Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

LPS, TLR4 and infectious disease diversity

Key Points

  • A central question in infectious disease research is how the complex interplay between host and pathogen determines the outcome of infection. This article discusses a mechanism by which variability in innate immune receptors (such as Toll-like receptors, TLRs) and their bacterial ligands (such as LPS) could explain why individual members of a host population exhibit variable disease outcome.

  • Susceptibility to bacterial infection varies greatly in different members of a host population. For example, polymorphisms in innate immune genes in Drosophila have been identified and are linked to disease susceptibility. In addition, bacterial type III effectors of the plant pathogen Pseudomonas syringae show great variability in recognition by plant innate immunity.

  • In humans, polymorphisms in TLRs have been shown to be associated with a variety of diseases.

  • Lipid A is the sole portion of LPS recognized by TLR4. Lipid A is not a single molecule, but shows great diversity among different bacteria. Many lipid A structural differences are environmentally regulated by bacterial signal transduction systems, such as PhoP–PhoQ, which is highly conserved among human, plant and insect pathogens.

  • Many regulated lipid A modifications are required for bacterial virulence. For example, lipid A modifications promote virulence in a variety of pathogens including Salmonella enterica serovar Typhimurium, Legionella pneumophilia, Bordetella bronchiseptica, the insect pathogen Photorhabdus luminescens and the plant pathogen Erwinia carotovora. In many cases, lipid A modifications promote bacterial resistance to killing by antimicrobial peptides.

  • Different lipid A structures exhibit differential recognition by TLR4. Recognition of lipid A is in part determined by extracellular variable domains in TLR4 and MD2. There is evidence for positive selection in these domains across different species, which supports the hypothesis that variability in innate immune recognition determines infectious disease outcome.

  • Lipid A structures are associated with human disease. Pseudomonas aeruginosa isolated from cystic fibrosis patients exhibit lipid A structures that are not found in environmental isolates.

  • When grown at 37°C, Yersinia pestis, the causative agent of plague, is not recognized by human TLR4 but is recognized by mouse TLR4. A general principle of highly virulent Gram-negative pathogens is that recognition of lipid A may be reduced. This property of Y. pestis is not present in Yersinia pseudotuberculosis, from which Y. pestis evolved, and mighty indicate co-evolution of lipid A structure with alteration in host range (insects) and increasing human virulence.

  • Innate immune stimulants and modifiers derived from lipid A may have important utility in the future to protect against infectious diseases.

Abstract

Innate immune receptors recognize microorganism-specific motifs. One such receptor–ligand complex is formed between the mammalian Toll-like receptor 4 (TLR4)–MD2–CD14 complex and bacterial lipopolysaccharide (LPS). Recent research indicates that there is significant phylogenetic and individual diversity in TLR4-mediated responses. In addition, the diversity of LPS structures and the differential recognition of these structures by TLR4 have been associated with several bacterial diseases. This review will examine the hypothesis that the variability of bacterial ligands such as LPS and their innate immune receptors is an important factor in determining the outcome of infectious disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The complexity of bacteria–host interactions.
Figure 2: Intracellular signalling by Toll-like receptors (TLRs).
Figure 3: Chemical structure of lipopolysaccharide (LPS).
Figure 4: A hypervariable region of the TLR4 extracellular domain and the C-terminus of the accessory protein MD2 evolved across species.
Figure 5: The structural diversity of lipid A in Gram-negative microorganisms.
Figure 6: The chemical structure of environmentally regulated Salmonella enterica serovar Typhimurium lipid A modifications.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Xu, J. & Gordon, J. I. Inaugural article. Honor thy symbionts. Proc. Natl Acad. Sci. USA 100, 10452–10459 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nature Immunol. 2, 947–950 (2001).

    Article  CAS  Google Scholar 

  4. Cha, J. H., Chang, M. Y., Richardson, J. A. & Eidels, L. Transgenic mice expressing the diphtheria toxin receptor are sensitive to the toxin. Mol. Microbiol. 49, 235–240 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Lecuit, M. & Cossart, P. Genetically-modified-animal models for human infections: the Listeria paradigm. Trends Mol. Med. 8, 537–542 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Ren, R. & Racaniello, V. R. Human poliovirus receptor gene expression and poliovirus tissue tropism in transgenic mice. J. Virol. 66, 296–304 (1992). Host susceptibility to infectious diseases is determined by a single receptor.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Altare, F. et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 280, 1432–1435 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Newport, M. J. et al. A mutation in the interferon-γ-receptor gene and susceptibility to mycobacterial infection. N. Engl. J. Med. 335, 1941–1949 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Lazzaro, B. P., Sceurman, B. K. & Clark, A. G. Genetic basis of natural variation in D. melanogaster antibacterial immunity. Science 303, 1873–1876 (2004). Studies with Drosophila melanogaster indicate innate immune diversity determines susceptibility to bacterial infection.

    Article  CAS  PubMed  Google Scholar 

  10. Nimchuk, Z., Eulgem, T., Holt, B. F. & Dangl, J. L. Recognition and response in the plant immune system. Annu. Rev. Genet. 37, 579–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Holt, B. F., Hubert, D. A. & Dangl, J. L. Resistance gene signaling in plants — complex similarities to animal innate immunity. Curr. Opin. Immunol. 15, 20–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Chang, J. H., Goel, A. K., Grant, S. R. & Dangl, J. L. Wake of the flood: ascribing functions to the wave of type III effector proteins of phytopathogenic bacteria. Curr. Opin. Microbiol. 7, 11–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Belkhadir, Y., Subramaniam, R. & Dangl, J. L. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr. Opin. Plant Biol. 7, 391–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Guttman, D. S. et al. A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science 295, 1722–1726 (2002). Type III effectors of the plant pathogen Pseudomonas syringae are ligands recognized by plant innate immunity and show great interstrain diversity.

    Article  CAS  PubMed  Google Scholar 

  15. Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nature Immunol. 4, 702–707 (2003).

    Article  CAS  Google Scholar 

  16. Girardin, S. E. et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Girardin, S. E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997). Identification and cloning of human Toll-like receptor shows that innate immunity is conserved from fruit fly to human.

    Article  CAS  PubMed  Google Scholar 

  19. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998). Genetic evidence links LPS responsiveness to TLR4.

    Article  CAS  PubMed  Google Scholar 

  21. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Aliprantis, A. O. et al. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285, 736–739 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Lund, J. M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl Acad. Sci. USA 101, 5598–5603 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsumoto, M. et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171, 3154–3162 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, J. et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc. Natl Acad. Sci. USA 100, 6646–6651 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Medzhitov, R. Toll-like receptors and innate immunity. Nature Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  Google Scholar 

  30. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Arbour, N. C. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nature Genet. 25, 187–191 (2000). Human TLR4 polymorphisms affect LPS recognition.

    Article  CAS  PubMed  Google Scholar 

  32. Lorenz, E., Mira, J. P., Frees, K. L. & Schwartz, D. A. Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch. Intern. Med. 162, 1028–1032 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Lorenz, E., Hallman, M., Marttila, R., Haataja, R. & Schwartz, D. A. Association between the Asp299Gly polymorphisms in the Toll-like receptor 4 and premature births in the Finnish population. Pediatr. Res. 52, 373–376 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Torok, H. P., Glas, J., Tonenchi, L., Mussack, T. & Folwaczny, C. Polymorphisms of the lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin. Immunol. 112, 85–91 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Kiechl, S. et al. Toll-like receptor 4 polymorphisms and atherogenesis. N. Engl. J. Med. 347, 185–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Smirnova, I., Poltorak, A., Chan, E. K., McBride, C. & Beutler, B. Phylogenetic variation and polymorphism at the Toll-like receptor 4 locus (TLR4). Genome Biol. 1, R002 (2000).

    Article  Google Scholar 

  37. Smirnova, I., Hamblin, M. T., McBride, C., Beutler, B. & Di Rienzo, A. Excess of rare amino acid polymorphisms in the Toll-like receptor 4 in humans. Genetics 158, 1657–1664 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Smirnova, I. et al. Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc. Natl Acad. Sci. USA 100, 6075–6080 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Bochud, P. Y., Hawn, T. R. & Aderem, A. Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J. Immunol. 170, 3451–3454 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Kang, T. J. & Chae, G. T. Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol. Med. Microbiol. 31, 53–58 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Hawn, T. R. et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires' disease. J. Exp. Med. 198, 1563–1572 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Raetz, C. R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Angus, D. C. et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29, 1303–1310 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J. & Mathison, J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qureshi, S. T. et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (TLR4). J. Exp. Med. 189, 615–625 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the LPS gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  PubMed  Google Scholar 

  49. Nagai, Y. et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nature Immunol. 3, 667–672 (2002).

    Article  CAS  Google Scholar 

  50. Haziot, A., Ferrero, E., Lin, X. Y., Stewart, C. L. & Goyert, S. M. CD14-deficient mice are exquisitely insensitive to the effects of LPS. Prog. Clin. Biol. Res. 392, 349–351 (1995).

    CAS  PubMed  Google Scholar 

  51. Hamann, L. et al. A coding mutation within the first exon of the human MD-2 gene results in decreased lipopolysaccharide-induced signaling. Genes Immun. 5, 283–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Vogel, S. N., Madonna, G. S., Wahl, L. M. & Rick, P. D. In vitro stimulation of C3H/HeJ spleen cells and macrophages by a lipid A precursor molecule derived from Salmonella typhimurium. J. Immunol. 132, 347–353 (1984).

    CAS  PubMed  Google Scholar 

  53. Golenbock, D. T., Hampton, R. Y., Qureshi, N., Takayama, K. & Raetz, C. R. Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J. Biol. Chem. 266, 19490–19498 (1991).

    CAS  PubMed  Google Scholar 

  54. Kawasaki, K. et al. Mouse Toll-like receptor 4–MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by taxol. J. Biol. Chem. 275, 2251–2254 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Kawasaki, K., Gomi, K. & Nishijima, M. Cutting edge: Gln22 of mouse MD-2 is essential for species-specific lipopolysaccharide mimetic action of taxol. J. Immunol. 166, 11–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Saitoh, S. et al. Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization. Int. Immunol. 16, 961–969 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Akashi, S. et al. Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int. Immunol. 13, 1595–1599 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Hajjar, A. M., Ernst, R. K., Tsai, J. H., Wilson, C. B. & Miller, S. I. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nature Immunol. 3, 354–359 (2002). Identification of a hypervariable, species-specific TLR4 domain that determines recognition of diverse lipid A structures.

    Article  CAS  Google Scholar 

  59. Schromm, A. B. et al. The charge of endotoxin molecules influences their conformation and IL-6-inducing capacity. J. Immunol. 161, 5464–5471 (1998).

    CAS  PubMed  Google Scholar 

  60. Schromm, A. B. et al. Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur. J. Biochem. 267, 2008–2013 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Somerville, J. E. Jr, Cassiano, L. & Darveau, R. P. Escherichia coli msbB gene as a virulence factor and a therapeutic target. Infect. Immun. 67, 6583–6590 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Girard, R. et al. Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2. J. Cell Sci. 116, 293–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Moran, A. P., Lindner, B. & Walsh, E. J. Structural characterization of the lipid A component of Helicobacter pylori rough- and smooth-form lipopolysaccharides. J. Bacteriol. 179, 6453–6463 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smith, M. F. Jr. et al. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-κB activation and chemokine expression by epithelial cells. J. Biol. Chem. 278, 32552–32560 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Smith, K. D. et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nature Immunol. 4, 1247–1253 (2003).

    Article  CAS  Google Scholar 

  66. Lee, S. K. et al. Helicobacter pylori flagellins have very low intrinsic activity to stimulate human gastric epithelial cells via TLR5. Microbes Infect. 5, 1345–1356 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Ernst, R. K., Guina, T. & Miller, S. I. Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect. 3, 1327–1334 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Hyytiainen, H., Sjoblom, S., Palomaki, T., Tuikkala, A. & Tapio Palva, E. The PmrA–PmrB two-component system responding to acidic pH and iron controls virulence in the plant pathogen Erwinia carotovora ssp. carotovora. Mol. Microbiol. 50, 795–807 (2003).

    Article  PubMed  CAS  Google Scholar 

  69. Derzelle, S. et al. The PhoP–PhoQ two-component regulatory system of Photorhabdus luminescens is essential for virulence in insects. J. Bacteriol. 186, 1270–1279 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hancock, R. E. & Diamond, G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8, 402–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol. 3, 710–720 (2003).

    Article  CAS  Google Scholar 

  72. Guo, L. et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95, 189–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Guina, T., Yi, E. C., Wang, H., Hackett, M. & Miller, S. I. A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to α-helical antimicrobial peptides. J. Bacteriol. 182, 4077–4086 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guo, L. et al. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP–phoQ. Science 276, 250–253 (1997). Evidence that environmentally regulated diversity of lipid A structures require a bacterial two-component system.

    Article  CAS  PubMed  Google Scholar 

  75. Rebeil, R., Ernst, R. K., Gowen, B. B., Miller, S. I. & Hinnebusch, B. J. Variation in lipid A structure in the pathogenic yersiniae. Mol. Microbiol. 52, 1363–1373 (2004). Evidence of mammalian-specific lipid A modifications in Yersinia species.

    Article  CAS  PubMed  Google Scholar 

  76. Alpuche Aranda, C. M., Swanson, J. A., Loomis, W. P. & Miller, S. I. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc. Natl Acad. Sci. USA 89, 10079–10083 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rosenberger, C. M., Gallo, R. L. & Finlay, B. B. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc. Natl Acad. Sci. USA 101, 2422–2427 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kawasaki, K., Ernst, R. K. & Miller, S. I. 3-O-deacylation of lipid A by PagL, a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium, modulates signaling through Toll-like receptor 4. J. Biol. Chem. 279, 20044–20048 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Gunn, J. S. et al. PmrA–PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol. Microbiol. 27, 1171–1182 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Trent, M. S., Pabich, W., Raetz, C. R. & Miller, S. I. A PhoP/PhoQ-induced lipase (PagL) that catalyzes 3-O-deacylation of lipid A precursors in membranes of Salmonella typhimurium. J. Biol. Chem. 276, 9083–9092 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Gibbons, H. S., Lin, S., Cotter, R. J. & Raetz, C. R. Oxygen requirement for the biosynthesis of the S-2-hydroxymyristate moiety in Salmonella typhimurium lipid A. Function of LpxO, a new Fe2+/α-ketoglutarate-dependent dioxygenase homologue. J. Biol. Chem. 275, 32940–32949 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Lee, H., Hsu, F. F., Turk, J. & Groisman, E. A. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J. Bacteriol. 186, 4124–4133 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Helander, I. M., Kilpelainen, I. & Vaara, M. Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study. Mol. Microbiol. 11, 481–487 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Nummila, K., Kilpelainen, I., Zahringer, U., Vaara, M. & Helander, I. M. Lipopolysaccharides of polymyxin B-resistant mutants of Escherichia coli are extensively substituted by 2-aminoethyl pyrophosphate and contain aminoarabinose in lipid A. Mol. Microbiol. 16, 271–278 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Trent, M. S., Ribeiro, A. A., Lin, S., Cotter, R. J. & Raetz, C. R. An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J. Biol. Chem. 276, 43122–43131 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Roland, K. L., Martin, L. E., Esther, C. R. & Spitznagel, J. K. Spontaneous pmrA mutants of Salmonella typhimurium LT2 define a new two-component regulatory system with a possible role in virulence. J. Bacteriol. 175, 4154–4164 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gunn, J. S., Ryan, S. S., Van Velkinburgh, J. C., Ernst, R. K. & Miller, S. I. Genetic and functional analysis of a PmrA–PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar Typhimurium. Infect. Immun. 68, 6139–6146 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Robey, M., O'Connell, W. & Cianciotto, N. P. Identification of Legionella pneumophila rcp, a pagP-like gene that confers resistance to cationic antimicrobial peptides and promotes intracellular infection. Infect. Immun. 69, 4276–4286 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Preston, A. et al. Bordetella bronchiseptica PagP is a Bvg-regulated lipid A palmitoyl transferase that is required for persistent colonization of the mouse respiratory tract. Mol. Microbiol. 48, 725–736 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Ernst, R. K. et al. Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286, 1561–1565 (1999). Association of specific lipid A modifications with human disease.

    Article  CAS  PubMed  Google Scholar 

  91. Coats, S. R., Reife, R. A., Bainbridge, B. W., Pham, T. T. & Darveau, R. P. Porphyromonas gingivalis lipopolysaccharide antagonizes Escherichia coli lipopolysaccharide at Toll-like receptor 4 in human endothelial cells. Infect. Immun. 71, 6799–6807 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Achtman, M. et al. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl Acad. Sci. USA 96, 14043–14048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Qureshi, N., Mascagni, P., Ribi, E. & Takayama, K. Monophosphoryl lipid A obtained from lipopolysaccharides of Salmonella minnesota R595. Purification of the dimethyl derivative by high performance liquid chromatography and complete structural determination. J. Biol. Chem. 260, 5271–5278 (1985).

    CAS  PubMed  Google Scholar 

  94. Persing, D. H. et al. Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol. 10, S32–S37 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Stover, A. G. et al. Structure–activity relationship of synthetic Toll-like receptor 4 agonists. J. Biol. Chem. 279, 4440–4449 (2004).

    Article  PubMed  Google Scholar 

  96. Hawkins, L. D., Christ, W. J. & Rossignol, D. P. Inhibition of endotoxin response by synthetic TLR4 antagonists. Curr. Top. Med. Chem. 4, 1147–1171 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Baldridge, J. R. et al. Immunostimulatory activity of aminoalkyl glucosaminide 4-phosphates (AGPs): induction of protective innate immune responses by RC-524 and RC-529. J. Endotoxin Res. 8, 453–458 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank T. Freeman for calculating the synonymous/non-synonymous content of TLR4 and MD2. We thank C. Wilson and members of the Miller lab for helpful discussions. The authors were supported by grants from the NIAID, and Cystic Fibrosis Foundation grants to S.I.M., a NIH grant to R.K.E and an Emmy-Noether fellowship from Deutsche Forschungsgemeinschaft to M.W.B. S.I.M. and R.K.E. were funded by the NIAID Research Centre for Excellence in Biodefense and Emerging Infectious Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel I. Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Drosophila melanogaster

Escherichia coli

Helicobacter pylori

IL-6

IRAK1

Legionella pneumophila

Mycobacterium leprae

NF-κB

PhoP

PhoQ

Porphyromonas gingivalis

Pseudomonas syringae

Salmonella enterica serovar Typhi

Salmonella enterica serovar Typhimurium

Serratia marcescens

TLR2

TLR3

TLR4

TLR5

TLR8

TLR9

TNF

TRAF6

Yersinia enterocolitica

Yersinia pestis

Yersinia pseudotuberculosis

FURTHER INFORMATION

Samuel I. Miller's laboratory

DnaSP 3.51

DisplayFam

Multalin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, S., Ernst, R. & Bader, M. LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3, 36–46 (2005). https://doi.org/10.1038/nrmicro1068

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1068

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing