microbiol. 53, 43–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Matsuyama, S., Nouraini, S. & Reed, J. C. Yeast as a tool for apoptosis research. Curr. Opin. Microbiol. 2, 618–623 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Fröhlich, K.-U. & Madeo, F. Apoptosis in yeast — a monocellular organism exhibits altruistic behaviour. FEBS Lett. 473, 6–9 (2000).

    Article  PubMed  Google Scholar 

  4. Beers, E. P. Programmed cell death during plant growth and development. Cell Death and Differentiation 4, 649–661 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Ellis, R., Yuan, J. & Horvitz, R. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7, 663–668 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Wyllie, A. H., Kerr, J. F. & Currie, A. R. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68, 251–306 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. Salvesen, G. S. & Dixit, V. M. Caspases: intracellular signaling by proteolysis. Cell 91, 443–446 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Reed, J. C. Mechanisms of apoptosis (Warner–Lambert Award). Am. J. Pathol. 157, 1415–1430 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, K. K. Calpain and caspase: can you tell the difference? Trends Neurosci. 23, 20–26 (2000).

    Article  PubMed  Google Scholar 

  10. Susin, S. et al. Molecular characterisation of mitochondrial apoptosis-inducing factor (AIF). Nature 397, 441–446 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Parrish, J. et al. Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412, 90–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Li, L. Y., Luo, X. & Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Jurgensmeier, J. M. et al. Bax- and Bak-induced cell death in the fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell 8, 325–339 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reed, J. C. & Bischoff, J. R. BIRinging chromosomes through cell division — and survivin' the experience. Cell 102, 545–548 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Madeo, F., Frohlich, E. & Frohlich, K. U. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139, 729–734 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Madeo, F. et al. Oxygen stress: a key to apoptosis in yeast. J. Cell Biol. 145, 757–767 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shirogane, T. et al. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 11, 709–719 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Ludovico, P., Sousa, M. J., Silva, M. T., Leao, C. & Corte-Real, M. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147, 2409–2415 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Del Carratore, R. et al. Cell cycle and morphological alterations as indicative of apoptosis promoted by UV irradiation in S. cerevisiae. Mutation Res. 513, 183–191 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Laun, P. et al. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol. Microbiol. 39, 1166–1173 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Fröhlich, K.-U. & Madeo, F. Apoptosis in yeast: a new model for aging research. Exp. Gerontol. 37, 27–31 (2001).

    Article  PubMed  Google Scholar 

  22. Madeo, F. et al. Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145, 757–767 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Swiecilo, A., Krawiec, Z., Wawryn, J., Bartosz, G. & Bilinski, T. Effect of stress on the life span of the yeast Saccharomyces cerevisiae. Acta. Biochim. Pol. 47, 355–364 (2000).

    CAS  PubMed  Google Scholar 

  24. Wawryn, J., Krzepilko, A., Myszka, A. & Bilinski, T. Deficiency in superoxide dismutases shortens life span of yeast cells. Acta. Biochim. Pol. 46, 249–253 (1999).

    CAS  PubMed  Google Scholar 

  25. Jacobson, M. D. & Raff, M. C. Programmed cell death and Bcl-2 protection in very low oxygen. Nature 374, 814–816 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Madeo, F. et al. A caspase-related protease regulates apoptosis in yeast. Mol. Cell 9, 911–917 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Uren, A. G. et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6, 961–967 (2000).

    CAS  PubMed  Google Scholar 

  28. Kane, D. J. et al. Bcl-2 inhibition of neural cell death: decreased generation of reactive oxygen species. Science 262, 1274–1276 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Kroemer, G. & Reed, J. C. Mitochondrial control of cell death. Nature Med. 6, 513–519 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Sato, T. et al. Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system. Proc. Natl Acad. Sci. USA 91, 9238–9242 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hanada, M., Aime-Sempe, C., Sato, T. & Reed, J. C. Structure–function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J. Biol. Chem. 270, 11962–11969 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Fesik, S. W. Insights into programmed cell death through structural biology. Cell 103, 273–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Schendel, S., Montal, M. & Reed, J. C. Bcl-2 family proteins as ion-channels. Cell Death Differ. 5, 372–380 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Marzo, I. et al. The pro-apoptotic protein Bax and the adenine nucleotide translocator cooperate in the control of mitochondrial membrane permeability and apoptosis. Science 281, 2027–2031 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Marzo, I. et al. The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2-related proteins. J. Exp. Med. 187, 1261–1271 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Gross, A., McDonnell, J. M. & Korsmeyer, S. J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Pavlov, E. V. et al. A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J. Cell Biol. 155, 725–731 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matsuyama, S., Schendel, S. L., Xie, Z. H. & Reed, J. C. Cytoprotection by Bcl-2 requires the pore-forming α5 and α6 helices. J. Biol. Chem. 273, 30995–31001 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Zha, H. et al. Structure–function comparisons of the proapoptotic protein Bax in yeast and mammalian cells. Mol. Cell. Biol. 16, 6494–6508 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Manon, S., Chaudhuri, B. & Buérin, M. Release of cytochrome c and decrease of cytochrome c oxidase in Bax-expressing yeast cells, and prevention of these effects by coexpression of Bcl-xL. FEBS Lett. 415, 29–32 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Minn, A. J. et al. Bcl-xL regulates apoptosis by heterodimerization-dependent and-independent mechanisms. EMBO J. 18, 632–643 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsuyama, S., Llopi, J., Deveraux, Q. L., Tsien, R. & Reed, J. C. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nature Cell Biol. 2, 318–325 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Gross, A. et al. Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and BCL-XL . Mol. Cell. Biol. 20, 3125–3136 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harris, M. H., Vander Heiden, M. G., Kron, S. J. & Thompson, C. B. Role of oxidative phosphorylation in Bax toxicity. Mol. Cell. Biol. 20, 3590–3596 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haraguchi, M. et al. Apoptotic protease activating factor (Apaf-1)-independent cell death suppression by Bcl-2. J. Exp. Med. 191, 1709–1720 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng, E. H.-Y. et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705–711 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Roucou, X., Prescott, M., Devenish, R. J. & Nagley, P. A cytochrome c–GFP fusion is not released from mitochondria into the cytoplasm upon expression of Bax in yeast cells. FEBS Lett. 471, 235–239 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Nomura, K., Imai, H., Koumura, T., Arai, M. & Nakagawa, Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase suppresses apoptosis mediated by a mitochondrial death pathway. J. Biol. Chem. 274, 29294–29302 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Oskarsson, H. J., Coppey, L., Weiss, R. M. & Li, W. G. Antioxidants attenuate myocyte apoptosis in the remote non-infarcted myocardium following large myocardial infarction. Cardiovasc. Res. 45, 679–687 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Kampranis, S. C. et al. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast. J. Biol. Chem. 275, 29207–29216 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Moon, H. et al. Soybean ascorbate peroxidase suppresses Bax-induced apoptosis in yeast by inhibiting oxygen radical generation. Biochem. Biophys. Res. Comm. 290, 457–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Longo, V. D., Ellerby, L. M., Bredesen, D. E., Valentine, J. S. & Gralla, E. B. Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J. Cell Biol. 137, 1581–1588 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marzo, I. et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027–2031 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Jacotot, E. et al. The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J. Exp. Med. 191, 33–45 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vander Heiden, M. G., Chandel, N. S., Schumacker, P. T. & Thompson, C. B. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell 3, 159–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Nouraini, S., Six, E., Matsuyama, S., Krajewski, S. & Reed, J. C. The putative pore forming-domain of Bax regulates mitochondrial localization and interaction with Bcl-XL . Mol. Cell. Biol. 20, 1604–1615 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Florio, M., Wilson, L. K., Trager, J. B., Thorner, J. & Martin, G. S. Aberrant protein phosphorylation at tyrosine is responsible for the growth-inhibitory action of pp60v-src expressed in the yeast Saccharomyces cerevisiae. Mol. Biol. Cell 5, 283–296 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Afifi, R., Sharf, R., Shtrichman, R. & Kleinberger, T. Selection of apoptosis-deficient adenovirus E4orf4 mutants in Saccharomyces cerevisiae. J. Virol. 75, 4444–4447 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roopchand, D. E. et al. Toxicity of human adenovirus E4orf4 protein in Saccharomyces cerevisiae results from interactions with the Cdc55 regulatory B subunit of PP2A. Oncogene 20, 5279–5290 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Hengartner, M. O. Programmed cell death in invertebrates. Curr. Opin. Genet. Dev. 6, 34–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, X., Chang, H. & Baltimore, D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science 281, 1355–1357 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. James, C., Gschmeissner, S., Fraser, A. & Evan, G. I. CED-4 induces chromatin condensation in Schizosaccharomyces pombe and is inhibited by direct physical association with CED-9. Curr. Biol. 7, 246–252 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Hawkins, C., Wang, S. & Hay, B. A cloning method to identify caspases and their regulators in yeast: identification of Drosophila IAP1 as an inhibitor of the Drosophila caspase DCP-1. Proc. Natl Acad. Sci. USA 96, 2885–2890 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wright, M. et al. Caspase-3 inhibits growth in Saccharomyces cerevisiae without causing cell death. FEBS Lett. 446, 9–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Ryser, S., Vial, E., Magnenat, E., Schlegel, W. & Maundrell, K. Reconstitution of caspase-mediated cell-death signalling in Schizosaccharomyces pombe. Curr. Genet. 36, 21–28 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Tao, W., Walke, D. W. & Morgan, J. I. Oligomerized Ced-4 kills budding yeast through a caspase-independent mechanism. Biochem. Biophys. Res. Commun. 260, 799–805 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Kang, J. et al. Cascades of mammalian caspase activation in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274, 3189–3198 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Hawkins, C. J. et al. Analysis of candidate antagonists of IAP-mediated caspase inhibition using yeast reconstituted with the mammalian Apaf-1-activated apoptosis mechanism. Apoptosis 6, 331–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Turner, S. J., Silke, J., Kenshole, B. & Ruby, J. Characterization of the ectomelia virus serpin, SPI-2. J. Gen. Virol. 81, 2425–2430 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Zhang, H. & Reed, J. C. Studies of apoptosis proteins in yeast. in Methods in Cell Biology Vol. 66 (eds Schwartz, L. & Ashwell, J.) 453–468 (Academic, San Diego, 2001).

    Google Scholar 

  73. Silke, J. et al. Direct inhibition of caspase-3 is dispensable for the anti-apoptotic activity of XIAP. EMBO J. 20, 3114–3123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ekert, P. G., Silke, J., Hawkins, C. J., Verhagen, A. M. & Vaux, D. L. DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J. Cell Biol. 152, 483–490 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xu, Q. & Reed, J. C. BAX inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol. Cell 1, 337–346 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, H. et al. BAR: an apoptosis regulator at the intersection of caspase and Bcl-2 family proteins. Proc. Natl Acad. Sci. USA 97, 2597–2602 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kawai, M., Pan, L., Reed, J. C. & Uchimiya, H. Evolutionally conserved plant homologue of the Bax inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast. FEBS Lett. 464, 143–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Pan, L. et al. The Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP) can function as a dominant suppressor of Bax-induced cell death of yeast. FEBS Lett. 508, 375–378 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Kawai-Yamada, M., Jin, L., Yoshinaga, K., Hirata, A. & Uchimiya, H. Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1). Proc. Natl Acad. Sci. USA 98, 12295–12300 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Levine, A., Belenghi, B., Damari-Weisler, H. & Granot, D. Vesicle-associated membrane protein of Arabidopsis suppresses Bax-induced apoptosis in yeast downstream of oxidative burst. J. Biol. Chem. 276, 46284–46289 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Mittler, R. & Lam, E. Sacrifice in the face of foes: pathogen-induced programmed cell death in plants. Trends Microbiol. 4, 10–15 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Jazwinski, S. M. The genetics of aging in the yeast Saccharomyces cerevisiae. Genetica 91, 35–51 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Muchmore, S. W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Suzuki, M., Youle, R. J. & Tjandra, N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645–654 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Stroud, R. M., Reiling, K., Wiener, M. & Freymann, D. Ion-channel-forming colicins. Curr. Opin. Struct. Biol. 8, 525–533 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Asoh, S., Nishimaki, K., Nanbu-Wakao, R. & Ohta, S. A trace amount of the human pro-apoptotic factor Bax induces bacterial death accompanied by damage of DNA. J. Biol. Chem. 273, 11384–11391 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Matsuyama, S., Xu, Q., Velours, J. & Reed, J. C. Mitochondrial F0F1-ATPase proton-pump is required for function of pro-apoptotic protein Bax in yeast and mammalian cells. Mol. Cell 1, 327–336 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Cornell for manuscript preparation and the National Institutes of Health for generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Reed.

Related links

Related links

DATABASES

Interpro

BIR

LocusLink

AIF

Bak

Bax

Bcl-XL

Bid

Flip

TUCAN

<i>Saccharomyces</i> Genome Database

Cdc48

Swiss-Prot

Annexin V

Apaf-1

Bar

Bcl-2

BI-1

caspase 3

caspase-9

caspase-10

catalase

CrmA

Endonuclease G

GFP

LacZ

Omi

pp60 Src

Smac

STAT-3

SOD

Wormbase

CED-4

CED-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, C., Reed, J. Yeast and apoptosis. Nat Rev Mol Cell Biol 3, 453–459 (2002). https://doi.org/10.1038/nrm832

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm832

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing