Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifarious, multireplicon Burkholderia cepacia complex

Key Points

  • Members of the Burkholderia cepacia complex (Bcc) can cause disease or can be beneficial for plants. The Bcc bacteria are nutritionally diverse and can grow in diverse environments; some can even degrade important pollutants or can use penicillin G as a sole source of carbon.

  • Bcc bacteria can act as opportunistic pathogens and are associated with a variable clinical course in patients with cystic fibrosis (CF) that can include severe lung infections, necrotizing pneumonia and septicaemia.

  • The Bcc currently includes nine species (genomovars). The most common species that cause infections in CF patients are B. cenocepacia (genomovar III) and B. multivorans (genomovar II).

  • Epidemiological studies have identified highly transmissible clones of Bcc bacteria, some of which have been associated with serious outbreaks among CF patients. One of the most prevalent belongs to the ET-12 lineage.

  • However, the factors responsible for the transmission and virulence of these or other epidemic strains have not been identified. It is suggested that, in addition to bacterial factors, the host response is responsible for the variable clinical course among patients.

  • The availability of genome sequence data for the ET-12 lineage strain B. cenocepacia J2315 has led to the identification of novel genomic islands and facilitated the development of genetic tools to investigate the pathogenesis of this bacterium.

  • These tools have been exploited, along with various models systems that include infections in cell cultures, animals, plants, worms, and amoebae, which have led to the identification and characterization of potential virulence factors.

Abstract

The Burkholderia cepacia complex (Bcc) is a collection of genetically distinct but phenotypically similar bacteria that are divided into at least nine species. Bcc bacteria are found throughout the environment, where they can have both beneficial and detrimental effects on plants and some members can also degrade natural and man-made pollutants. Bcc bacteria are now recognized as important opportunistic pathogens that can cause variable lung infections in cystic fibrosis patients, which result in asymptomatic carriage, chronic infection or 'cepacia syndrome', which is characterized by a rapid decline in lung function that can include invasive disease. Here we highlight the unique characteristics of the Bcc, focusing on the factors that determine virulence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Beneficial and detrimental effects of the Burkholderia cepacia complex.
Figure 2: Genomic structure and major virulence factors of Burkholderia cenocepacia ET-12.
Figure 3: Structure of Burkholderia cepacia complex lipopolysaccharide and antibiotic-resistance mechanisms.

Similar content being viewed by others

References

  1. Coenye, T., Vandamme, P., Govan, J. R. & LiPuma, J. J. Taxonomy and identification of the Burkholderia cepacia complex. J. Clin. Microbiol. 39, 3427–3436 (2001). Highlights the complexity of the Bcc and the most useful methods that are used to identify these bacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burkholder, W. H. Sour skin, a bacterial rot of onion bulbs. Phytopathol. 40, 115–117 (1950).

    Google Scholar 

  3. Parke, J. L. & Gurian-Sherman, D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu. Rev. Phytopathol. 39, 225–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Lessie, T. G., Hendrickson, W., Manning, B. D. & Devereux, R. Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiol. Lett. 144, 117–128 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Govan, J. R., Hughes, J. E. & Vandamme, P. Burkholderia cepacia: medical, taxonomic and ecological issues. J. Med. Microbiol. 45, 395–407 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Yabuuchi, E. et al. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 36, 1251–1275 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Vandamme, P. et al. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int. J. Syst. Bacteriol. 47, 1188–1200 (1997). Seminal taxonomic paper that redefines the species diversity in the Bcc.

    Article  CAS  PubMed  Google Scholar 

  8. Isles, A. et al. Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J. Pediatr. 104, 206–210 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. Goldmann, D. A. & Klinger, J. D. Pseudomonas cepacia: biology, mechanisms of virulence, epidemiology. J. Pediatr. 108, 806–812 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Banerjee, D. & Stableforth, D. The treatment of respiratory Pseudomonas infection in cystic fibrosis: what drug and which way? Drugs 60, 1053–1064 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. LiPuma, J. J. Burkholderia cepacia. Management issues and new insights. Clin. Chest Med. 19, 473–486 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Moore, J. E. & Elborn, J. S. Burkholderia cepacia and cystic fibrosis — 50 years on. Commun. Dis. Public Health 4, 114–116 (2001).

    CAS  PubMed  Google Scholar 

  13. Chernish, R. N. & Aaron, S. D. Approach to resistant Gram-negative bacterial pulmonary infections in patients with cystic fibrosis. Curr. Opin. Pulm. Med. 9, 509–515 (2003).

    Article  PubMed  Google Scholar 

  14. Coenye, T. & Vandamme, P. Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ. Microbiol. 5, 719–729 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez, C. F., Pettit, E. A., Valadez, V. A. & Provin, E. M. Mobilization, cloning, and sequence determination of a plasmid-encoded polygalacturonase from a phytopathogenic Burkholderia (Pseudomonas) cepacia. Mol. Plant Microbe Interact. 10, 840–851 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Engledow, A. S., Medrano, E. G., Mahenthiralingam, E., LiPuma, J. J. & Gonzalez, C. F. Involvement of a plasmid-encoded type IV secretion system in the plant tissue watersoaking phenotype of Burkholderia cenocepacia. J. Bacteriol. 186, 6015–6024 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steffan, R. J., Sperry, K. L., Walsh, M. T., Vainberg, S. & Condee, C. W. Field-scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater. Environ. Sci. Technol. 33, 2771–2781 (1999).

    Article  CAS  Google Scholar 

  18. Hutchinson, G. R. et al. Home-use nebulizers: a potential primary source of Burkholderia cepacia and other colistin-resistant, Gram-negative bacteria in patients with cystic fibrosis. J. Clin. Microbiol. 34, 584–587 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Oie, S. & Kamiya, A. Microbial contamination of antiseptics and disinfectants. Am. J. Infect. Control 24, 389–395 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Huang, C. H. et al. Characteristics of patients with Burkholderia cepacia bacteremia. J. Microbiol. Immunol. Infect. 34, 215–219 (2001).

    CAS  PubMed  Google Scholar 

  21. Speert, D. P. Understanding Burkholderia cepacia: epidemiology, genomovars, and virulence. Infect. Med. 18, 49–56 (2001).

    Google Scholar 

  22. Johnston, R. B. Jr. Clinical aspects of chronic granulomatous disease. Curr. Opin. Hematol. 8, 17–22 (2001).

    Article  PubMed  Google Scholar 

  23. Guide, S. V. et al. Reinfection, rather than persistent infection, in patients with chronic granulomatous disease. J. Infect. Dis. 187, 845–853 (2003).

    Article  PubMed  Google Scholar 

  24. Govan, J. R. et al. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 342, 15–19 (1993). First clear indication of the role of social contact in the patient-to-patient transmission of the organism.

    Article  CAS  PubMed  Google Scholar 

  25. Tablan, O. C. et al. Pseudomonas cepacia colonization in patients with cystic fibrosis: risk factors and clinical outcome. J. Pediatr. 107, 382–387 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Mahenthiralingam, E. et al. Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans. Clin. Infect. Dis. 33, 1469–1475 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Corey, M. & Farewell, V. Determinants of mortality from cystic fibrosis in Canada, 1970–1989. Am. J. Epidemiol. 143, 1007–1017 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Frangolias, D. D. et al. Burkholderia cepacia in cystic fibrosis. Variable disease course. Am. J. Respir. Crit. Care Med. 160, 1572–1577 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Mahenthiralingam, E., Baldwin, A. & Vandamme, P. Burkholderia cepacia complex infection in patients with cystic fibrosis. J. Med. Microbiol. 51, 533–538 (2002).

    Article  PubMed  Google Scholar 

  30. LiPuma, J. J., Dasen, S. E., Nielson, D. W., Stern, R. C. & Stull, T. L. Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet 336, 1094–1096 (1990). First use of molecular epidemiological methods to define patient-to-patient spread among individuals with CF.

    Article  CAS  PubMed  Google Scholar 

  31. Siddiqui, A. H. et al. An episodic outbreak of genetically related Burkholderia cepacia among non-cystic fibrosis patients at a university hospital. Infect. Control Hosp. Epidemiol. 22, 419–422 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Holmes, A. et al. An epidemic of Burkholderia cepacia transmitted between patients with and without cystic fibrosis. J. Infect. Dis. 179, 1197–1205 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Saiman, L. & Siegel, J. Infection control in cystic fibrosis. Clin. Microbiol. Rev. 17, 57–71 (2004). Excellent recent review that highlights antimicrobial therapy for CF patients.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gibson, R. L., Burns, J. L. & Ramsey, B. W. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 168, 918–951 (2003).

    Article  PubMed  Google Scholar 

  35. Duff, A. J. Psychological consequences of segregation resulting from chronic Burkholderia cepacia infection in adults with CF. Thorax 57, 756–758 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. LiPuma, J. J. Preventing Burkholderia cepacia complex infection in cystic fibrosis: is there a middle ground? J. Pediatr. 141, 467–469 (2002).

    Article  PubMed  Google Scholar 

  37. LiPuma, J. J., Spilker, T., Coenye, T. & Gonzalez, C. F. An epidemic Burkholderia cepacia complex strain identified in soil. Lancet 359, 2002–2003 (2002).

    Article  PubMed  Google Scholar 

  38. Holmes, A., Govan, J. & Goldstein, R. Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health? Emerg. Infect. Dis. 4, 221–227 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. LiPuma, J. J. & Mahenthiralingam, E. Commercial use of Burkholderia cepacia. Emerg. Infect. Dis. 5, 305–306 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Biddick, R., Spilker, T., Martin, A. & LiPuma, J. J. Evidence of transmission of Burkholderia cepacia, Burkholderia multivorans and Burkholderia dolosa among persons with cystic fibrosis. FEMS Microbiol. Lett. 228, 57–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Cunha, M. V. et al. Molecular analysis of Burkholderia cepacia complex isolates from a Portuguese cystic fibrosis center: a 7-year study. J. Clin. Microbiol. 41, 4113–4120 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. LiPuma, J. J. et al. Ribotype analysis of Pseudomonas cepacia from cystic fibrosis treatment centers. J. Pediatr. 113, 859–862 (1988).

    Article  CAS  PubMed  Google Scholar 

  43. Coenye, T. & LiPuma, J. J. Multilocus restriction typing: a novel tool for studying global epidemiology of Burkholderia cepacia complex infection in cystic fibrosis. J. Infect. Dis. 185, 1454–1462 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, J. S., Witzmann, K. A., Spilker, T., Fink, R. J. & LiPuma, J. J. Endemicity and inter-city spread of Burkholderia cepacia genomovar III in cystic fibrosis. J. Pediatr. 139, 643–649 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Johnson, W. M., Tyler, S. D. & Rozee, K. R. Linkage analysis of geographic and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping. J. Clin. Microbiol. 32, 924–930 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sajjan, U. S., Sun, L., Goldstein, R. & Forstner, J. F. Cable (cbl) type II pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia: nucleotide sequence of the cblA major subunit pilin gene and novel morphology of the assembled appendage fibers. J. Bacteriol. 177, 1030–1038 (1995). Identification of the unique cable pilus virulence factor that is associated with one of the major epidemic strains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sajjan, U. S. & Forstner, J. F. Role of a 22-kilodalton pilin protein in binding of Pseudomonas cepacia to buccal epithelial cells. Infect. Immun. 61, 3157–3163 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mahenthiralingam, E., Simpson, D. A. & Speert, D. P. Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis. J. Clin. Microbiol. 35, 808–816 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Coenye, T., Spilker, T., Van Schoor, A., LiPuma, J. J. & Vandamme, P. Recovery of Burkholderia cenocepacia strain PHDC from cystic fibrosis patients in Europe. Thorax 59, 952–954 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nierman, W. C. et al. Structural flexibility in the Burkholderia mallei genome. Proc. Natl Acad. Sci. USA 101, 14246–14251 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Holden, M. T. G. et al. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Natl Acad. Sci. USA 101, 14240–1425 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stanier, R. Y., Palleroni, N. J. & Doudoroff, M. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43, 159–271 (1966).

    Article  CAS  PubMed  Google Scholar 

  53. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004). Utilization of a novel approach to identify all organisms in a given sample.

    Article  CAS  PubMed  Google Scholar 

  54. Vermis, K., Coenye, T., Mahenthiralingam, E., Nelis, H. J. & Vandamme, P. Evaluation of species-specific recA-based PCR tests for genomovar level identification within the Burkholderia cepacia complex. J. Med. Microbiol. 51, 937–940 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Hacker, J. & Kaper, J. B. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Holden, M. T. & Parkhill, J. The sequencing and analysis of the Burkholderia cenocepacia genome. Pediatr. Pulmonol. Suppl. 25, 286 (2003).

    Google Scholar 

  57. Baldwin, A., Sokol, P. A., Parkhill, J. & Mahenthiralingam, E. The Burkholderia cepacia epidemic strain marker is part of a novel genomic island encoding both virulence and metabolism-associated genes in Burkholderia cenocepacia. Infect. Immun. 72, 1537–1547 (2004). Description of the first pathogenicity island in the Bcc and the use of the epidemic strain marker as an indicator of clinical risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Summer, E. J. et al. Burkholderia cenocepacia phage BcepMu and a family of Mu-like phages encoding potential pathogenesis factors. J. Mol. Biol. 340, 49–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Cox, A. D. & Wilkinson, S. G. Ionizing groups in lipopolysaccharides of Pseudomonas cepacia in relation to antibiotic resistance. Mol. Microbiol. 5, 641–646 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Shimomura, H. et al. Unusual interaction of a lipopolysaccharide isolated from Burkholderia cepacia with polymyxin B. Infect. Immun. 71, 5225–5230 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vinion-Dubiel, A. D. & Goldberg, J. B. Lipopolysaccharide of Burkholderia cepacia complex. J. Endotoxin Res. 9, 201–213 (2003). New review that focuses on the structure and biology of Bcc LPS.

    CAS  PubMed  Google Scholar 

  62. Vinion-Dubiel, A. D. et al. Correlation of wbiI genotype, serotype, and isolate source within species of the Burkholderia cepacia complex. J. Clin. Microbiol. 42, 4121–4126 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ortega, X. et al. Reconstitution of O-specific lipopolysaccharide expression in the Burkholderia cenocepacia strain J2315 that is associated with transmissible infections in patients with cystic fibrosis. J. Bacteriol. (in the press).

  64. Reeves, P. P. & Wang, L. Genomic organization of LPS-specific loci. Curr. Top. Microbiol. Immunol. 264, 109–135 (2002).

    CAS  PubMed  Google Scholar 

  65. Shaw, D., Poxton, I. R. & Govan, J. R. Biological activity of Burkholderia (Pseudomonas) cepacia lipopolysaccharide. FEMS Immunol. Med. Microbiol. 11, 99–106 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Hughes, J. E., Stewart, J., Barclay, G. R. & Govan, J. R. Priming of neutrophil respiratory burst activity by lipopolysaccharide from Burkholderia cepacia. Infect. Immun. 65, 4281–4287 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Reddi, K., Phagoo, S. B., Anderson, K. D. & Warburton, D. Burkholderia cepacia-induced IL-8 gene expression in an alveolar epithelial cell line: signaling through CD14 and mitogen-activated protein kinase. Pediatr. Res. 54, 297–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Mathee, K. et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145, 1349–1357 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Conway, B. A., Venu, V. & Speert, D. P. Biofilm formation and acyl homoserine lactone production in the Burkholderia cepacia complex. J. Bacteriol. 184, 5678–5685 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Desai, M., Buhler, T., Weller, P. H. & Brown, M. R. Increasing resistance of planktonic and biofilm cultures of Burkholderia cepacia to ciprofloxacin and ceftazidime during exponential growth. J. Antimicrob. Chemother. 42, 153–160 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Tomlin, K. L., Coll, O. P. & Ceri, H. Interspecies biofilms of Pseudomonas aeruginosa and Burkholderia cepacia. Can. J. Microbiol. 47, 949–954 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Riedel, K. et al. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147, 3249–3262 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Huber, B. et al. Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111. Mol. Microbiol. 46, 411–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Lazdunski, A. M., Ventre, I. & Sturgis, J. N. Regulatory circuits and communication in Gram-negative bacteria. Nature Rev. Microbiol. 2, 581–592 (2004).

    Article  CAS  Google Scholar 

  75. Lewenza, S., Conway, B., Greenberg, E. P. & Sokol, P. A. Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J. Bacteriol. 181, 748–756 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Venturi, V., Friscina, A., Bertani, I., Devescovi, G. & Aguilar, C. Quorum sensing in the Burkholderia cepacia complex. Res. Microbiol. 155, 238–244 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Sokol, P. A. et al. The CepIR quorum-sensing system contributes to the virulence of Burkholderia cenocepacia respiratory infections. Microbiology 149, 3649–3658 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Kothe, M. et al. Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cell. Microbiol. 5, 343–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. LiPuma, J. J. et al. Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am. J. Respir. Crit. Care Med. 164, 92–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Speert, D. P., Henry, D., Vandamme, P., Corey, M. & Mahenthiralingam, E. Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg. Infect. Dis. 8, 181–187 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Burns, J. L., Lien, D. M. & Hedin, L. A. Isolation and characterization of dihydrofolate reductase from trimethoprim-susceptible and trimethoprim-resistant Pseudomonas cepacia. Antimicrob. Agents Chemother. 33, 1247–1251 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Burns, J. L., Wadsworth, C. D., Barry, J. J. & Goodall, C. P. Nucleotide sequence analysis of a gene from Burkholderia (Pseudomonas) cepacia encoding an outer membrane lipoprotein involved in multiple antibiotic resistance. Antimicrob. Agents Chemother. 40, 307–313 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chiesa, C., Labrozzi, P. H. & Aronoff, S. C. Decreased baseline β-lactamase production and inducibility associated with increased piperacillin susceptibility of Pseudomonas cepacia isolated from children with cystic fibrosis. Pediatr. Res. 20, 1174–1177 (1986).

    Article  CAS  PubMed  Google Scholar 

  84. Aronoff, S. C. Outer membrane permeability in Pseudomonas cepacia: diminished porin content in a β-lactam-resistant mutant and in resistant cystic fibrosis isolates. Antimicrob. Agents Chemother. 32, 1636–1639 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Burns, J. L., Hedin, L. A. & Lien, D. M. Chloramphenicol resistance in Pseudomonas cepacia because of decreased permeability. Antimicrob. Agents Chemother. 33, 136–141 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Beckman, W. & Lessie, T. G. Response of Pseudomonas cepacia to β-lactam antibiotics: utilization of penicillin G as the carbon source. J. Bacteriol. 140, 1126–1128 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Speert, D. P., Bond, M., Woodman, R. C. & Curnutte, J. T. Infection with Pseudomonas cepacia in chronic granulomatous disease: role of nonoxidative killing by neutrophils in host defense. J. Infect. Dis. 170, 1524–1531 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Goldstein, R. et al. Structurally variant classes of pilus appendage fibers coexpressed from Burkholderia (Pseudomonas) cepacia. J. Bacteriol. 177, 1039–1052 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sun, L. et al. The emergence of a highly transmissible lineage of cbl+ Pseudomonas (Burkholderia) cepacia causing CF centre epidemics in North America and Britain. Nature Med. 1, 661–666 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Sajjan, U., Wu, Y., Kent, G. & Forstner, J. Preferential adherence of cable-piliated Burkholderia cepacia to respiratory epithelia of CF knockout mice and human cystic fibrosis lung explants. J. Med. Microbiol. 49, 875–885. (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Sakellaris, H. & Scott, J. R. New tools in an old trade: CS1 pilus morphogenesis. Mol. Microbiol. 30, 681–687 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Sajjan, U. S., Xie, H., Lefebre, M. D., Valvano, M. A. & Forstner, J. F. Identification and molecular analysis of cable pilus biosynthesis genes in Burkholderia cepacia. Microbiology 149, 961–971 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Koehler, D. R. et al. Protection of Cftr knockout mice from acute lung infection by a helper-dependent adenoviral vector expressing Cftr in airway epithelia. Proc. Natl Acad. Sci. USA 100, 15364–15369 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tomich, M. & Mohr, C. D. Transcriptional and posttranscriptional control of cable pilus gene expression in Burkholderia cenocepacia. J. Bacteriol. 186, 1009–1020 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sajjan, U. S., Corey, M., Karmali, M. A. & Forstner, J. F. Binding of Pseudomonas cepacia to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis. J. Clin. Invest. 89, 648–656 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sajjan, S. U. & Forstner, J. F. Identification of the mucin-binding adhesin of Pseudomonas cepacia isolated from patients with cystic fibrosis. Infect. Immun. 60, 1434–1440 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Hales, B. A., Morgan, J. A., Hart, C. A. & Winstanley, C. Variation in flagellin genes and proteins of Burkholderia cepacia. J. Bacteriol. 180, 1110–1118 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Montie, T. C. & Stover, G. B. Isolation and characterization of flagellar preparations from Pseudomonas species. J. Clin. Microbiol. 18, 452–456 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tomich, M., Herfst, C. A., Golden, J. W. & Mohr, C. D. Role of flagella in host cell invasion by Burkholderia cepacia. Infect. Immun. 70, 1799–1806 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Urban, T. A. et al. Contribution of Burkholderia cenocepacia flagella to infectivity and inflammation. Infect. Immun. 72, 5126–5134 (2004). Highlights the role of Bcc flagella in infection and interaction with TLR5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Hunt, T. A., Kooi, C., Sokol, P. A. & Valvano, M. A. Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infect. Immun. 72, 4010–4022 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. McMenamin, J. D., Zaccone, T. M., Coenye, T., Vandamme, P. & LiPuma, J. J. Misidentification of Burkholderia cepacia in US cystic fibrosis treatment centers: an analysis of 1,051 recent sputum isolates. Chest 117, 1661–1665 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Miller, M. B. & Gilligan, P. H. Laboratory aspects of management of chronic pulmonary infections in patients with cystic fibrosis. J. Clin. Microbiol. 41, 4009–4015 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Mahenthiralingam, E. et al. DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J. Clin. Microbiol. 38, 3165–3173 (2000). Describes the most widely used molecular method of species identification, which shows that a protein encoding gene can offer greater discrimination than rRNA encoding genes for the Bcc.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Mahenthiralingam, E., Campbell, M. E., Henry, D. A. & Speert, D. P. Epidemiology of Burkholderia cepacia infection in patients with cystic fibrosis: analysis by randomly amplified polymorphic DNA fingerprinting. J. Clin. Microbiol. 34, 2914–2920 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Coenye, T., Spilker, T., Martin, A. & LiPuma, J. J. Comparative assessment of genotyping methods for epidemiologic study of Burkholderia cepacia genomovar III. J. Clin. Microbiol. 40, 3300–3307 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Speert, D. P., Steen, B., Halsey, K. & Kwan, E. A murine model for infection with Burkholderia cepacia with sustained persistence in the spleen. Infect. Immun. 67, 4027–4032 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Davidson, D. J. et al. Lung disease in the cystic fibrosis mouse exposed to bacterial pathogens. Nature Genet. 9, 351–357 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Sajjan, U. et al. Enhanced susceptibility to pulmonary infection with Burkholderia cepacia in Cftr−/− mice. Infect. Immun. 69, 5138–5150 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sokol, P. A., Darling, P., Woods, D. E., Mahenthiralingam, E. & Kooi, C. Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the gene encoding L-ornithine N5-oxygenase. Infect. Immun. 67, 4443–4455 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Cieri, M. V., Mayer-Hamblett, N., Griffith, A. & Burns, J. L. Correlation between an in vitro invasion assay and a murine model of Burkholderia cepacia lung infection. Infect. Immun. 70, 1081–1086 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chu, K. K., Davidson, D. J., Halsey, T. K., Chung, J. W. & Speert, D. P. Differential persistence among genomovars of the Burkholderia cepacia complex in a murine model of pulmonary infection. Infect. Immun. 70, 2715–2720 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Burns, J. L. et al. Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia. Infect. Immun. 64, 4054–4059 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Keig, P. M., Ingham, E. & Kerr, K. G. Invasion of human type II pneumocytes by Burkholderia cepacia. Microb. Pathog. 30, 167–170 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Schwab, U. et al. Patterns of epithelial cell invasion by different species of the Burkholderia cepacia complex in well-differentiated human airway epithelia. Infect. Immun. 70, 4547–4555 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sajjan, U., Keshavjee, S. & Forstner, J. Responses of well-differentiated airway epithelial cell cultures from healthy donors and patients with cystic fibrosis to Burkholderia cenocepacia infection. Infect. Immun. 72, 4188–4199 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sajjan, U., Ackerley, C. & Forstner, J. Interaction of cblA/adhesin-positive Burkholderia cepacia with squamous epithelium. Cell. Microbiol. 4, 73–86 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Saini, L. S., Galsworthy, S. B., John, M. A. & Valvano, M. A. Intracellular survival of Burkholderia cepacia complex isolates in the presence of macrophage cell activation. Microbiology 145, 3465–3475 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Marolda, C. L., Hauroder, B., John, M. A., Michel, R. & Valvano, M. A. Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebae. Microbiology 145, 1509–1517 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Lamothe, J., Thyssen, S. & Valvano, M. A. Burkholderia cepacia complex isolates survive intracellularly without replication within acidic vacuoles of Acanthamoeba polyphaga. Cell. Microbiol. 6, 1127–1138 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Bernier, S. P., Silo-Suh, L., Woods, D. E., Ohman, D. E. & Sokol, P. A. Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence. Infect. Immun. 71, 5306–5313 (2003). New plant model that uses alfalfa infection and which correlates with chronic lung infection in rats.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Vandamme, P. et al. Burkholderia cenocepacia sp. nov. — a new twist to an old story. Res. Microbiol. 154, 91–96 (2003).

    Article  PubMed  Google Scholar 

  124. Coenye, T. & LiPuma, J. J. Population structure analysis of Burkholderia cepacia genomovar III: varying degrees of genetic recombination characterize major clonal complexes. Microbiology 149, 77–88 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Vandamme, P. et al. Identification and population structure of Burkholderia stabilis sp nov (formerly Burkholderia cepacia genomovar IV). J. Clin. Microbiol. 38, 1042–1047 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Coenye, T. et al. Burkholderia cepacia genomovar VI, a new member of the Burkholderia cepacia complex isolated from cystic fibrosis patients. Int. J. Syst. Evol. Microbiol. 51, 271–279 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Vermis, K. et al. Proposal to accommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp. nov. Int. J. Syst. Evol. Microbiol. 54, 689–691 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Coenye, T. et al. Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int. J. Syst. Evol. Microbiol. 51, 1481–1490 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Vandamme, P. et al. Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol. Med. Microbiol. 33, 143–149 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Nzula, S., Vandamme, P. & Govan, J. R. Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. J. Antimicrob. Chemother. 50, 265–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Tomich, M. & Mohr, C. D. Adherence and autoaggregation phenotypes of a Burkholderia cenocepacia cable pilus mutant. FEMS Microbiol. Lett. 228, 287–297 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Lefebre, M. & Valvano, M. In vitro resistance of Burkholderia cepacia complex isolates to reactive oxygen species in relation to catalase and superoxide dismutase production. Microbiology 147, 97–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Chung, J. W., Altman, E., Beveridge, T. J. & Speert, D. P. Colonial morphology of Burkholderia cepacia complex genomovar III: implications in exopolysaccharide production, pilus expression, and persistence in the mouse. Infect. Immun. 71, 904–909 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sist, P. et al. Macromolecular and solution properties of Cepacian: the exopolysaccharide produced by a strain of Burkholderia cepacia isolated from a cystic fibrosis patient. Carbohydr. Res. 338, 1861–1867 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Conway, B. A., Chu, K. K., Bylund, J., Altman, E. & Speert, D. P. Production of exopolysaccharide by Burkholderia cenocepacia results in altered cell-surface interactions and altered bacterial clearance in mice. J. Infect. Dis. 190, 957–966 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Bevivino, A. et al. Burkholderia cepacia complex bacteria from clinical and environmental sources in Italy: genomovar status and distribution of traits related to virulence and transmissibility. J. Clin. Microbiol. 40, 846–851 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Corbett, C. R., Burtnick, M. N., Kooi, C., Woods, D. E. & Sokol, P. A. An extracellular zinc metalloprotease gene of Burkholderia cepacia. Microbiology 149, 2263–2271 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Hutchison, M. L., Poxton, I. R. & Govan, J. R. Burkholderia cepacia produces a hemolysin that is capable of inducing apoptosis and degranulation of mammalian phagocytes. Infect. Immun. 66, 2033–2039 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Zughaier, S. M., Ryley, H. C. & Jackson, S. K. A melanin pigment purified from an epidemic strain of Burkholderia cepacia attenuates monocyte respiratory burst activity by scavenging superoxide anion. Infect. Immun. 67, 908–913 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Visser, M. B., Majumdar, S., Hani, E. & Sokol, P. A. Importance of the ornibactin and pyochelin siderophore transport systems in Burkholderia cenocepacia lung infections. Infect. Immun. 72, 2850–2857 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tomich, M., Griffith, A., Herfst, C. A., Burns, J. L. & Mohr, C. D. Attenuated virulence of a Burkholderia cepacia type III secretion mutant in a murine model of infection. Infect. Immun. 71, 1405–1415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Glendinning, K. J. et al. Sequence divergence in type III secretion gene clusters of the Burkholderia cepacia complex. FEMS Microbiol. Lett. 235, 229–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Caroff, M. & Karibian, D. Structure of bacterial lipo-polysaccharides. Carbohydr. Res. 338, 2431–2447 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.A.U. and J.B.G. were supported by grants from the National Institutes of Health and the Cystic Fibrosis Foundation. E.M. acknowledges funding from the Cystic Fibrosis Trust, the Natural Environment Research Council and the Wellcome Trust. We apologize to our colleagues whose work was not cited owing to space considerations and acknowledge the inspiration provided by our collaborators in the International B. cepacia Working Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna B. Goldberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Burkholderia SAR-1

B. cenocepacia strain J2315

FURTHER INFORMATION

Joanna B. Goldberg's laboratory

Eshwar Mahenthiralingam's laboratory

B. cenocepacia J2315 genome sequence

Cystic fibrosis

Environmental Protection Agency

International B. cepacia Working group

JGI Burkholderia genome sequences

United Kingdom CF Trust

Glossary

CYSTIC FIBROSIS

A disease caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR). It presents with lung damage, gastrointestinal blockage and pancreatic insufficiency. Bacterial lung infections are the main cause of death.

MULTILOCUS ENZYME ELECTROPHORESIS

A strain typing method that examines the mobility of patterns of specific enzymes to derive phenotypic fingerprint of a given strain.

RANDOM AMPLIFIED POLYMORPHIC DNA ANALYSIS

A strain typing method that uses PCR to amplify random DNA markers from a bacterium and that generates a genetic fingerprint for a given strain.

PULSED FIELD GEL ELECTROPHORESIS

A method for the separation of large fragments of DNA that is applied in molecular epidemiology to visualize bacterial strain-specific genome fingerprints generated by restriction digestion of whole genomes.

REPETITIVE ELEMENT PCR

A strain typing method that uses PCR with primers directed against known short repetitive sequences that occur in bacterial DNA to derive a strain specific genetic fingerprint.

NECROTIZING PNEUMONIA

A lung infection that causes physical damage to pulmonary tissue.

SEPTICAEMIA

Bacterial infection that results from the spread of a pathogen into the bloodstream.

METAGENOMIC SEQUENCE

The entire genomic sequence of an organism, which is assembled from nucleotide sequence analysis of random DNA fragments that are isolated from the environment.

INSERTION SEQUENCES

Small transposable mobile DNA elements that are found in bacteria.

GENOMIC ISLANDS

Regions of genomic sequence that have unusual features, such as altered GC content, compared with most of the genome, indicating that they have been recently acquired during the evolution of a bacterial species.

RESTRICTION FRAGMENT LENGTH POLYMORPHISM

Sequence variation in a gene or stretch of DNA revealed by digestion with restriction enzymes and examination of the sizes of the digestion products.

SWARMING MOTILITY

The type of motility used by bacteria that move over a solid surface.

INTERMEDIATE FILAMENTS

Proteins that structure the cytoskeleton of the cell cytoplasm by forming very stable filaments that allow cells to resist external stress.

SIGNATURE-TAGGED MUTAGENESIS

Transposon mutagenesis in which each individual transposon mutant is tagged with a unique oligonucleotide that enables identification of a mutant by hybridization or PCR, even if the mutant is lost during an experimental screen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahenthiralingam, E., Urban, T. & Goldberg, J. The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3, 144–156 (2005). https://doi.org/10.1038/nrmicro1085

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1085

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing