Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Helicobacter pylori VacA, a paradigm for toxin multifunctionality

Key Points

  • Helicobacter pylori is a Gram-negative bacterium that colonizes the human stomach. H. pylori can persist in the stomach for decades despite the development of a gastric mucosal inflammatory response and a humoral immune response. H. pylori infection is associated with an increased risk for the development of peptic ulcer disease and gastric adenocarcinoma.

  • H. pylori secretes a toxin, VacA, that can cause a broad range of effects on human cells. Cellular effects produced by VacA include alteration of late endocytic compartments, reduction in mitochondrial membrane permeability and stimulation of cellular signalling pathways. VacA can modulate the functions of a variety of different cell types, including epithelial cells, antigen-presenting cells, phagocytic cells, mast cells and T lymphocytes.

  • VacA binds to the plasma membrane, is internalized by cells and can localize in either endocytic compartments or mitochondria. Many VacA-induced cellular effects can be attributed to the insertion of VacA into membranes to form anion-selective channels.

  • Experiments in an animal model indicate that VacA contributes to H. pylori colonization of the stomach. VacA inhibits the activation and proliferation of T lymphocytes in vitro, a phenomenon that may contribute to the persistence of H. pylori infection in vivo. Several studies indicate that VacA contributes to the pathogenesis of H. pylori-associated peptic ulceration and gastric adenocarcinoma.

  • Secreted protein toxins have an important role in allowing bacteria to colonize eukaryotic hosts, and toxins contribute to the pathogenesis of numerous infectious diseases. Similar to VacA, bacterial toxins that are produced by many other bacterial species can produce multiple cellular effects. We review the general topic of toxin multifunctionality, discuss common mechanistic themes that allow toxins to produce multiple cellular effects and discuss the role of toxin multifunctionality in bacterial pathogenesis.

Abstract

Bacterial protein toxins alter eukaryotic cellular processes and enable bacteria to successfully colonize their hosts. In recent years, there has been increased recognition that many bacterial toxins are multifunctional proteins that can have pleiotropic effects on mammalian cells and tissues. In this review, we examine a multifunctional toxin (VacA) that is produced by the bacterium Helicobacter pylori. The actions of H. pylori VacA represent a paradigm for how bacterial secreted toxins contribute to colonization and virulence in multiple ways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of cellular intoxication by bacterial protein toxins.
Figure 2: Cellular vacuolation induced by VacA.
Figure 3: vacA gene structure and allelic diversity.
Figure 4: Water-soluble oligomeric structures formed by VacA, imaged by deep-etch electron microscopy.
Figure 5: Multiple actions of VacA contribute to H. pylori colonization of the stomach.

Similar content being viewed by others

References

  1. Collier, R. J. Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 39, 1793–803 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Alouf, J. E. & Freer, J. H. The Comprehensive Sourcebook of Bacterial Protein Toxins (Academic Press, London, San Diego, California, 1999).

    Google Scholar 

  3. Schiavo, G. & van der Goot, F. G. The bacterial toxin toolkit. Nature Rev. Mol. Cell Biol. 2, 530–537 (2001).

    Article  CAS  Google Scholar 

  4. Parker, M. W. Cryptic clues as to how water-soluble protein toxins form pores in membranes. Toxicon 42, 1–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Fivaz, M., Abrami, L., Tsitrin, Y. & van der Goot, F. G. Not as simple as just punching a hole. Toxicon 39, 1637–1645 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Montecucco, C., Papini, E. & Schiavo, G. Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett. 346, 92–98 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Marshall, B. J. & Warren, J. R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311–1315 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Dunn, B. E., Cohen, H. & Blaser, M. J. Helicobacter pylori. Clin. Microbiol. Rev. 10, 720–741 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suerbaum, S. & Michetti, P. Helicobacter pylori infection. N. Engl. J. Med. 347, 1175–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Blaser, M. J. & Atherton, J. C. Helicobacter pylori persistence: biology and disease. J. Clin. Invest. 113, 321–333 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Monack, D. M., Mueller, A. & Falkow, S. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nature Rev. Microbiol. 2, 747–765 (2004).

    Article  CAS  Google Scholar 

  12. Petersen, A. M., Sorensen, K., Blom, J. & Krogfelt, K. A. Reduced intracellular survival of Helicobacter pylori vacA mutants in comparison with their wild-types indicates the role of VacA in pathogenesis. FEMS Immunol. Med. Microbiol. 30, 103–108 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Amieva, M. R., Salama, N. R., Tompkins, L. S. & Falkow, S. Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell. Microbiol. 4, 677–690 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Leunk, R. D., P. T., J., David, B. C., Kraft, W. G. & Morgan, D. R. Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J. Med. Microbiol. 26, 93–99 (1988). The first description of H. pylori vacuolating cytotoxic activity.

    Article  CAS  PubMed  Google Scholar 

  15. Cover, T. L. & Blaser, M. J. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J. Biol. Chem. 267, 10570–10575 (1992). Describes the initial purification and characterization of H. pylori VacA.

    CAS  PubMed  Google Scholar 

  16. Cover, T. L., Tummuru, M. K. R., Cao, P., Thompson, S. A. & Blaser, M. J. Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J. Biol. Chem. 269, 10566–10573 (1994).

    CAS  PubMed  Google Scholar 

  17. Telford, J. L. et al. Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J. Exp. Med. 179, 1653–1658 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Schmitt, W. & Haas, R. Genetic analysis of the Helicobacter pylori vacuolating cytotoxin: structural similarities with the IgA protease type of exported protein. Mol. Microbiol. 12, 307–319 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Ilver, D., Barone, S., Mercati, D., Lupetti, P. & Telford, J. L. Helicobacter pylori toxin VacA is transferred to host cells via a novel contact-dependent mechanism. Cell. Microbiol. 6, 167–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Lupetti, P. et al. Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin. J. Cell. Biol. 133, 801–807 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Cover, T. L., Hanson, P. I. & Heuser, J. E. Acid-induced dissociation of VacA, the Helicobacter pylori vacuolating cytotoxin, reveals its pattern of assembly. J. Cell Biol. 138, 759–769 (1997). An analysis of the quaternary structure of VacA oligomers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lanzavecchia, S. et al. Three-dimensional reconstruction of metal replicas of the Helicobacter pylori vacuolating cytotoxin. J. Struct. Biol. 121, 9–18 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Adrian, M., Cover, T. L., Dubochet, J. & Heuser, J. E. Multiple oligomeric states of the Helicobacter pylori vacuolating toxin demonstrated by cryo-electron microscopy. J. Mol. Biol. 318, 121–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Czajkowsky, D. M., Iwamoto, H., Cover, T. L. & Shao, Z. The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proc. Natl Acad. Sci. USA 96, 2001–2006 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tombola, F. et al. Helicobacter pylori vacuolating toxin forms anion-selective channels in planar lipid bilayers: possible implications for the mechanism of cellular vacuolation. Biophys. J. 76, 1401–1409 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iwamoto, H., Czajkowsky, D. M., Cover, T. L., Szabo, G. & Shao, Z. VacA from Helicobacter pylori: a hexameric chloride channel. FEBS Lett. 450, 101–104 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Szabo, I. et al. Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO J. 18, 5517–5527 (1999). The first demonstration that VacA forms anion-selective membrane channels in cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Bernard, M. et al. Low pH activates the vacuolating toxin of Helicobacter pylori, which becomes acid and pepsin resistant. J. Biol. Chem. 270, 23937–23940 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Molinari, M. et al. The acid activation of Helicobacter pylori toxin VacA: structural and membrane binding studies. Biochem. Biophys. Res. Commun. 248, 334–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Yahiro, K. et al. Activation of Helicobacter pylori VacA toxin by alkaline or acid conditions increases its binding to a 250-kDa receptor protein-tyrosine phosphatase β. J. Biol. Chem. 274, 36693–36699 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen, V. Q., Caprioli, R. M. & Cover, T. L. Carboxy-terminal proteolytic processing of Helicobacter pylori vacuolating toxin. Infect. Immun. 69, 543–546 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ye, D. & Blanke, S. R. Functional complementation reveals the importance of intermolecular monomer interactions for Helicobacter pylori VacA vacuolating activity. Mol. Microbiol. 43, 1243–1253 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Willhite, D. C., Ye, D. & Blanke, S. R. Fluorescence resonance energy transfer microscopy of the Helicobacter pylori vacuolating cytotoxin within mammalian cells. Infect. Immun. 70, 3824–3832 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Torres, V. J., McClain, M. S. & Cover, T. L. Interactions between p-33 and p-55 domains of the Helicobacter pylori vacuolating cytotoxin (VacA). J. Biol. Chem. 279, 2324–2331 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Garner, J. A. & Cover, T. L. Binding and internalization of the Helicobacter pylori vacuolating cytotoxin by epithelial cells. Infect. Immun. 64, 4197–4203 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pagliaccia, C. et al. The m2 form of the Helicobacter pylori cytotoxin has cell type-specific vacuolating activity. Proc. Natl Acad. Sci. USA 95, 10212–10217 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, W. -C., Wang, H. -J. & Kuo, C. -H. Two distinctive cell binding patterns by vacuolating toxin fused with glutathione S-transferase: one high-affinity m1-specific binding and the other lower-affinity binding for variant m forms. Biochemistry 40, 11887–11896 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, H. J. & Wang, W. C. Expression and binding analysis of GST–VacA fusions reveals that the Cterminal approximately 100-residue segment of exotoxin is crucial for binding in HeLa cells. Biochem. Biophys. Res. Commu.n 278, 449–454 (2000).

    Article  CAS  Google Scholar 

  39. Reyrat, J. M. et al. 3D imaging of the 58-kDa cell binding subunit of the Helicobacter pylori cytotoxin. J. Mol. Biol. 290, 459–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Ye, D., Willhite, D. C. & Blanke, S. R. Identification of the minimal intracellular vacuolating domain of the Helicobacter pylori vacuolating toxin. J. Biol. Chem. 274, 9277–9282 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. de Bernard, M. et al. Identification of the Helicobacter pylori VacA toxin domain active in the cell cytosol. Infect. Immun. 66, 6014–6016 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. de Bernard, M. et al. Helicobacter pylori toxin VacA induces vacuole formation by acting in the cell cytosol. Mol. Microbiol. 26, 665–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Vinion-Dubiel, A. D. et al. A dominant negative mutant of Helicobacter pylori vacuolating toxin (VacA) inhibits VacA-induced cell vacuolation. J. Biol. Chem. 274, 37736–37742 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. McClain, M. S. et al. Essential role of a GXXXG motif for membrane channel formation by Helicobacter pylori vacuolating toxin. J. Biol. Chem. 278, 12101–12108 (2003). Demonstration that membrane channel formation has an important role in VacA cytotoxicity.

    Article  CAS  PubMed  Google Scholar 

  45. McClain, M. S., Cao, P. & Cover, T. L. Amino-terminal hydrophobic region of Helicobacter pylori vacuolating cytotoxin (VacA) mediates transmembrane protein dimerization. Infect. Immun. 69, 1181–1184 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, S., Chamberlain, A. K. & Bowie, J. U. Membrane channel structure of Helicobacter pylori vacuolating toxin: role of multiple GXXXG motifs in cylindrical channels. Proc. Natl Acad. Sci. USA 101, 5988–5991 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ye, D. & Blanke, S. R. Mutational analysis of the Helicobacter pylori vacuolating toxin amino terminus: identification of amino acids essential for cellular vacuolation. Infect. Immun. 68, 4354–4357 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Blaser, M. J. & Berg, D. E. Helicobacter pylori genetic diversity and risk of human disease. J. Clin. Invest. 107, 767–773 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Atherton, J. C. et al. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 270, 17771–17777 (1995). Description of multiple families of vacA alleles.

    Article  CAS  PubMed  Google Scholar 

  50. Van Doorn, L. J. et al. Geographic distribution of vacA allelic types of Helicobacter pylori. Gastroenterology 116, 823–830 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. McClain, M. S. et al. A 12-amino-acid segment, present in type s2 but not type s1 Helicobacter pylori VacA proteins, abolishes cytotoxin activity and alters membrane channel formation. J. Bacteriol. 183, 6499–6508 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Letley, D. P., Rhead, J. L., Twells, R. J., Dove, B. & Atherton, J. C. Determinants of non-toxicity in the gastric pathogen Helicobacter pylori. J. Biol. Chem. 278, 26734–26741 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Letley, D. P. & Atherton, J. C. Natural diversity in the N terminus of the mature vacuolating cytotoxin of Helicobacter pylori determines cytotoxin activity. J. Bacteriol. 182, 3278–3280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ji, X. et al. Cell specificity of Helicobacter pylori cytotoxin is determined by a short region in the polymorphic midregion. Infect. Immun. 68, 3754–3757 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tombola, F. et al. How the loop and middle regions influence the properties of Helicobacter pylori VacA channels. Biophys. J. 81, 3204–3215 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Eaton, K. A., Cover, T. L., Tummuru, M. K., Blaser, M. J. & Krakowka, S. Role of vacuolating cytotoxin in gastritis due to Helicobacter pylori in gnotobiotic piglets. Infect. Immun. 65, 3462–3464 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wirth, H. P., Beins, M. H., Yang, M., Tham, K. T. & Blaser, M. J. Experimental infection of Mongolian gerbils with wild-type and mutant Helicobacter pylori strains. Infect. Immun. 66, 4856–4866 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ogura, K. et al. Virulence factors of Helicobacter pylori responsible for gastric diseases in mongolian gerbil. J. Exp. Med. 192, 1601–1610 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Salama, N. R., Otto, G., Tompkins, L. & Falkow, S. Vacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection. Infect. Immun. 69, 730–736 (2001). Demonstration of a role for VacA in colonization of the stomach by H. pylori.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo, B. P. & Mekalanos, J. J. Rapid genetic analysis of Helicobacter pylori gastric mucosal colonization in suckling mice. Proc. Natl Acad. Sci. USA 99, 8354–8359 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Marchetti, M. et al. Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science 267, 1655–1658 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Marchetti, M. et al. Protection against Helicobacter pylori infection in mice by intragastric vaccination with H. pylori antigens is achieved using a non-toxic mutant of E. coli heat-labile enterotoxin (LT) as adjuvant. Vaccine 16, 33–37 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Ghiara, P. et al. Therapeutic intragastric vaccination against Helicobacter pylori in mice eradicates an otherwise chronic infection and confers protection against re-infection. Infect. Immun. 65, 4996–5002 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. van Doorn, L. J. et al. Clinical relevance of the cagA, vacA and iceA status of Helicobacter pylori. Gastroenterology 115, 58–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Figueiredo, C. et al. Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J. Natl Cancer Inst. 94, 1680–1687 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Atherton, J. C., Peek, R. M. Jr, Tham, K. T., Cover, T. L. & Blaser, M. J. Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology 112, 92–99 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Fujikawa, A. et al. Mice deficient in protein tyrosine phosphatase receptor type Z are resistant to gastric ulcer induction by VacA of Helicobacter pylori. Nature Genet. 33, 375–381 (2003).In vivo analysis of the role of RPTPβ as a VacA receptor.

    Article  CAS  PubMed  Google Scholar 

  68. Supajatura, V. et al. Cutting edge: VacA, a vacuolating cytotoxin of Helicobacter pylori, directly activates mast cells for migration and production of proinflammatory cytokines. J. Immunol. 168, 2603–2607 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Smoot, D. T., Resau, J. H., Earlington, M. H., Simpson, M. & Cover, T. L. Effects of Helicobacter pylori vacuolating cytotoxin on primary cultures of human gastric epithelial cells. Gut 39, 795–799 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cover, T. L., Puryear, W., Pérez-Pérez, G. I. & Blaser, M. J. Effect of urease on HeLa cell vacuolation induced by Helicobacter pylori cytotoxin. Infect. Immun. 59, 1264–1270 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Papini, E. et al. Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments. Proc. Natl Acad. Sci. USA 91, 9720–9724 (1994). Demonstration that VacA-induced vacuoles arise from late endosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cover, T. L., Halter, S. A. & Blaser, M. J. Characterization of HeLa cell vacuoles induced by Helicobacter pylori broth culture supernatant. Hum. Pathol. 23, 1004–1010 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Catrenich, C. E. & Chestnut, M. H. Character and origin of vacuoles induced in mammalian cells by the cytotoxin of Helicobacter pylori. J. Med. Microbiol. 37, 389–395 (1992).

    Article  CAS  PubMed  Google Scholar 

  74. Molinari, M. et al. Vacuoles induced by Helicobacter pylori toxin contain both late endosomal and lysosomal markers. J. Biol. Chem. 272, 25339–25344 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Li, Y., Wandinger-Ness, A., Goldenring, J. R. & Cover, T. L. Clustering and redistribution of late endocytic compartments in response to Helicobacter pylori vacuolating toxin. Mol. Biol. Cell 15, 1946–1959 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Morbiato, L. et al. Vacuolation induced by VacA toxin of Helicobacter pylori requires the intracellular accumulation of membrane permeant bases, Cl and water. FEBS Lett. 508, 479–483 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Cover, T. L., Vaughn, S. G., Cao, P. & Blaser, M. J. Potentiation of Helicobacter pylori vacuolating toxin activity by nicotine and other weak bases. J. Infect. Dis. 166, 1073–1078 (1992).

    Article  CAS  PubMed  Google Scholar 

  78. Satin, B. et al. Effect of Helicobacter pylori vacuolating toxin on maturation and extracellular release of procathepsin D and on epidermal growth factor degradation. J. Biol. Chem. 272, 25022–25028 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Molinari, M. et al. Selective inhibition of Ii-dependent antigen presentation by Helicobacter pylori toxin VacA. J. Exp. Med. 187, 135–140 (1998). Describes the inhibitory effects of VacA on antigen presentation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kimura, M. et al. Vacuolating cytotoxin purified from Helicobacter pylori causes mitochondrial damage in human gastric cells. Microb. Pathog. 26, 45–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Galmiche, A. et al. The N-terminal 34-kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO. J 19, 6361–6370 (2000). Identifies mitochondria as a target for VacA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Willhite, D. C. & Blanke, S. R. Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. Cell. Microbiol. 6, 143–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Willhite, D. C., Cover, T. L. & Blanke, S. R. Cellular vacuolation and mitochondrial cytochrome c release are independent outcomes of Helicobacter pylori vacuolating cytotoxin activity that are each dependent on membrane channel formation. J. Biol. Chem. 278, 48204–48209 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Kuck, D. et al. Vacuolating cytotoxin of Helicobacter pylori induces apoptosis in the human gastric epithelial cell line AGS. Infect. Immun. 69, 5080–5087 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cover, T. L., Krishna, U. S., Israel, D. A. & Peek, R. M. Jr. Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res. 63, 951–957 (2003).

    CAS  PubMed  Google Scholar 

  86. Nakayama, M. et al. Helicobacter pylori VacA activates the p38/ATF-2-mediated signal pathway in AZ-521 cells. J. Biol. Chem. 279, 7024–7028 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Boncristiano, M. et al. The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms. J. Exp. Med. 198, 1887–1897 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. de Bernard, M. et al. The Helicobacter pylori VacA cytotoxin activates RBL-2H3 cells by inducing cytosolic calcium oscillations. Cell. Microbiol. 7, 191–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Papini, E. et al. Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J. Clin. Invest. 102, 813–820 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tombola, F. et al. The Helicobacter pylori VacA toxin is a urea permease that promotes urea diffusion across epithelia. J. Clin. Invest. 108, 929–937 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Debellis, L., Papini, E., Caroppo, R., Montecucco, C. & Curci, S. Helicobacter pylori cytotoxin VacA increases alkaline secretion in gastric epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G1440–G1448 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Guarino, A. et al. Enterotoxic effect of the vacuolating toxin produced by Helicobacter pylori in Caco-2 cells. J. Infect. Dis. 178, 1373–1378 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Zheng, P. Y. & Jones, N. L. Helicobacter pylori strains expressing the vacuolating cytotoxin interrupt phagosome maturation in macrophages by recruiting and retaining TACO (coronin 1) protein. Cell. Microbiol. 5, 25–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Allen, L. A., Schlesinger, L. S. & Kang, B. Virulent strains of Helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages. J. Exp. Med. 191, 115–128 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rittig, M. G. et al. Helicobacter pylori-induced homotypic phagosome fusion in human monocytes is independent of the bacterial vacA and cag status. Cell. Microbiol. 5, 887–899 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Gebert, B., Fischer, W., Weiss, E., Hoffman, R. & Haas, R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301, 1099–1102 (2003). The first description of the effects of VacA on T lymphocytes.

    Article  CAS  PubMed  Google Scholar 

  97. Sundrud, M. S., Torres, V. J., Unutmaz, D. & Cover, T. L. Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proc. Natl Acad. Sci. USA 101, 7727–7732 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yahiro, K. et al. Protein-tyrosine phosphatase α, RPTPα, is a Helicobacter pylori VacA receptor. J. Biol. Chem. 278, 19183–19189 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Moll, G. et al. Lipid interaction of the 37-kDa and 58-kDa fragments of the Helicobacter pylori cytotoxin. Eur. J. Biochem. 234, 947–952 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Seto, K., Hayashi-Kuwabara, Y., Yoneta, T., Suda, H. & Tamaki, H. Vacuolation induced by cytotoxin from Helicobacter pylori is mediated by the EGF receptor in HeLa cells. FEBS Lett. 431, 347–350 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Utt, M., Danielsson, B. & Wadstrom, T. Helicobacter pylori vacuolating cytotoxin binding to a putative cell surface receptor, heparan sulfate, studied by surface plasmon resonance. FEMS Immunol. Med. Microbiol. 30, 109–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Massari, P. et al. Binding of the Helicobacter pylori vacuolating cytotoxin to target cells. Infect. Immun. 66, 3981–3984 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. McClain, M. S., Schraw, W., Ricci, V., Boquet, P. & Cover, T. L. Acid-activation of Helicobacter pylori vacuolating cytotoxin (VacA) results in toxin internalization by eukaryotic cells. Mol. Microbiol. 37, 433–442 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Ricci, V. et al. High cell sensitivity to Helicobacter pylori VacA toxin depends on a GPI-anchored protein and is not blocked by inhibition of the clathrin-mediated pathway of endocytosis. Mol. Biol. Cell 11, 3897–3909 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Padilla, P. I. et al. Morphologic differentiation of HL-60 cells is associated with appearance of RPTPβ and induction of Helicobacter pylori VacA sensitivity. J. Biol. Chem. 275, 15200–15206 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Yahiro, K. et al. Essential domain of receptor tyrosine phosphatase β (RPTPβ) for interaction with Helicobacter pylori vacuolating cytotoxin. J. Biol. Chem. 279, 51013–51021 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Schraw, W., Li, Y., McClain, M. S., van der Goot, F. G. & Cover, T. L. Association of Helicobacter pylori vacuolating toxin (VacA) with lipid rafts. J. Biol. Chem. 277, 34642–34650 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Patel, H. K. et al. Plasma membrane cholesterol modulates cellular vacuolation induced by the Helicobacter pylori vacuolating cytotoxin. Infect. Immun. 70, 4112–4123 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kuo, C. H. & Wang, W. C. Binding and internalization of Helicobacter pylori VacA via cellular lipid rafts in epithelial cells. Biochem. Biophys. Res. Commun. 303, 640–644 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Geisse, N. A., Cover, T. L., Henderson, R. M. & Edwardson, J. M. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy. Biochem. J. 381, 911–917 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gauthier, N. C. et al. Glycosylphosphatidylinositol-anchored proteins and actin cytoskeleton modulate chloride transport by channels formed by the Helicobacter pylori vacuolating cytotoxin VacA in HeLa cells. J. Biol. Chem. 279, 9481–9489 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Fiocca, R. et al. Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J. Pathol. 188, 220–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Ricci, V. et al. Helicobacter pylori vacuolating toxin accumulates within the endosomal- vacuolar compartment of cultured gastric cells and potentiates the vacuolating activity of ammonia. J. Pathol. 183, 453–459 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Tombola, F. et al. Inhibition of the vacuolating and anion channel activities of the VacA toxin of Helicobacter pylori. FEBS Lett. 460, 221–225 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. de Bernard, M., Moschioni, M., Napolitani, G., Rappuoli, R. & Montecucco, C. The VacA toxin of Helicobacter pylori identifies a new intermediate filament-interacting protein. EMBO J. 19, 48–56 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hennig, E. E., Butruk, E. & Ostrowski, J. RACK1 protein interacts with Helicobacter pylori VacA cytotoxin: the yeast two-hybrid approach. Biochem. Biophys. Res. Commun. 289, 103–110 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Ricci, V. et al. Effect of Helicobacter pylori on gastric epithelial cell migration and proliferation in vitro: role of VacA and CagA. Infect. Immun. 64, 2829–2833 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kobayashi, H. et al. The effect of Helicobacter pylori on gastric acid secretion by isolated parietal cells from a guinea pig. Association with production of vacuolating toxin by H. pylori. Scand. J. Gastroenterol. 31, 428–433 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Bantel, H. et al. α-Toxin is a mediator of Staphylococcus aureus-induced cell death and activates caspases via the intrinsic death pathway independently of death receptor signaling. J. Cell Biol. 155, 637–648 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. De Haan, L. & Hirst, T. R. Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms. Mol. Membr. Biol. 21, 77–92 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Tamura, M., Nogimori, K., Yajima, M., Ase, K. & Ui, M. A role of the B-oligomer moiety of islet-activating protein, pertussis toxin, in development of the biological effects on intact cells. J. Biol. Chem. 258, 6756–6761 (1983).

    CAS  PubMed  Google Scholar 

  122. Pizza, M., Masignani, V. & Rappuoli, R. in The Comprehensive Sourcebook of Bacterial Protein Toxins Second Edition 45–72 (Academic Press, 1999).

    Google Scholar 

  123. Abrami, L., Fivaz, M., Glauser, P. E., Parton, R. G. & van der Goot, F. G. A pore-forming toxin interacts with a GPI-anchored protein and causes vacuolation of the endoplasmic reticulum. J. Cell Biol. 140, 525–540 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Collier, R. J. & Young, J. A. Anthrax toxin. Annu. Rev. Cell Dev. Biol. 19, 45–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Lacy, D. B. & Collier, R. J. Structure and function of anthrax toxin. Curr. Top. Microbiol. Immunol. 271, 61–85 (2002).

    CAS  PubMed  Google Scholar 

  126. Kirby, J. E. Anthrax lethal toxin induces human endothelial cell apoptosis. Infect. Immun. 72, 430–439 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Agrawal, A. et al. Impairment of dendritic cells and adaptive immunity by anthrax lethal toxin. Nature 424, 329–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Friedlander, A. M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J. Biol. Chem. 261, 7123–7126 (1986).

    CAS  PubMed  Google Scholar 

  129. Obrig, T. G. et al. Direct cytotoxic action of Shiga toxin on human vascular endothelial cells. Infect. Immun. 56, 2373–2378 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Tesh, V. L., Ramegowda, B. & Samuel, J. E. Purified Shiga-like toxins induce expression of proinflammatory cytokines from murine peritoneal macrophages. Infect. Immun. 62, 5085–5094 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ling, H. et al. Structure of the shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37, 1777–1788 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Stein, P. E. et al. Structure of a pertussis toxin-sugar complex as a model for receptor binding. Nature Struct. Biol. 1, 591–596 (1994).

    Article  CAS  PubMed  Google Scholar 

  133. Barbieri, J. T. & Sun, J. Pseudomonas aeruginosa ExoS and ExoT. Rev. Physiol. Biochem. Pharmacol. 152, 79–92 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Goehring, U. M., Schmidt, G., Pederson, K. J., Aktories, K. & Barbieri, J. T. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J. Biol. Chem. 274, 36369–36372 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Vincent, T. S., Fraylick, J. E., McGuffie, E. M. & Olson, J. C. ADP-ribosylation of oncogenic Ras proteins by Pseudomonas aeruginosa exoenzyme S in vivo. Mol. Microbiol. 32, 1054–1064 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Hewlett, E. L., Kim, K. J., Lee, S. J. & Gray, M. C. Adenylate cyclase toxin from Bordetella pertussis: current concepts and problems in the study of toxin functions. Int. J. Med. Microbiol. 290, 333–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Ladant, D. & Ullmann, A. Bordetella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol. 7, 172–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Cover, T. L., Reddy, L. Y. & Blaser, M. J. Effects of ATPase inhibitors on the response of HeLa cells to Helicobacter pylori vacuolating toxin. Infect. Immun. 61, 1427–1431 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Papini, E. et al. Bafilomycin A1 inhibits Helicobacter pylori-induced vacuolization of HeLa cells. Mol. Microbiol. 7, 323–327 (1993).

    Article  CAS  PubMed  Google Scholar 

  140. Papini, E. et al. The vacuolar ATPase proton pump is present on intracellular vacuoles induced by Helicobacter pylori. J. Med. Microbiol. 45, 84–89 (1996).

    Article  CAS  PubMed  Google Scholar 

  141. Papini, E. et al. The small GTP binding protein rab7 is essential for cellular vacuolation induced by Helicobacter pylori cytotoxin. EMBO J. 16, 15–24 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hotchin, N. A., Cover, T. L. & Akhtar, N. Cell vacuolation induced by the VacA cytotoxin of Helicobacter pylori is regulated by the rac1 GTPase. J. Biol. Chem. 275, 14009–14012 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Suzuki, J. et al. Involvement of syntaxin 7 in human gastric epithelial cell vacuolation induced by the Helicobacter pylori-produced cytotoxin VacA. J. Biol. Chem. 278, 25585–25590 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Suzuki, J. et al. Dynamin is involved in human epithelial cell vacuolation caused by the Helicobacter pylori-produced cytotoxin VacA. J. Clin. Invest. 107, 363–370 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ikonomov, O. C., Sbrissa, D., Yoshimori, T., Cover, T. L. & Shisheva, A. PIKfyve kinase and SKD1 AAA ATPase define distinct endocytic compartments. Only PIKfyve expression inhibits the cell-vacuolating activity of Helicobacter pylori VacA toxin. J. Biol. Chem. 277, 46785–46790 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. de Bernard, M., Moschioni, M., Habermann, A., Griffiths, G. & Montecucco, C. Cell vacuolization induced by Helicobacter pylori VacA cytotoxin does not depend on late endosomal SNAREs. Cell. Microbiol. 4, 11–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Fischer, W., Buhrdorf, R., Gerland, E. & Haas, R. Outer membrane targeting of passenger proteins by the vacuolating cytotoxin autotransporter of Helicobacter pylori. Infect. Immun. 69, 6769–6775 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Amieva, M. R. et al. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300, 1430–1434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Terres, A. M. et al. Helicobacter pylori disrupts epithelial barrier function in a process inhibited by protein kinase C activators. Infect. Immun. 66, 2943–2950 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health and by the Medical Research Service of the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy L. Cover.

Ethics declarations

Competing interests

Timothy L. Cover may benefit from commercial exploitation of VacA-related intellectual property held by Vanderbilt University.

Related links

Related links

DATABASES

Entrez

Helicobacter pylori

vacA

SwissProt

VacA

Glossary

TOXIN MULTIFUNCTIONALITY

In this review, toxin multifunctionality is defined as the ability of a bacterial protein toxin to cause multiple different cellular effects.

GASTRIC MUCUS LAYER

A thin layer of mucus covering gastric epithelial cells and consisting mainly of mucins (high-molecular-mass glycosylated proteins).

PEPTIC ULCER DISEASE

A disease that is characterized by ulcerative damage to the mucosal lining of the stomach or duodenum.

GASTRIC ADENOCARCINOMA

The most common form of stomach cancer. Two types can be differentiated based on histological features — intestinal and diffuse types.

VACUOLES

Large intracellular membrane-bound compartments.

ACID OR ALKALINE ACTIVATION

Exposure of oligomeric VacA complexes to acidic or alkaline pH results in disassembly of oligomers and is associated with an increase in vacuolating cytotoxic activity.

APOPTOSIS

An active process of programmed cell death, characterized by cleavage of chromosomal DNA, chromatin condensation and fragmentation of the nucleus.

MAP KINASES

A family of mitogen-activated protein kinases that regulate cell growth and differentiation.

PARACELLULAR EPITHELIAL PERMEABILITY

Diffusion across a polarized epithelial monolayer via the junctions betwen adjacent cells.

PRO-INFLAMMATORY CYTOKINES

Secreted proteins that regulate the inflammatory response.

LIPID RAFTS

Membrane microdomains enriched in cholesterol, sphingolipids and GPI-anchored proteins.

GPI-ANCHORED PROTEINS

Proteins that are anchored to a lipid bilayer by a glycosylphosphatidylinositol (GPI) moiety.

TOXIN RECEPTOR

A component of the eukaryotic cell surface to which a bacterial toxin can bind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cover, T., Blanke, S. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol 3, 320–332 (2005). https://doi.org/10.1038/nrmicro1095

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1095

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing