Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genome-wide analysis of retroviral DNA integration

Key Points

  • In the past few years, with the availability of near-complete sequences for several vertebrate genomes, the targeting of retroviral DNA integration has been subjected to genomic analysis. These studies have shown that different retroviruses have different integration target-site preferences.

  • HIV favours integration in transcription units, particularly into active transcription units. In line with this, HIV integration is disfavoured in human endogenous retrovirus (HERV) elements, which are depleted in gene-rich regions of the genome and, in some studies, HIV integration is favoured in Alu elements, which are abundant in gene-rich chromosomal domains.

  • Murine leukaemia virus (MLV) favours integration near the 5′ ends of genes.

  • By contrast, avian sarcoma-leukosis virus (ASLV) shows a near-random distribution of integration sites in the human genome, with only a weak favouring of integration in genes.

  • The chromosomal environment can influence expression of integrated sequences — for example, integration of HIV into highly expressed cellular genes inhibits HIV transcription. These factors provide explanations for transcriptional latency in cells from HIV-infected patients.

  • Several chromosomal and nuclear factors might influence the targeting of retroviral integration. These include the presence of cellular proteins that can tether the integration complex to sites in the host genome, the intranuclear position of chromosomes, the accessibility of chromatin, and the cell-cycle status of the target cell.

  • Insertional activation of oncogenes by retroviral integration during human gene therapy has now been seen in three cases, which highlights the need for a further understanding of the mechanisms that direct retroviral integration.

Abstract

Retroviral vectors are often used to introduce therapeutic sequences into patients' cells. In recent years, gene therapy with retroviral vectors has had impressive therapeutic successes, but has also resulted in three cases of leukaemia caused by insertional mutagenesis, which has focused attention on the molecular determinants of retroviral-integration target-site selection. Here, we review retroviral DNA integration, with emphasis on recent genome-wide studies of targeting and on the status of efforts to modulate target-site selection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The DNA breaking and joining reactions that mediate integration.
Figure 2: Sites of integration of HIV or HIV-based vectors in the human genome.
Figure 3: Three human genes that have hosted multiple HIV integration events.
Figure 4: Candidate mechanisms that direct integration-site selection by retroviruses.

Similar content being viewed by others

References

  1. Coffin, J. M., Hughes, S. H. & Varmus, H. E. Retroviruses (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997). The 'bible' of retrovirology.

    Google Scholar 

  2. Bushman, F. D. Lateral DNA Transfer: Mechanisms and Consequences (Cold Spring Harbor Laboratory Press, New York, 2001). Describes retroviral replication in the context of the mobile-DNA field.

    Google Scholar 

  3. Brown, P. O., Bowerman, B., Varmus, H. E. & Bishop, J. M. Correct integration of retroviral DNA in vitro. Cell 49, 347–356 (1987). The first demonstration of retroviral integration using preintegration complexes from infected cells.

    Article  CAS  PubMed  Google Scholar 

  4. Craigie, R., Fujiwara, T. & Bushman, F. The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. Cell 62, 829–837 (1990). The first demonstration that MLV integrase could form covalent bonds between model viral DNA and target DNA.

    Article  CAS  PubMed  Google Scholar 

  5. Bor, Y. -C., Miller, M., Bushman, F. & Orgel, L. Target sequence preferences of HIV-1 integration complexes in vitro. Virology 222, 238–242 (1996).

    Article  Google Scholar 

  6. Stevens, S. W. & Griffith, J. D. Sequence analysis of the human DNA flanking sites of human immunodeficiency virus type 1 integration. J. Virol. 70, 6459–6462 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Carteau, S., Hoffmann, C. & Bushman, F. D. Chromosome structure and HIV-1 cDNA integration: centromeric alphoid repeats are a disfavored target. J. Virol. 72, 4005–4014 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yant, S. R. et al. High-resolution genome-wide mapping of transposon integration in mammals. Mol. Cell. Biol. 25, 2085–2094 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holman, A. G. & Coffin, J. M. Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites. Proc. Natl Acad. Sci. USA 102, 6103–6107 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schroder, A. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529 (2002). The first genome-wide study of HIV integration, which revealed that HIV favours integration in active transcription units.

    Article  CAS  PubMed  Google Scholar 

  11. Wu, X., Li, Y., Crise, B. & Burgess, S. M. Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749–1751 (2003). The first genome-wide study of MLV integration, which showed that this virus differed from HIV by favouring integration near transcription start sites.

    Article  CAS  PubMed  Google Scholar 

  12. Mitchell, R. et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2, E234 (2004). Bioinformatic survey of integration by HIV, MLV and ASLV, and a comparison of integration by HIV in different cell types.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hacein-Bey-Abina, S. et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256 (2003).

    Article  PubMed  Google Scholar 

  14. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003). References 13 and 14 characterize the adverse events that occurred during gene therapy for X-SCID.

    Article  CAS  PubMed  Google Scholar 

  15. Panet, A. & Cedar, H. Selective degradation of integrated murine leukemia proviral DNA by deoxyribonucleases. Cell 11, 933–940 (1977).

    Article  CAS  PubMed  Google Scholar 

  16. Rohdewohld, H., Weiher, H., Reik, W., Jaenisch, R. & Breindl, M. Retrovirus integration and chromatin structure: Moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites. J. Virol. 61, 336 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vijaya, S., Steffan, D. L. & Robinson, H. L. Acceptor sites for retroviral integrations map near DNase I-hypersensitive sites in chromatin. J. Virol. 60, 683–692 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Scherdin, U., Rhodes, K. & Breindl, M. Transcriptionally active genome regions are preferred targets for retrovirus integration. J. Virol. 64, 907 (1990).

  19. Shih, C. -C., Stoye, J. P. & Coffin, J. M. Highly preferred targets for retrovirus integration. Cell 53, 531–537 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Withers-Ward, E. S., Kitamura, Y., Barnes, J. P. & Coffin, J. M. Distribution of targets for avian retrovirus DNA integration in vivo. Genes Dev. 8, 1473–1487 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Bushman, F. D., Fujiwara, T. & Craigie, R. Retroviral DNA integration directed by HIV integration protein in vitro. Science 249, 1555–1558 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Katz, R. A., Merkel, G., Kulkosky, J., Leis, J. & Skalka, A. M. The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro. Cell 63, 87–95 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Bushman, F. D. & Craigie, R. Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA. Proc. Natl Acad. Sci. USA 88, 1339–1343 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pryciak, P. M., Sil, A. & Varmus, H. E. Retroviral integration into minichromosomes in vitro. EMBO J. 11, 291–303 (1992). An early study of integration into chromatin templates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pruss, D., Reeves, R., Bushman, F. D. & Wolffe, A. P. The influence of DNA and nucleosome structure on integration events directed by HIV integrase. J. Biol. Chem. 269, 25031–25041 (1994).

    CAS  PubMed  Google Scholar 

  26. Fitzgerald, M. L. & Grandgenett, D. P. Retroviral integration: in vitro host site selection by avian integrase. J. Virol. 68, 4314–4321 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pryciak, P. M. & Varmus, H. E. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69, 769–780 (1992). The first study of integration into chromatin templates.

    Article  CAS  PubMed  Google Scholar 

  28. Bushman, F. D. Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences. Proc. Natl Acad. Sci. USA 91, 9233–9237 (1994). The first demonstration that fusion of retroviral integrase proteins to sequence-specific DNA-binding domains can direct integration into predetermined target DNA sites in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bor, Y. -C., Bushman, F. & Orgel, L. In vitro integration of human immunodeficiency virus type 1 cDNA into targets containing protein-induced bends. Proc. Natl Acad. Sci. USA 92, 10334–10338 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weidhaas, J. B., Angelichio, E. L., Fenner, S. & Coffin, J. M. Relationship between retroviral DNA integration and gene expression. J. Virol. 74, 8382–8389 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pryciak, P., Muller, H. -P. & Varmus, H. E. Simian virus 40 minichromosomes as targets for retroviral integration in vivo. Proc. Natl Acad. Sci. USA 89, 9237–9241 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pruss, D., Bushman, F. D. & Wolffe, A. P. Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc. Natl Acad. Sci. USA 91, 5913–5917 (1994). A study of integration in nucleosomes, which revealed that integration at 'kinked' DNA sites is favoured.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Muller, H. -P. & Varmus, H. E. DNA bending creates favored sites for retroviral integration: an explanation for preferred insertion sites in nucleosomes. EMBO J. 13, 4704–4714 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bushman, F. D. & Craigie, R. Integration of human immunodeficiency virus DNA: adduct interference analysis of required DNA sites. Proc. Natl Acad. Sci. USA 89, 3458–3462 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Scottoline, B. P., Chow, S., Ellison, V. & Brown, P. O. Disruption of the terminal base pairs of retroviral DNA during integration. Genes Dev. 11, 371–382 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Lander, E. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001). The first draft of the human genome sequence from the public consortium.

    Article  CAS  PubMed  Google Scholar 

  37. Venter, J. C. The sequence of the human genome. Science 291, 1304–1351 (2001). The first draft of the human genome sequence from Celera.

    Article  CAS  PubMed  Google Scholar 

  38. Caron, H. et al. The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291, 1289–1292 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Versteeg, R. et al. The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome Res. 13, 1998–2004 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mungall, A. J. & et al. The DNA sequence and analysis of human chromosome 6. Nature 425, 805–811 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Lewinski, M. et al. Genome-wide analysis of chromosomal features repressing HIV transcription. J. Virol. 79, 6610–6619 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van't Wout, A. B. et al. Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4+-T-cell lines. J. Virol. 77, 1392–1402 (2003).

    Article  CAS  Google Scholar 

  43. Corbeil, J. et al. Temporal gene regulation during HIV-1 infection of human CD4+ T cells. Genome Res. 11, 1198–204. (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mitchell, R., Chiang, C., Berry, C. & Bushman, F. D. Global effects on cellular transcription following infection with an HIV-based vector. Mol. Ther. 8, 674–687 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Chubb, J. R. & Bickmore, W. A. Considering nuclear compartmentalization in light of nuclear dynamics. Cell 112, 403–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Laufs, S. et al. Retroviral vector integration occurs in preferred genomic targets in human bone marrow-repopulating cells. Blood 101, 2191–2198 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Laufs, S. et al. Insertion of retroviral vectors in NOD/SCID repopulating human peripheral blood progenitor cells occurs preferentially in the vicinity of transcription start regions and in introns. Mol. Ther. 10, 874–881 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Fischer, A., Abina, S. H., Thrasher, A., von Kalle, C. & Cavazzana-Calvo, M. LMO2 and gene therapy for severe combined immunodeficiency. N. Engl. J. Med. 350, 2526–2527 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Narezkina, A. et al. Genome-wide analyses of avian sarcoma virus integration sites. J. Virol. 78, 11656–11663 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maxfield, L. F., Fraize, C. D. & Coffin, J. M. Relationship between retroviral DNA-integration-site selection and host cell transcription. Proc. Natl Acad. Sci. USA 102, 1436–1441 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hematti, P. et al. Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol. 2, e423 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakai, H. et al. AAV serotype 2 vectors preferentially integrate into active genes in mice. Nature Genet. 34, 297–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Sandmeyer, S. Integration by design. Proc. Natl Acad. Sci. USA 100, 5586–5588 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhu, Y., Dai, J., Fuerst, P. G. & Voytas, D. F. Controlling integration specificity of yeast retrotransposon. Proc. Natl Acad. Sci. USA 100, 5891–5895 (2003). The demonstration of controlling integration target-site specificity in vivo by engineering a yeast retrotransposon.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boeke, J. D. & Devine, S. E. Yeast retrotransposons: finding a nice quiet neighborhood. Cell 93, 1087–1089 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Bushman, F. D. Targeting survival: integration site selection by retroviruses and LTR-retrotransposons. Cell 115, 135–138 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Li, L. et al. Role of the non-homologous DNA end joining pathway in retroviral infection. EMBO J. 20, 3272–3281 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Farnet, C. & Bushman, F. D. HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell 88, 483–492 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Suzuki, Y. & Craigie, R. Regulatory mechanisms by which barrier-to-autointegration factor blocks autointegration and stimulates intermolecular integration of Moloney murine leukemia virus preintegration complexes. J. Virol. 76, 12376–12380 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Llano, M. et al. LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J. Virol. 78, 9524–9537 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kalpana, G. V., Marmon, S., Wang, W., Crabtree, G. R. & Goff, S. P. Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science 266, 2002–2006 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Cherepanov, P. et al. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem. 278, 372–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Maertens, G. et al. LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J. Biol. Chem. 278, 33528–33539 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Turlure, F., Devroe, E., Silver, P. A. & Engelman, A. Human cell proteins and human immunodeficiency virus DNA integration. Front. Biosci. 9, 3187–3208 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Bushman, F. D. Targeting retroviral integration. Science 267, 1443–1444 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Bushman, F. & Miller, M. D. Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites. J. Virol. 71, 458–464 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bushman, F. D. Targeting retroviral integration? Mol. Therapy 6, 570–571 (2002).

    Article  CAS  Google Scholar 

  68. Goulaouic, H. & Chow, S. A. Directed integration of viral DNA mediated by fusion proteins consisting of human immunodeficiency virus type 1 integrase and Escherichia coli LexA protein. J. Virol. 70, 37–46 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Katz, R. A., Merkel, G. & Skalka, A. M. Targeting of retroviral integrase by fusion to a heterologous DNA binding domain: in vitro activities and incorporation of a fusion protein into viral particles. Virology 217, 178–190 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. Shiramizu, B., Herndier, B. G. & McGrath, M. S. Identification of a common clonal human immunodeficiency virus integration site in human immunodeficiency virus-associated lymphomas. Cancer Res. 54, 2069–2072 (1994).

    CAS  PubMed  Google Scholar 

  71. Mack, K. D. et al. HIV insertions within and proximal to host cell genes are a common finding in tissues containing high levels of HIV DNA and macrophage-associated p24 antigen expression. J. Acquir. Immune Defic. Syndr. 33, 308–320 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Wong, J. K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291–1295 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Han, Y. et al. Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J. Virol. 78, 6122–6133 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jordan, A., Defechereux, P. & Verdin, E. The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J. 20, 1726–1738 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jordan, A., Bisgrove, D. & Verdin, E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 22, 1868–1877 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cullen, B. R., Lomedico, P. T. & Ju, G. Transcriptional interference in avian retroviruses —implications for the promoter insertion model of leukaemogenesis. Nature 307, 241–245 (1984).

    Article  CAS  PubMed  Google Scholar 

  78. Greger, I. H., Demarchi, F., Giacca, M. & Proudfoot, N. J. Transcriptional interference perturbs the binding of Sp1 to the HIV-1 promoter. Nucleic Acids Res. 26, 1294–1301 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Craig, N. L., Craigie, R., Gellert, M. & Lambowitz, A. M. Mobile DNA II (ASM Press, Washington DC, 2002).

    Book  Google Scholar 

  80. Ho, D. D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Coffin, J. M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267, 483–486 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. De Palma, M. et al. Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells. Blood 105, 2307–2315 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Barr, S., Leipzig, J., Shinn, P., Ecker, J. & Bushman, F. Integration targeting by ASLV and HIV in the chicken genome. J. Virol. (in the press).

  85. Roe, T., Reynolds, T. C., Yu, G. & Brown, P. O. Integration of murine leukemia virus DNA depends on mitosis. EMBO J. 12, 2099–2108 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Lin, S. -Y. & Riggs, A. D. The general affinity of lac repressor for E. coli DNA: implications for gene regulation in prokaryotes and eukaryotes. Cell 4, 107–111 (1975). The classic physicochemical study of the role of non-specific DNA binding in the in vivo association of the lac repressor with its operator.

    Article  CAS  PubMed  Google Scholar 

  88. Lund, A. H. et al. Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nature Genet. 32, 160–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Suzuki, T. et al. New genes involved in cancer identified by retroviral tagging. Nature Genet. 32, 166–174 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Kim, R. et al. Genome-based identification of cancer genes by proviral tagging in mouse retrovirus-induced T-cell lymphomas. J. Virol. 77, 2056–62 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ellerman, V. & Bang, O. Experimentelle Leukamie bei Huhnern. Zentralbl. Bakteriol. Parasitenkd. Infectionskr. Hyg. Abt. Orig. 46, 595–609 (1908). The first paper on retroviruses.

    Google Scholar 

  92. Rous, P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 13, 397–411 (1911). Describes the discovery and characterization of Rous sarcoma virus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Bushman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

ASLV

CREBBP

DNMT1

FBXL11

LMO2

MLV

SIV

Infectious Disease Information:

AIDS

FURTHER INFORMATION

Frederic Bushman's laboratory

The current state of the AIDS epidemic

Mouse Retrovirus Tagged Cancer Gene database

All the virology on the world wide web

Glossary

DNase I HYPERSENSITIVE SITES

DNA sites in chromosomes that show increased sensitivity to digestion by DNase I. These sites probably represent regions of the chromosome that are nucleosome-free, and often correspond to gene-control regions.

CPG ISLANDS

Regions in chromosomes that are enriched in the rare CpG dinucleotide. They often correspond to gene-control regions.

HUMAN ENDOGENOUS RETROVIRUSES

(HERVs). Sequences in human DNA that are derived from infection of the human germ line by retroviruses. They account for about 8% of the human genome sequence.

LONG INTERSPERSED NUCLEAR ELEMENTS

(LINEs). Non-long-terminal-repeat retrotransposons. These comprise the only known type of active transposon in the human genome.

ALU ELEMENTS

Repeated DNA sequences that contain recognition sites for the Alu restriction enzyme.

CENTROMERIC HETEROCHROMATIN

The distinctive type of protein–DNA complexes that are found at centromeres.

GIEMSA-LIGHT BANDING

Staining of the human chromosomes by the Giemsa procedure results in a pattern of light and dark bands, which roughly corresponds with the relative GC content and gene density.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bushman, F., Lewinski, M., Ciuffi, A. et al. Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 3, 848–858 (2005). https://doi.org/10.1038/nrmicro1263

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1263

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing