Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The humanization of N-glycosylation pathways in yeast

Abstract

Yeast and other fungal protein-expression hosts have been extensively used to produce industrial enzymes, and are often the expression system of choice when manufacturing costs are of primary concern. However, for the production of therapeutic glycoproteins intended for use in humans, yeast have been less useful owing to their inability to modify proteins with human glycosylation structures. Yeast N-glycosylation is of the high-mannose type, which confers a short half-life in vivo and thereby compromises the efficacy of most therapeutic glycoproteins. Several approaches to humanizing yeast N-glycosylation pathways have been attempted over the past decade with limited success. Recently however, advances in the glycoengineering of yeast and the expression of therapeutic glycoproteins with humanized N-glycosylation structures have shown significant promise — this review summarizes the most important developments in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major N-glycosylation pathways in humans and yeast.
Figure 2: Structure of glycosylated glucocerebrosidase.
Figure 3: Electron micrographs of Pichia pastoris.
Figure 4: A working model for the cellular distribution of glycosyltransferases throughout the secretory pathway.
Figure 5: Type II membrane proteins.

Similar content being viewed by others

References

  1. Nasmyth, K. Eukaryotic gene cloning and expression in yeast. Nature 274, 741–743 (1978).

    CAS  PubMed  Google Scholar 

  2. Sudbery, P. E. The expression of recombinant proteins in yeasts. Curr. Opin. Biotechnol. 7, 517–524 (1996).

    CAS  PubMed  Google Scholar 

  3. Gellissen, G. & Hollenberg, C. P. Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis — a review. Gene 190, 87–97 (1997).

    CAS  PubMed  Google Scholar 

  4. Cregg, J. M., Vedvick, T. S. & Raschke, W. C. Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology 11, 905–910 (1993).

    CAS  PubMed  Google Scholar 

  5. Cregg, J. M. & Higgins, D. R. Production of foreign proteins in the yeast Pichia pastoris. Can. J. Bot. 73, S891–S897 (1995).

    CAS  Google Scholar 

  6. Gellissen, G. & Melber, K. Methylotrophic yeast Hansenula polymorpha as production organism for recombinant pharmaceuticals. Arzneimittelforschung 46, 943–948 (1996).

    CAS  PubMed  Google Scholar 

  7. Werten, M. W. T., Van den Bosch, T. J., Wind, R. D., Mooibroek, H. & De Wolf, F. A. High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast 15, 1087–1096 (1999).

    CAS  PubMed  Google Scholar 

  8. Young, N. M. et al. Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J. Biol. Chem. 277, 42530–42539 (2002).

    CAS  PubMed  Google Scholar 

  9. Szymanski, C. M., Yao, R. J., Ewing, C. P., Trust, T. J. & Guerry, P. Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 32, 1022–1030 (1999).

    CAS  PubMed  Google Scholar 

  10. Wacker, M. et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790–1793 (2002). This is the first paper to describe transfer of a prokaryotic N -glycosylation machinery from C. jejuni to E. coli.

    CAS  PubMed  Google Scholar 

  11. Thibault, P. et al. Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem. 276, 34862–34870 (2001).

    CAS  PubMed  Google Scholar 

  12. McAleer, W. J. et al. Human hepatitis B vaccine from recombinant yeast. Nature 307, 178–180 (1984).

    CAS  PubMed  Google Scholar 

  13. Walsh, G. Biopharmaceutical benchmarks — 2003. Nature Biotechnol. 21, 1396 (2003).

    CAS  Google Scholar 

  14. Humphreys, A. & Boersig, C. Cholesterol drugs dominate. MedAdNews 22, 42–57 (2003).

    Google Scholar 

  15. Yuen, C. T., Carr, S. A. & Feizi, T. The spectrum of N-linked oligosaccharide structures detected by enzymatic microsequencing on a recombinant soluble CD4 glycoprotein from Chinese hamster ovary cells. Eur. J. Biochem. 192, 523–528 (1990).

    CAS  PubMed  Google Scholar 

  16. Ulloa-Aguirre, A., Timossi, C., Barrios-de-Tomasi, J., Maldonado, A. & Nayudu, P. Impact of carbohydrate heterogeneity in function of follicle-stimulating hormone: studies derived from in vitro and in vivo models. Biol. Reprod. 69, 379–389 (2003).

    CAS  PubMed  Google Scholar 

  17. Shields, R. L. et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcγ RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277, 26733–26740 (2002). This publication highlights the importance of glycosylation for antibody effector function.

    CAS  PubMed  Google Scholar 

  18. Gentzsch, M. & Tanner, W. Protein O-glycosylation in yeast: protein-specific mannosyltransferases. Glycobiology 7, 481–486 (1997).

    CAS  PubMed  Google Scholar 

  19. Lehle, L. & Bause, E. Primary structural requirements for N-glycosylation and O-glycosylation of yeast mannoproteins. Biochim. Biophys. Acta 799, 246–251 (1984).

    CAS  Google Scholar 

  20. Strahl-Bolsinger, S., Gentzsch, M. & Tanner, W. Protein O-mannosylation. Biochim. Biophys. Acta 1426, 297–307 (1999).

    CAS  PubMed  Google Scholar 

  21. Ziegler, F. D., Gemmill, T. R. & Trimble, R. B. Glycoprotein synthesis in yeast early events in N-linked oligosaccharide processing in Schizosaccharomyces pombe. J. Biol. Chem. 269, 12527–12535 (1994).

    CAS  PubMed  Google Scholar 

  22. Kornfeld, R. & Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985).

    CAS  PubMed  Google Scholar 

  23. Burda, P. & Aebi, M. The dolichol pathway of N-linked glycosylation. Biochim. Biophys. Acta 1426, 239–257 (1999).

    CAS  PubMed  Google Scholar 

  24. Gemmill, T. R. & Trimble, R. B. Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim. Biophys. Acta 1426, 227–237 (1999). References 22, 23 and 24 are excellent reviews of N -linked glycosylation pathways in humans and yeast.

    CAS  PubMed  Google Scholar 

  25. Tabas, I. & Kornfeld, S. Purification and characterization of a rat-liver golgi α-mannosidase capable of processing asparagine-linked oligosaccharides. J. Biol. Chem. 254, 1655–1663 (1979).

    Google Scholar 

  26. Herscovics, A. Structure and function of class I α1,2-mannosidases involved in glycoprotein synthesis and endoplasmic reticulum quality control. Biochimie 83, 757–762 (2001).

    CAS  PubMed  Google Scholar 

  27. Herscovics, A. Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim. Biophys. Acta 1473, 96–107 (1999).

    CAS  PubMed  Google Scholar 

  28. Tulsiani, D. R. P., Hubbard, S. C., Robbins, P. W. & Touster, O. α-D-mannosidases of rat-liver golgi membranes. Mannosidase-II Is the GlcNacMan5-cleaving enzyme in glycoprotein-biosynthesis and mannosidase-Ia and Mannosidase-Ib are the enzymes converting Man9 precursors to Man5 intermediates. J. Biol. Chem. 257, 3660–3668 (1982).

    CAS  PubMed  Google Scholar 

  29. Moremen, K. W. & Robbins, P. W. Isolation, characterization, and expression of cDNAs encoding murine α-mannosidase-II, a golgi enzyme that controls conversion of high mannose to complex N-glycans. J. Cell Biol. 115, 1521–1534 (1991).

    CAS  PubMed  Google Scholar 

  30. Bendiak, B. & Schachter, H. Control of glycoprotein-synthesis. Kinetic mechanism, substrate-specificity, and inhibition characteristics of UDP-N-acetylglucosamine-α-D-mannoside β-1-2 N-acetylglucosaminyltransferase-II from rat liver. J. Biol. Chem. 262, 5784–5790 (1987).

    CAS  PubMed  Google Scholar 

  31. Schachter, H. The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconjugate J. 17, 465–483 (2000).

    CAS  Google Scholar 

  32. Nakanishi-Shindo, Y., Nakayama, K., Tanaka, A., Toda, Y. & Jigami, Y. Structure of the N-linked oligosaccharides that show the complete loss of α-1,6-polymannose outer chain from Och1, Och1 Mnn1, and Och1 Mnn1 Alg3 mutants of Saccharomyces cerevisiae. J. Biol. Chem. 268, 26338–26345 (1993). This paper is the first successful attempt to eliminate yeast-specific N -glycan processing and to provide a human intermediate of N -glycan biosynthesis.

    CAS  PubMed  Google Scholar 

  33. Chiba, Y. et al. Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J. Biol. Chem. 273, 26298–26304 (1998). This paper describes the first successful attempt to target mannosidases to the secretory pathway of yeast and demonstrate some effect on N -linked glycan processing.

    CAS  PubMed  Google Scholar 

  34. Kalsner, I., Hintz, W., Reid, L. S. & Schachter, H. Insertion into Aspergillus nidulans of functional UDP-GlcNac-α-3-D-mannoside β-1,2-N-acetylglucosaminyl-transferase-I, the enzyme catalyzing the first committed step from oligomannose to hybrid and complex N-glycans. Glycoconjugate J. 12, 360–370 (1995).

    CAS  Google Scholar 

  35. Martinet, W., Maras, M., Saelens, X., Jou, W. M. & Contreras, R. Modification of the protein glycosylation pathway in the methylotrophic yeast Pichia pastoris. Biotechnol. Lett. 20, 1171–1177 (1998).

    CAS  Google Scholar 

  36. van Vliet, C., Thomas, E. C., Merino-Trigo, A., Teasdale, R. D. & Gleeson, P. A. Intracellular sorting and transport of proteins. Prog. Biophys. Mol. Biol. 83, 1–45 (2003).

    CAS  PubMed  Google Scholar 

  37. Gleeson, P. A. Targeting of proteins to the Golgi apparatus. Histochem. Cell Biol. 109, 517–532 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Harter, C. & Wieland, F. The secretory pathway: mechanisms of protein sorting and transport. Biochim. Biophys. Acta 1286, 75–93 (1996).

    PubMed  Google Scholar 

  39. Teasdale, R. D. & Jackson, M. R. Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the Golgi apparatus. Annu. Rev. Cell Dev. Biol. 12, 27–54 (1996).

    CAS  PubMed  Google Scholar 

  40. Pelham, H. R. B., Hardwick, K. G. & Lewis, M. J. Sorting of soluble ER proteins in yeast. EMBO J. 7, 1757–1762 (1988). Excellent early paper describing the sorting of proteins in the secretory pathway in the yeast Saccharomyces cerevisiae.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Munro, S. & Pelham, H. R. B. A C-terminal signal prevents secretion of luminal ER proteins. Cell 48, 899–907 (1987).

    CAS  PubMed  Google Scholar 

  42. Dean, N. & Pelham, H. R. B. Recycling of proteins from the Golgi compartment to the ER in yeast. J. Cell Biol. 111, 369–377 (1990).

    CAS  PubMed  Google Scholar 

  43. Lewis, M. J., Sweet, D. J. & Pelham, H. R. B. The ERD2 gene determines the specificity of the luminal ER protein retention system. Cell 61, 1359–1363 (1990).

    CAS  PubMed  Google Scholar 

  44. Semenza, J. C., Hardwick, K. G., Dean, N. & Pelham, H. R. B. ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61, 1349–1357 (1990).

    CAS  PubMed  Google Scholar 

  45. Paulson, J. C. & Colley, K. J. Glycosyltransferases — structure, localization, and control of cell type-specific glycosylation. J. Biol. Chem. 264, 17615–17618 (1989).

    CAS  PubMed  Google Scholar 

  46. Krezdorn, C. H. et al. Human β-1,4 galactosyltransferase and α-2,6 sialyltransferase expressed in Saccharomyces cerevisiae are retained as active enzymes in the endoplasmic reticulum. Eur. J. Biochem. 220, 809–817 (1994).

    CAS  PubMed  Google Scholar 

  47. Schwientek, T., Lorenz, C. & Ernst, J. F. Golgi localization in yeast is mediated by the membrane anchor region of rat-liver sialyltransferase. J. Biol. Chem. 270, 5483–5489 (1995).

    CAS  PubMed  Google Scholar 

  48. Yoshida, S. et al. Expression and characterization of rat UDP-N-acetylglucosamine: α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I in Saccharomyces cerevisiae. Glycobiology 9, 53–58 (1999).

    CAS  PubMed  Google Scholar 

  49. Nilsson, T. et al. Kin recognition between medial Golgi enzymes in HeLa cells. EMBO J. 13, 562–574 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Callewaert, N. et al. Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1,2-α-D-mannosidase for N-glycan engineering in Pichia pastoris. FEBS Lett. 503, 173–178 (2001).

    CAS  PubMed  Google Scholar 

  51. Bretthauer, R. K. Genetic engineering of Pichia pastoris to humanize N-glycosylation of proteins. Trends Biotechnol. 21, 459–462 (2003).

    CAS  PubMed  Google Scholar 

  52. Choi, B. K. et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc. Natl Acad Sci. USA 100, 5022–5027 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sharma, C. B., Knauer, R. & Lehle, L. Biosynthesis of lipid-linked oligosaccharides in yeast: the ALG3 gene encodes the Dol-P-Man:Man5GlcNAc2-PP-Dol mannosyltransferase. Biol. Chem. 382, 321–328 (2001).

    CAS  PubMed  Google Scholar 

  54. Aebi, M., Gassenhuber, J., Domdey, H. & Heesen, S. T. Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae. Glycobiology 6, 439–444 (1996).

    CAS  PubMed  Google Scholar 

  55. Davidson, R. C. et al. Functional analysis of the ALG3 gene encoding the Dol-P-Man:Man5GlcNAc2-PP-Dol mannosyltransferase enzyme of P. pastoris. Glycobiology 14, 399–407 (2004).

    CAS  PubMed  Google Scholar 

  56. Bobrowicz, P. et al. Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris — production of complex humanized glycoproteins with terminal galactose. Glycobiology 14, 757–766 (2004).

    CAS  PubMed  Google Scholar 

  57. Hamilton, S. R. et al. Production of complex human glycoproteins in yeast. Science 301, 1244–1246 (2003). References 52, 56 and 57 describe the use of combinatorial genetic libraries to obtain uniform human-like N -linked glycosylation in the yeast P. pastoris.

    CAS  PubMed  Google Scholar 

  58. Schwientek, T., Narimatsu, H. & Ernst, J. F. Golgi localization and in vivo activity of a mammalian glycosyltransferase (human β-1,4–galactosyltransferase) in yeast. J. Biol. Chem. 271, 3398–3405 (1996). This is the first paper describing the targeting of a mammalian glycosylation enzyme to the secretory pathway of a yeast.

    CAS  PubMed  Google Scholar 

  59. Vervecken, W. et al. In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl. Environ. Microbiol. 70, 2639–2646 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Roy, S. K., Yoko-o, T., Ikenaga, H. & Jigami, Y. Functional evidence for UDP-galactose transporter in Saccharomyces cerevisiae through the in vivo galactosylation and in vitro transport assay. J. Biol. Chem. 273, 2583–2590 (1998).

    CAS  PubMed  Google Scholar 

  61. Malissard, M., Zeng, S. & Berger, E. G. Expression of functional soluble forms of human β-1,4-galactosyltransferase I, α-2,6-sialyltransferase, and α-1,3–fucosyltransferase VI in the methylotrophic yeast Pichia pastoris. Biochem. Biophys. Res. Commun. 267, 169–173 (2000).

    CAS  PubMed  Google Scholar 

  62. Malissard, M., Zeng, S. & Berger, E. G. The yeast expression system for recombinant glycosyltransferases. Glycoconjugate J. 16, 125–139 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the outstanding scientists that provided the basic knowledge upon which the engineering of humanized yeast strains was made possible. In particular, we wish to express our gratitude to P. Robbins, R. Bretthauer, K. Moremen, C. Barlowe, M. Aebi and R. Hitzman for helpful discussions and support. Most importantly, we are grateful to the exceptional group of scientists we have been able to work with over the past four years. It is their work that has advanced the field in such a significant way and may lead to a paradigmatic change in the production of complex protein-based therapeutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilllman U. Gerngross.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

AOX1

Campylobacter jejuni

Erd2p

Escherichia coli

Kluyveromyces lactis

mnn1

Saccharomyces cerevisiae

SwissProt

Alg3p

Anp1p

Gls1p

Hoc1p

Mnn9p

Mnn10p

Mnn11p

Mns1p

Och1p

Sec12p

Van1p

FURTHER INFORMATION

Tillman Gerngross's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wildt, S., Gerngross, T. The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3, 119–128 (2005). https://doi.org/10.1038/nrmicro1087

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1087

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing