Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Horizontal gene transfer, genome innovation and evolution

Key Points

  • Tree-like binary schemes for taxonomic classification have an illustrious history in evolutionary biology, but they do not provide a complete representation of life's history, especially for prokaryotes. Some genes within an organism have tree-like histories that differ from the histories of other genes within the same organism, owing to horizontal gene transfer (HGT). Although all types of genes can be susceptible to horizontal transfer, different types of genes and groups of organisms vary in their propensity for HGT.

  • Phylogenetic analysis of a concatenation of genes with differing gene histories has the potential to create artifactual histories that reflect neither the history of the organism nor the history of the gene. Methods of phylogenetic reconstruction that do not insist on tree-like phylogenies but explicitly allow for reticulation events promise to yield a more realistic reconstruction of much of life's history.

  • Phylogenetic reconstruction methodology — and therefore the accurate detection of historical HGT events — can benefit from a better understanding of phylogenetic signal as it relates to rates of change of characters and taxonomic sampling.

  • The abundance and atypical composition of genes that are transient in prokaryotic genomes such as that of Escherichia coli lead one to wonder whether such genes (and horizontally transferred genes in general) are deleterious, selected for or neutral on transfer. Recent studies seem to indicate extensive gene swapping and few selective sweeps, arguing that many transferred genes might be nearly neutral in selective effect.

  • Quantitative methods for analysing the frequency and nature of HGT events in microbial communities are needed. Quantitative descriptions yield precise predictions that can be tested statistically, and will help to resolve disputes about the frequency and importance of HGT to microbial evolution by improving clarity of expression, as well as enforcing statistical decision criteria.

Abstract

To what extent is the tree of life the best representation of the evolutionary history of microorganisms? Recent work has shown that, among sets of prokaryotic genomes in which most homologous genes show extremely low sequence divergence, gene content can vary enormously, implying that those genes that are variably present or absent are frequently horizontally transferred. Traditionally, successful horizontal gene transfer was assumed to provide a selective advantage to either the host or the gene itself, but could horizontally transferred genes be neutral or nearly neutral? We suggest that for many prokaryotes, the boundaries between species are fuzzy, and therefore the principles of population genetics must be broadened so that they can be applied to higher taxonomic categories.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effects of gene transfer on sequence divergence.
Figure 2: The tree of life.
Figure 3: Comparison of two explanations for unexpected phylogenetic distribution.
Figure 4: Graphical schema for the quantification and modelling of recombination with divergent DNA and horizontal gene transfer.

Similar content being viewed by others

References

  1. Lamarck, J. -B. Histoire Naturelle des Animaux sans Vertèbres (Verdière, Paris, 1815).

    Google Scholar 

  2. Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life (John Murray, London, 1859).

    Google Scholar 

  3. Darwin, C. Charles Darwin's Notebooks, 1836–1844 (Cornell University Press, Ithaca, 1987). Annotated version of Darwin's notebooks, including facsimiles of many pages. Gives an insight into Darwin's thoughts as he formulated the idea of evolution by natural selection.

    Google Scholar 

  4. Gogarten, J. P. & Olendzenski, L. Orthologs, paralogs and genome comparisons. Curr. Opin. Genet. Dev. 9, 630–636 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Ehrenreich, A. & Widdel, F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol. 60, 4517–4526 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ritz, C. M., Schmuths, H. & Wissemann, V. Evolution by reticulation: European dogroses originated by multiple hybridization across the genus Rosa. J. Hered. 96, 4–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Sang, T., Crawford, D. & Stuessy, T. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc. Natl Acad. Sci. USA 92, 6813–6817 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fuertes Aguilar, J., Rossello, J. A. & Nieto Feliner, G. Molecular evidence for the compilospecies model of reticulate evolution in Armeria (Plumbaginaceae). Syst. Biol. 48, 735–754 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Margulis, L. Symbiosis in Cell Evolution: Microbial Communities in the Archean and Proterozoic Eons (Freeman, New York, 1995).

    Google Scholar 

  10. Margulis, L. & Sagan, D. Acquiring Genomes: A Theory of the Origin of Species (Basic Books, New York, 2002).

    Google Scholar 

  11. Kropotkin, P. A. Mutual Aid; a Factor of Evolution (William Heinemann, London, 1902).

    Google Scholar 

  12. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hilario, E. & Gogarten, J. P. Horizontal transfer of ATPase genes — the tree of life becomes a net of life. Biosystems 31, 111–119 (1993). An early description of the potentially net-like history of genome evolution.

    Article  CAS  PubMed  Google Scholar 

  15. Welch, R. A. et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 99, 17020–17024 (2002). An excellent example of how fully sequenced genomes can be used to understand variation in gene content among closely related organisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hartman, H. & Fedorov, A. The origin of the eukaryotic cell: a genomic investigation. Proc. Natl Acad. Sci. USA 99, 1420–1425 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhaxybayeva, O. & Gogarten, J. P. Cladogenesis, coalescence and the evolution of the three domains of life. Trends Genet. 20, 182–187 (2004). Advocates a population-genetics framework that incorporates HGT for the understanding of organismal lineages.

    Article  CAS  PubMed  Google Scholar 

  18. Martin, W. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. Bioessays 21, 99–104 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Gogarten, J. P., Doolittle, W. F. & Lawrence, J. G. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19, 2226–2238 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Raymond, J., Zhaxybayeva, O., Gogarten, J. P., Gerdes, S. Y. & Blankenship, R. E. Whole-genome analysis of photosynthetic prokaryotes. Science 298, 1616–1620 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl Acad. Sci. USA 96, 3801–3806 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhaxybayeva, O., Lapierre, P. & Gogarten, J. P. Genome mosaicism and organismal lineages. Trends Genet. 20, 254–260 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Jain, R., Rivera, M. C., Moore, J. E. & Lake, J. A. Horizontal gene transfer accelerates genome innovation and evolution. Mol. Biol. Evol. 20, 1598–1602 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Olendzenski, L., Zhaxybayeva, O. and Gogarten, J. P. What's in a Tree? Does Horizontal Gene Transfer Determine Microbial Taxonomy? in Cellular Origin and Life in Extreme Habitats. Vol. 4: Symbiosis (ed. Seckbach, J.) 67–78 (Kluwer Academic Publishers, Netherlands, 2001).

    Google Scholar 

  25. Bocchetta, M., Gribaldo, S., Sanangelantoni, A. & Cammarano, P. Phylogenetic depth of the bacterial genera Aquifex and Thermotoga inferred from analysis of ribosomal protein, elongation factor, and RNA polymerase subunit sequences. J. Mol. Evol. 50, 366–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Wolf, Y. I., Rogozin, I. B., Grishin, N. V. & Koonin, E. V. Genome trees and the tree of life. Trends Genet. 18, 472–479 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Nelson, K. E. et al. Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Gophna, U., Doolittle, W. F. & Charlebois, R. L. Weighted genome trees: refinements and applications. J. Bacteriol. 187, 1305–1316 (2005). An illustration that high rates of HGT can impact the inference of lineage history from comparative genomic data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Daubin, V., Gouy, M. & Perriere, G. Bacterial molecular phylogeny using supertree approach. Genome Inform. Ser. Workshop Genome Inform. 12, 155–164 (2001).

    CAS  Google Scholar 

  30. Kibak, H., Taiz, L., Starke, T., Bernasconi, P. & Gogarten, J. P. Evolution of structure and function of V-ATPases. J. Bioenerg. Biomembr. 24, 415–424 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Brochier, C. & Philippe, H. Phylogeny: a non-hyperthermophilic ancestor for bacteria. Nature 417, 244 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. van Berkum, P. et al. Discordant phylogenies within the rrn loci of Rhizobia. J. Bacteriol. 185, 2988–2998 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yap, W. H., Zhang, Z. & Wang, Y. Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J. Bacteriol. 181, 5201–5209 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, Y., Zhang, Z. & Ramanan, N. The actinomycete Thermobispora bispora contains two distinct types of transcriptionally active 16S rRNA genes. J. Bacteriol. 179, 3270–3276 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Acinas, S. G., Marcelino, L. A., Klepac-Ceraj, V. & Polz, M. F. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J. Bacteriol. 186, 2629–2635 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Archibald, J. M. & Roger, A. J. Gene duplication and gene conversion shape the evolution of archaeal chaperonins. J. Mol. Biol. 316, 1041–1050 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Lawrence, J. G. & Ochman, H. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95, 9413–9417 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lawrence, J. G. Gene transfer in bacteria: speciation without species? Theor. Pop. Biol. 61, 449–460 (2002). This article outlines a 'fuzzy' prokaryotic species concept that incorporates HGT. See reference 96 for an alternate conception.

    Article  Google Scholar 

  39. Ragan, M. A. Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10, 4 (2002).

    Article  CAS  Google Scholar 

  40. Lawrence, J. G. & Ochman, H. Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10, 1–4 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Daubin, V., Lerat, E. & Perriere, G. The source of laterally transferred genes in bacterial genomes. Genome Biol. 4, R57 (2003). Shows that frequently horizontally transferred genes tend to have particular properties.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Koski, L. B., Morton, R. A. & Golding, G. B. Codon bias and base composition are poor indicators of horizontally transferred genes. Mol. Biol. Evol. 18, 404–412 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Philippe, H., Budin, K. & Moreira, D. Horizontal transfers confuse the prokaryotic phylogeny based on the HSP70 protein family. Mol. Microbiol. 31, 1007–1009 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Gupta, R. S. & Golding, G. B. Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J. Mol. Evol. 37, 573–582 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Gogarten, J. P. Which is the most conserved group of proteins? Homology–orthology, paralogy, xenology, and the fusion of independent lineages. J. Mol. Evol. 39, 541–543 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Gribaldo, S. et al. Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J. Bacteriol. 181, 434–443 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sicheritz-Ponten, T. & Andersson, S. G. A phylogenomic approach to microbial evolution. Nucleic Acids Res. 29, 545–552 (2001). An effective and popular methodology to analyse comparative genomic data within a phylogenetic context.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Frickey, T. & Lupas, A. N. PhyloGenie: automated phylome generation and analysis. Nucleic Acids Res. 32, 5231–5238 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Loftus, B. et al. The genome of the protist parasite Entamoeba histolytica. Nature 433, 865–868 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Huang, J., Mullapudi, N., Sicheritz-Ponten, T. & Kissinger, J. C. A first glimpse into the pattern and scale of gene transfer in Apicomplexa. Int. J. Parasitol. 34, 265–274 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Koski, L. B. & Golding, G. B. The closest BLAST hit is often not the nearest neighbor. J. Mol. Evol. 52, 540–542 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Graybeal, A. Evaluating the phylogenetic utility of genes: a search for genes informative about deep divergences among vertebrates. Syst. Biol. 43, 174–193 (1994).

    Article  Google Scholar 

  53. Zhaxybayeva, O. & Gogarten, J. P. An improved probability mapping approach to assess genome mosaicism. BMC Genomics 4, 37 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Morowitz, H. The Wine of Life, and Other Essays on Societies, Energy and Living Things (Bantam Books Inc., New York, 1979).

    Google Scholar 

  55. Snel, B., Bork, P. & Huynen, M. A. Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res. 12, 17–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Daubin, V., Moran, N. & Ochman, H. Phylogenetics and the cohesion of bacterial genomes. Science 301, 829–832 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Mirkin, B. G., Fenner, T. I., Galperin, M. Y. & Koonin, E. V. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes. BMC Evol. Biol. 3, 2 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Novichkov, P. S. et al. Genome-wide molecular clock and horizontal gene transfer in bacterial evolution. J. Bacteriol. 186, 6575–6585 (2004). An early attempt to use data-mining techniques to quantify rates of horizontal and vertical inheritance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. 51, 492–508 (2002). The gold standard for demonstration of phylogenetic conflict.

    Article  PubMed  Google Scholar 

  60. Shimodaira, H. & Hasegawa, M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16, 1114–1116 (1999).

    Article  CAS  Google Scholar 

  61. Lerat, E., Daubin, V. & Moran, N. A. From gene trees to organismal phylogeny in prokaryotes: the case of the γ-Proteobacteria. PLoS Biol. 1, E19 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Brochier, C., Bapteste, E., Moreira, D. & Philippe, H. Eubacterial phylogeny based on translational apparatus proteins. Trends Genet. 18, 1–5 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Bapteste, E., Boucher, Y., Leigh, J. & Doolittle, W. F. Phylogenetic reconstruction and lateral gene transfer. Trends Microbiol. 12, 406–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Daubin, V. & Ochman, H. Quartet mapping and the extent of lateral transfer in bacterial genomes. Mol. Biol. Evol. 21, 86–89 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Lento, G. M., Hickson, R. E., Chambers, G. K. & Penny, D. Use of spectral analysis to test hypotheses on the origin of pinnipeds. Mol. Biol. Evol. 12, 28–52 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Bininda-Emonds, O. R. P. The evolution of supertrees. Trends Ecol. Evol. 19, 315–322 (2004).

    Article  PubMed  Google Scholar 

  67. Wang, L., Zhang, K. & Zhang, L. Perfect phylogenetic networks with recombination. J. Comput. Biol. 8, 69–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Nakhleh, L., Warnow, T. & Linder, C. R. Reconstructing reticulate evolution in species — theory and practice. in Conference on Research in Computational Molecular Biology 337–346 (RECOMB, San Diego, 2004).

    Google Scholar 

  69. Gusfield, D., Eddhu, S. & Langley, C. Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J. Bioinform. Comput. Biol. 2, 173–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Bandelt, H. J. & Dress, A. W. Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol. 1, 242–252 (1992).

    Article  CAS  PubMed  Google Scholar 

  71. Huson, D. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Bryant, D. & Moulton, V. Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol. 21, 255–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Henz, S. R., Huson, D. H., Auch, A. F., Nieselt-Struwe, K. & Schuster, S. C. Whole-genome prokaryotic phylogeny. Bioinformatics 21, 2329–2335 (2004).

    Article  PubMed  CAS  Google Scholar 

  74. Lake, J. A. & Rivera, M. C. Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol. Biol. Evol. 21, 681–690 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Rivera, M. C. & Lake, J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431, 152–155 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Andersson, J. O., Sjogren, A. M., Davis, L. A., Embley, T. M. & Roger, A. J. Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr. Biol. 13, 94–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Andersson, J. O., Sarchfield, S. W. & Roger, A. J. Gene transfers from nanoarchaeota to an ancestor of diplomonads and parabasalids. Mol. Biol. Evol. 22, 85–90 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Doolittle, W. F. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 14, 307–311 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Gogarten, J. P. Gene transfer: gene swapping craze reaches eukaryotes. Curr. Biol. 13, R53–R54 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Martin, W. Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc. Natl Acad. Sci. USA 100, 8612–8614 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kurland, C. G., Canback, B. & Berg, O. G. Horizontal gene transfer: a critical view. Proc. Natl Acad. Sci. USA 100, 9658–9662 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lawrence, J. G. & Roth, J. R. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143, 1843–1860 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J. Genomic islands in pathogenic and environmental microorganisms. Nature Rev. Microbiol. 2, 414–424 (2004).

    Article  CAS  Google Scholar 

  84. Gogarten, J. P., Senejani, A. G., Zhaxybayeva, O., Olendzenski, L. & Hilario, E. Inteins: structure, function, and evolution. Annu. Rev. Microbiol. 56, 263–287 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Nielsen, K. M. & Townsend, J. P. Environmental exposure, horizontal transfer, and selection of transgenes in bacterial populations. in Enhancing Biocontrol Agents and Handling Risks, Vol. 339 (eds. Vurro, M. et al.) 145–158 (IOS Press, Amsterdam, 2001).

    Google Scholar 

  86. Townsend, J. P., Nielsen, K. M., Fisher, D. S. & Hartl, D. L. Horizontal acquisition of divergent chromosomal DNA: consequences of mutator phenotypes. Genetics 164, 13–21 (2003). Puts forward a quantitative framework for evaluating the effect of HGT on the evolution of prokaryotes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nielsen, K. M. & Townsend, J. P. Monitoring and modeling horizontal gene transfer. Nature Biotechnol. 22, 1110–1114 (2004).

    Article  CAS  Google Scholar 

  88. Hooper, S. D. & Berg, O. G. Duplication is more common among laterally transferred genes than among indigenous genes. Genome Biol. 4, R48 (2003). Shows that frequently horizontally transferred genes tend to have particular properties.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Daubin, V. & Ochman, H. Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res. 14, 1036–1042 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Philippe, H. & Douady, C. J. Horizontal gene transfer and phylogenetics. Curr. Opin. Microbiol. 6, 498–505 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Hightower, L. E. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66, 191–197 (1991).

    Article  CAS  PubMed  Google Scholar 

  92. Thompson, J. R. et al. Genotypic diversity within a natural coastal bacterioplankton population. Science 307, 1311–1313 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Majewski, J. & Cohan, F. M. Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity. Genetics 152, 1459–1474 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hendrix, R. W., Lawrence, J. G., Hatfull, G. F. & Casjens, S. The origins and ongoing evolution of viruses. Trends Microbiol. 8, 504–508 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Mayr, E. Systematics and the Origin of Species (Columbia University Press, New York, 1942).

    Google Scholar 

  96. Cohan, F. M. What are bacterial species? Annu. Rev. Microbiol. 56, 457–487 (2002). Outlines a species concept defined by selective sweeps. For an alternate conception, see reference 38.

    Article  CAS  PubMed  Google Scholar 

  97. Majewski, J. Sexual isolation in bacteria. FEMS Microbiol. Lett. 199, 161–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Hanage, W. P., Fraser, C. & Spratt, B. G. Fuzzy species among recombinogenic bacteria. BMC Biol. 3, 6 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Cohan, F. M. Sexual isolation and speciation in bacteria. Genetica 116, 359–370 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Zhaxybayeva, O. & Gogarten, J. P. Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics 3, 4 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vulic, M., Dionisio, F., Taddei, F. & Radman, M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl. Acad. Sci. USA 94, 9763–9767 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zawadzki, P., Roberts, M. S. & Cohan, F. M. The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 140, 917–932 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Majewski, J. & Cohan, F. M. The effect of mismatch repair and heteroduplex formation on sexual isolation in Bacillus. Genetics 148, 13–18 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Majewski, J., Zawadzki, P., Pickerill, P., Cohan, F. M. & Dowson, C. G. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182, 1016–1023 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lawrence, J. G. & Hendrickson, H. Lateral gene transfer: when will adolescence end? Mol. Microbiol. 50, 739–749 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Papke, R. T., Koenig, J. E., Rodriguez-Valera, F. & Doolittle, W. F. Frequent recombination in a saltern population of Halorubrum. Science 306, 1928–1929 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank O. Zhaxybayeva, K. Nielsen, P. Lapierre, W.F. Doolittle, J. Lawrence and F.M. Cohan for many stimulating and relevant discussions. Work in J.P.G.'s laboratory was supported by the National Science Foundation's Microbial Genetics programme and the NASA Applied Information Systems Research and Exobiology Programmes.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Archaeoglobus fulgidus

Bacillus subtilis

Methanocaldococcus jannaschii

Methanothermobacter thermautotrophicus

Pyrococcus abyssi

Pyrococcus furiosus

Streptococcus pneumoniae

Streptococcus thermophilus

Thermotoga maritima

FURTHER INFORMATION

J. Peter Gogarten's laboratory

Jeffrey P. Townsend's laboratory

Glossary

TREE OF LIFE

The tree-like representation of the history of all living and extinct organisms.

MUTUALISM

An association between two organisms, often from different species, that benefits both partners.

RETICULATION

A network that is formed through the fusion of independent branches.

PHYLOGENY

The origin and evolution of a group of organisms, usually of species. Phylogenies are not necessarily tree-like. The term phylogeny is frequently applied to genes and different levels of taxonomic units. These are often labelled as operational taxonomic units.

GENE TREE

A depiction of the history of families of homologous genes. Intragenic recombination can gives rise to non-tree-like gene phylogenies.

HOMOLOGUES

Characters or sequences that are derived from the same ancestral feature.

SUPERTREES

Trees calculated from smaller trees with sets of overlapping operational taxonomic units.

ORTHOLOGUES

Homologues that are related to each other through a speciation event.

PURIFYING SELECTION

Kimura's neutral theory of molecular evolution posits that most variations observed at the molecular level do not provide a selective advantage or disadvantage. However, many nucleotide mutations are never observed in a population because they are associated with a strong selective disadvantage. This is the case for mutations that change a catalytically important amino acid. The selection that prevents these detrimental mutations from becoming fixed in a population is known as purifying selection.

BIPARTITION

A bipartition corresponds to an internal branch in a phylogenetic tree. A single bipartition divides the data (sequences, genomes or species) into two groups, but it does not consider the relationships within each of these groups.

LENTO PLOTS

Phylogenetic analyses using bipartition data named after G.M. Lento. For each bipartition, the bipartition spectra give the support for the bipartition as a histogram bar in the positive direction, and the support for all conflicting bipartitions as a bar in the negative direction.

GALLED TREES

Trees that contain local deviations from a strictly furcating pattern.

SELFISH OPERON THEORY

Explains the formation of operons through gene transfer. According to this theory, genes encoding parts of the same process become clustered because functionally unrelated intervening genes become useless and are deleted following a transfer, and because such clustered genes are more likely to be successfully transferred as a unit compared to genes encoded in distant parts of the genome.

ORFANS

Open reading frames that do not have a recognizable homologue among known sequences.

RIBOTYPE

In analogy to genotype and phenotype, the type of RNA in an organism, usually referring to the type of ribosomal RNA.

SELECTIVE SWEEP

Fixation of an advantageous character in a population. In the absence of recombination, the advantageous character carries with it the whole chromosome and erases diversity within the population.

MORONS

Genetic elements in lambdoid phages acquired through recent gene transfer. These genes are unrelated in function to the genes surrounding them. They were named morons because their addition to the phage genome means that there is 'more DNA' than there is without the element.

ILLEGITIMATE RECOMBINATION

Recombination between two non-homologous DNA segments. Usually, illegitimate recombination is fairly infrequent.

LEADING AND LAGGING DNA STRAND

DNA replication on the leading strand occurs continuously in a 5′ to 3′ direction, whereas DNA replication on the lagging strand occurs discontinuously through the synthesis of short Okazaki fragments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogarten, J., Townsend, J. Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3, 679–687 (2005). https://doi.org/10.1038/nrmicro1204

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing