Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Marine microorganisms make a meal of oil

Key Points

  • Hydrocarbons enter the environment from many sources, including marine algae and natural hydrocarbon seeps, as well as anthropogenic sources that are associated with the production, transport and use of crude oil. It is therefore unsurprising that there are numerous microorganisms that can use hydrocarbons as a source of carbon and energy.

  • Crude oil is perhaps the most complex mixture of organic chemicals that is found on Earth. Some components are readily biodegraded (for example, many saturated hydrocarbons), whereas others are more persistent and toxic (for example, high-molecular-weight polycyclic aromatic hydrocarbons and polar components of crude oil such as benzofurans, benzocarbazoles and benzothiophenes). The most important by mass are the relatively readily degradable saturated hydrocarbons.

  • Considerable knowledge of the detailed biochemistry and molecular basis for the biodegradation of aliphatic and simple aromatic hydrocarbons has been accrued. However, the importance in natural environments of the degradative organisms that have been studied in the laboratory is less clear. Only recently have we begun to learn which bacteria are of particular importance in hydrocarbon degradation, especially in marine environments.

  • Several specialist hydrocarbon-degrading bacteria have now been isolated and shown to be numerically important during the biodegradation of crude oil in marine environments. The identity of these bacteria and their distribution and dynamics in the environment are discussed in this article.

  • The degradation of hydrocarbons in the environment relies on much more than the hydrocarbon-degrading bacteria themselves. The effects of environmental conditions and interactions with other organisms — both positive and negative — are explored.

  • The potential for ecological theory to explain the patterns and dynamics seen in microbial communities that are associated with hydrocarbon degradation is discussed in relation to resource partitioning between community members, mutualistic interactions between hydrocarbon degraders and non-degraders, and predation.

  • A future perspective is presented that relates our vast body of knowledge gained from traditional biochemistry and molecular biology to the opportunities presented by the advent of genomic and post-genomic technologies. Suggestions are made about how the characteristics of hydrocarbon-degrading communities make them well-suited to hypothesis-led metagenomic studies to increase our understanding of how different components of a microbial community that is associated with hydrocarbon degradation interact to achieve effective exploitation of hydrocarbons.

Abstract

Hundreds of millions of litres of petroleum enter the environment from both natural and anthropogenic sources every year. The input from natural marine oil seeps alone would be enough to cover all of the world's oceans in a layer of oil 20 molecules thick. That the globe is not swamped with oil is testament to the efficiency and versatility of the networks of microorganisms that degrade hydrocarbons, some of which have recently begun to reveal the secrets of when and how they exploit hydrocarbons as a source of carbon and energy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effects of biodegradation on oil composition.
Figure 2: A phylogenetic tree illustrating the diversity of aerobic hydrocarbon-degrading bacteria.
Figure 3: Changes in the composition of spilled oil and corresponding changes in the abundance of key organisms.
Figure 4: A microbial degradation network.
Figure 5: The effect of nutrients on Alcanivorax spp.

Similar content being viewed by others

References

  1. Söhngen, N. L. Benzin, Petroleum, Paraffinöl und Paraffin als Kohlenstoff- und Energiequelle für Mikroben. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 2 37, 595–609 (1913) (in German).

    Google Scholar 

  2. Prince, R. C. in Petroleum Microbiology (eds Ollivier, B. & Magot, M.) 317–336 (American Society for Microbiology Press, Washington DC, 2005).

    Book  Google Scholar 

  3. Ellis, L. B. M., Hou, B. K., Kang, W. J. & Wackett, L. P. The University of Minnesota Biocatalysis/Biodegradation Database: post-genomic data mining. Nucleic Acids Res. 31, 262–265 (2003).

    Article  CAS  Google Scholar 

  4. Atlas, R. M. & Bartha, R. Degradation and mineralization of petroleum in seawater: limitation by nitrogen and phosphorus. Biotechnol. Bioeng. 14, 309–318 (1972).

    Article  CAS  Google Scholar 

  5. Meckenstock, R. U., Safinowski, M. & Griebler, C. Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol. Ecol. 49, 27–36 (2004).

    Article  CAS  Google Scholar 

  6. Chakraborty, R. & Coates, J. D. Anaerobic degradation of monoaromatic hydrocarbons. Appl. Microbiol. Biotechnol. 64, 437–446 (2004).

    Article  CAS  Google Scholar 

  7. Widdel, F. & Rabus, R. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol. 12, 259–276 (2001).

    Article  CAS  Google Scholar 

  8. Marshall, A. G. & Rogers, R. P. Petroleomics: the next grand challenge for chemical analysis. Acc. Chem. Res. 37, 53–59 (2003).

    Article  Google Scholar 

  9. Head, I. M., Jones, D. M. & Larter, S. R. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426, 344–352 (2003).

    Article  CAS  Google Scholar 

  10. Yakimov, M. M. et al. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int. J. Syst. Bacteriol. 48, 339–348 (1998).

    Article  CAS  Google Scholar 

  11. Dyksterhouse, S. E., Gray, J. P., Herwig, R. P., Lara, J. C. & Staley, J. T. Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine-sediments. Int. J. Syst. Bacteriol. 45, 116–123 (1995).

    Article  CAS  Google Scholar 

  12. Golyshin, P. N. et al. Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int. J. Syst. Evol. Microbiol. 52, 901–911 (2002).

    CAS  PubMed  Google Scholar 

  13. Yakimov, M. M. et al. Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int. J. Syst. Evol. Microbiol. 53, 779–785 (2003).

    Article  CAS  Google Scholar 

  14. Yakimov, M. M. et al. Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int. J. Syst. Evol. Microbiol. 54, 141–148 (2004).

    Article  CAS  Google Scholar 

  15. Engelhardt, M. A., Daly, K., Swannell, R. P. J. & Head, I. M. Isolation and characterization of a novel hydrocarbon-degrading, Gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J. Appl. Microbiol. 90, 237–247 (2001).

    Article  CAS  Google Scholar 

  16. Syutsubo, K., Kishira, H. & Harayama, S. Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanivorax strains. Environ. Microbiol. 3, 371–379 (2001).

    Article  CAS  Google Scholar 

  17. Röling, W. F. M. et al. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol. 68, 5537–5548 (2002).

    Article  Google Scholar 

  18. Röling, W. F. M. et al. Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl. Environ. Microbiol. 70, 2603–2613 (2004). This paper reports perhaps the most comprehensive and robust statistical analysis of microbial-community dynamics that has been published so far. It clearly shows that, even under field conditions, microbial communities respond extremely rapidly to bioremediation treatments. In this case, the importance of Alcanivorax spp. in bioremediation is highlighted.

    Article  Google Scholar 

  19. Chang, Y. J. et al. Phylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation: effect of profiling method. J. Microbiol. Methods 40, 19–31 (2000).

    Article  CAS  Google Scholar 

  20. Pinhassi, J. et al. Coupling between bacterioplankton species composition, population dynamics, and organic matter degradation. Aquat. Microb. Ecol. 17, 13–26 (1999).

    Article  Google Scholar 

  21. Fernandez-Martinez, J. et al. Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 12178T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Int. J. Syst. Evol. Microbiol. 53, 331–338 (2003).

    Article  CAS  Google Scholar 

  22. Yakimov, M. M. et al. Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ. Microbiol. 7, 1426–1441 (2005).

    Article  CAS  Google Scholar 

  23. Liu, C. L. & Shao, Z. Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int. J. Syst. Evol. Microbiol. 55, 1181–1186 (2005).

    Article  CAS  Google Scholar 

  24. Kasai, Y., Kishira, H., Syutsubo, K. & Harayama, S. Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ. Microbiol. 3, 246–255 (2001).

    Article  CAS  Google Scholar 

  25. Kasai, Y. et al. Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ. Microbiol. 4, 141–147 (2002).

    Article  CAS  Google Scholar 

  26. Okamoto, T., Fujioka, K. & Naganuma, T. Phylogenetic similarity of aerobic Gram-negative halophilic bacteria from a deep-sea hydrothermal mound and Antarctic habitats. Polar Biosci. 14, 1–9 (2001).

    Google Scholar 

  27. Hara, A., Syutsubo, K. & Harayama, S. Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ. Microbiol. 5, 746–753 (2003).

    Article  CAS  Google Scholar 

  28. MacNaughton, S. J. et al. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65, 3566–3574 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ogino, A., Koshikawa, H., Nakahara, T. & Uchiyama, H. Succession of microbial communities during a biostimulation process as evaluated by DGGE and clone library analyses. J. Appl. Microbiol. 91, 625–635 (2001).

    Article  CAS  Google Scholar 

  30. Maruyama, A. et al. Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill. Microb. Ecol. 46, 442–453 (2003).

    Article  CAS  Google Scholar 

  31. Grossman, M. J. et al. in Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology (eds Bell, C., Brylinsky, M. & Johnson-Green, P.) 775–787 (Atlantic Canada Society for Microbial Ecology, Halifax, 2000).

    Google Scholar 

  32. Röling, W. F. M., van Breukelen, B. M., Braster, M., Lin, B. & van Verseveld, H. W. Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl. Environ. Microbiol. 67, 4619–4629 (2001).

    Article  Google Scholar 

  33. Kasai, Y., Kishira, H. & Harayama, S. Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl. Environ. Microbiol. 68, 5625–5633 (2002).

    Article  CAS  Google Scholar 

  34. Geiselbrecht, A. D., Herwig, R. P., Deming, J. W. & Staley, J. T. Enumeration and phylogenetic analysis of polycyclic aromatic hydrocarbon-degrading marine bacteria from Puget Sound sediments. Appl. Environ. Microbiol. 62, 3344–3349 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Geiselbrecht, A. D., Hedlund, B. P., Tichi, M. A. & Staley, J. T. Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains. Appl. Environ. Microbiol. 64, 4703–4710 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Röling, W. F. M., Couto de Brito, I. R., Swannell, R. P. J. & Head, I. M. Response of archaeal communities in beach sediments to spilled oil and bioremediation. Appl. Environ. Microbiol. 70, 2614–2620 (2004).

    Article  Google Scholar 

  37. Hughes, J. B., Hellmann, J. J., Ricketts, T. H. & Bohannan, B. J. M. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67, 4399–4406 (2001).

    Article  CAS  Google Scholar 

  38. Curtis, T. P., Sloan, W. T. & Scannell, J. W. Estimating prokaryotic diversity and its limits. Proc. Natl Acad. Sci. USA 99, 10494–10499 (2002).

    Article  CAS  Google Scholar 

  39. Bundy, J. G., Paton, G. I. & Campbell, C. D. Microbial communities in different soil types do not converge after diesel contamination. J. Appl. Microbiol. 92, 276–288 (2002).

    Article  CAS  Google Scholar 

  40. Sei, K., Sugimoto, Y., Mori, K., Maki, H. & Kohno, T. Monitoring of alkane-degrading bacteria in a sea-water microcosm during crude oil degradation by polymerase chain reaction based on alkane-catabolic genes. Environ. Microbiol. 5, 517–522 (2003).

    Article  CAS  Google Scholar 

  41. Loy, A. et al. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 68, 5064–5081 (2002).

    Article  CAS  Google Scholar 

  42. Rhee, S. K. et al. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl. Environ. Microbiol. 70, 4303–4317 (2004).

    Article  CAS  Google Scholar 

  43. Fell, D. Understanding the Control of Metabolism (Portland Press, London, 1997).

    Google Scholar 

  44. Kacser, H., Burns, J. A. & Fell, D. A. The control of flux. Biochem. Soc. Trans. 23, 341–366 (1995).

    Article  CAS  Google Scholar 

  45. Tilman, G. D. Resource Competition and Community Structure (Princeton Univ. Press, Princeton, 1982).

    Google Scholar 

  46. Smith, V. H., Graham, D. W. & Cleland, D. D. Application of resource-ratio theory to hydrocarbon biodegradation. Environ. Sci. Technol. 32, 3386–3395 (1998).

    Article  CAS  Google Scholar 

  47. Dutta, T. K. & Harayama, S. Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl. Environ. Microbiol. 67, 1970–1974 (2001).

    Article  CAS  Google Scholar 

  48. Cochran, P. K., Kellogg, C. A. & Paul, J. H. Prophage induction of indigenous marine lysogenic bacteria by environmental pollutants. Mar. Ecol. Prog. Ser. 164, 125–133 (1998).

    Article  CAS  Google Scholar 

  49. Jiang, S. C. & Paul, J. H. Occurrence of lysogenic bacteria in marine microbial communities as determined by prophage induction. Mar. Ecol. Prog. Ser. 142, 27–38 (1996).

    Article  Google Scholar 

  50. Novarino, G. et al. Protistan communities in aquifers: a review. FEMS Microbiol. Rev. 20, 261–275 (1997).

    Article  CAS  Google Scholar 

  51. Kinner, N. E., Harvey, R. W., Shay, D. M., Metge, D. W. & Warren, A. Field evidence for a protistan role in an organically-contaminated aquifer. Environ. Sci. Technol. 36, 4312–4318 (2002).

    Article  CAS  Google Scholar 

  52. Kota, S., Borden, R. C. & Barlaz, M. A. Influence of protozoan grazing on contaminant biodegradation. FEMS Microbiol. Ecol. 29, 179–189 (1999).

    Article  CAS  Google Scholar 

  53. Mattison, R. G. & Harayama, S. The predatory soil flagellate Heteromita globosa stimulates toluene biodegradation by a Pseudomonas sp. FEMS Microbiol. Lett. 194, 39–45 (2001).

    Article  CAS  Google Scholar 

  54. Mattison, R. G., Taki, H. & Harayama, S. The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture. Microb. Ecol. 49, 142–150 (2005).

    Article  CAS  Google Scholar 

  55. Ratsak, C. H., Maarsen, K. A. & Kooijman, S. Effects of protozoa on carbon mineralization in activated sludge. Water Res. 30, 1–12 (1996). This review describes the many roles that microorganisms that prey on bacteria have in microbial communities and ecosystem functioning.

    Article  CAS  Google Scholar 

  56. Stams, A. J. M. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek 66, 271–294 (1994).

    Article  CAS  Google Scholar 

  57. Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61, 262–280 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Elshahed, M. S. & McInerney, M. J. Is interspecies hydrogen transfer needed for toluene degradation under sulfate-reducing conditions? FEMS Microbiol. Ecol. 35, 163–169 (2001).

    Article  CAS  Google Scholar 

  59. Zengler, K., Richnow, H. H., Rossello-Mora, R., Michaelis, W. & Widdel, F. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401, 266–269 (1999).

    Article  CAS  Google Scholar 

  60. Meckenstock, R. U. Fermentative toluene degradation in anaerobic defined syntrophic cocultures. FEMS Microbiol. Lett. 177, 67–73 (1999). This study used a simple, but insightful, experimental set-up and showed that anaerobic degradation of toluene can occur by syntrophic interactions under non-methanogenic conditions.

    Article  CAS  Google Scholar 

  61. Iwabuchi, N. et al. Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl. Environ. Microbiol. 68, 2337–2343 (2002).

    Article  CAS  Google Scholar 

  62. Colores, G. M., Macur, R. E., Ward, D. M. & Inskeep, W. P. Molecular analysis of surfactant-driven microbial population shifts in hydrocarbon-contaminated soil. Appl. Environ. Microbiol. 66, 2959–2964 (2000).

    Article  CAS  Google Scholar 

  63. Kanaly, R. A., Harayama, S. & Watanabe, K. Rhodanobacter sp. strain BPC1 in a benzo[a]pyrene-mineralizing bacterial consortium. Appl. Environ. Microbiol. 68, 5826–5833 (2002). This paper provides an insightful example of how the role of a consortium member within a particular consortium was elucidated and how the role of this member indirectly contributed to pollutant degradation.

    Article  CAS  Google Scholar 

  64. Dejonghe, W. et al. Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl. Environ. Microbiol. 66, 3297–3304 (2000).

    Article  CAS  Google Scholar 

  65. Nelson, K. E. et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4, 799–808 (2002).

    Article  CAS  Google Scholar 

  66. Rabus, R. et al. The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch. Microbiol. 183, 27–36 (2005).

    Article  CAS  Google Scholar 

  67. Golyshin, P. N. et al. Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. J. Biotechnol. 106, 215–220 (2003).

    Article  CAS  Google Scholar 

  68. van Beilen, J. B., Li, Z., Duetz, W. A., Smits, T. H. M. & Witholt, B. Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci. Technol. 58, 427–440 (2003).

    Article  CAS  Google Scholar 

  69. Hara, A. et al. Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Environ. Microbiol. 6, 191–197 (2004).

    Article  CAS  Google Scholar 

  70. Maeng, J. H., Sakai, Y., Tani, Y. & Kato, N. Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1. J. Bacteriol. 178, 3695–3700 (1996).

    Article  CAS  Google Scholar 

  71. Tringe, S. G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005).

    Article  CAS  Google Scholar 

  72. Jeon, C. O. et al. Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc. Natl Acad. Sci. USA 100, 13591–13596 (2003). This study uses an optimal combination of modern techniques in molecular microbial ecology and cultivation. The paper describes how the application of stable isotope probing in the field contributed to the isolation of the microorganism that is responsible for in situ biodegradation of naphthalene.

    Article  CAS  Google Scholar 

  73. Ram, R. J. et al. Community proteomics of a natural microbial biofilm. Science 308, 1915–1920 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Biotechnology and Biological Sciences Research Council (United Kingdom) and to our colleagues at AEA Technology plc (Didcot, Oxfordshire, United Kingdom), who have supported our work on hydrocarbon-degrading microbial communities. W.F.M.R. is supported by The Netherlands BSIK (Besluit Subsidies Investeringen Kennisinfrastructuur) Ecogenomics Research Programme. Information on the thickness of the oil layer that could form on the oceans from oil released from natural seeps (see Abstract) comes from Ref. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Head.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Alcanivorax borkumensis

Burkholderia fungorum

Burkholderia mallei

Burkholderia pseudomallei

Geobacter metallireducens

Legionella pneumophila

M. avium subsp. paratuberculosis

Mycobacterium avium

Mycobacterium bovis

Mycobacterium smegmatis

Mycobacterium tuberculosis

Pseudomonas aeruginosa

Pseudomonas putida

Silicibacter pomeroyi

Wolinella succinogenes

Entrez Nucleotide

AB166953

AF062642

FURTHER INFORMATION

Microbial ecology, at the University of Newcastle upon Tyne

The Netherlands BSIK Ecogenomics Research Programme

Glossary

Hydrocarbons

Organic compounds that contain only carbon and hydrogen.

Bioremediation

The use of biological organisms such as plants or microorganisms to aid in the removal of hazardous substances from a polluted area.

Laboratory microcosm

A laboratory incubation system that is designed to simulate environmental conditions. This can be as simple as a flask or serum bottle, or it can be more complex (for example, a system that incorporates diurnal and tidal cycles).

Community dynamics

Changes in community size and composition that result from various forces (such as climate changes, nutrient concentrations, habitat destruction, predation and so on) that control and regulate communities over time.

Chao1

A non-parametric statistic that allows the species richness of an environment to be estimated by analysis of data from a small sample.

Interstitial waters

The water that surrounds sediment particles in aquatic environments. The composition of interstitial waters is controlled by the physical, chemical and biological activity of the sediment.

Phenanthrenes

Readily biodegradable, relatively water-soluble polycyclic aromatic compounds that are found in crude oil. Phenanthrene, the parent molecule, is a tri-aromatic hydrocarbon, and substituted phenanthrenes have alkyl substitutions of varying number and position on the aromatic rings.

Dibenzothiophenes

Sulphur-containing, non-hydrocarbon compounds that are found in crude oils. Dibenzothiophene, the parent molecule, comprises two benzene rings linked by a carbon–carbon bond and has a sulphur bridge between adjacent carbon atoms on the benzene ring. Crude oil contains a diverse mixture of such compounds with a variety of substitutions on the benzene rings.

Phylogenetic microarray

A microarray 'printed' with a range of marker genes or oligonucleotides (often including ribosomal-RNA-gene sequences) that is diagnostic for specific microbial taxa. Such arrays can be used to track the simultaneous presence of many microbial taxa.

Eutrophication

Enrichment of an environment with nutrients such that algal blooms and other negative environmental effects occur.

Syntrophy

A close metabolic interaction between different groups of organisms. The term is usually used with respect to interspecies hydrogen transfer in anaerobic systems.

Surfactant

A surface-active agent that reduces the surface tension of two liquids: for example, an agent that functions as a dispersant or emulsifier of oil and water.

Bioaugmentation

The addition of non-native microorganisms to polluted sites to clean up toxic wastes.

Metagenomics

The study of microbial genome fragments that are recovered from environmental samples, in contrast to genomes that are isolated from clonal cultures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Head, I., Jones, D. & Röling, W. Marine microorganisms make a meal of oil. Nat Rev Microbiol 4, 173–182 (2006). https://doi.org/10.1038/nrmicro1348

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1348

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing