Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Trypanosoma cruzi surface mucins: host-dependent coat diversity

Abstract

The surface of the protozoan parasite Trypanosoma cruzi is covered in mucins, which contribute to parasite protection and to the establishment of a persistent infection. Their importance is highlighted by the fact that the 850 mucin-encoding genes comprise 1% of the parasite genome and 6% of all predicted T. cruzi genes. The coordinate expression of a large repertoire of mucins containing variable regions in the mammal-dwelling stages of the T. cruzi life cycle suggests a possible strategy to thwart the host immune response. Here, we discuss the expression profiling of T. cruzi mucins, the mechanisms leading to the acquisition of mucin diversity and the possible consequences of a mosaic surface coat in the interplay between parasite and host.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variation in the surface mucins with the Trypanosoma cruzi life cycle and biological activity of different mucin regions.
Figure 2: Evolution of the TcMUC (T. cruzi mucin) family of genes.

Similar content being viewed by others

References

  1. Hollingsworth, M. A. & Swanson, B. J. Mucins in cancer: protection and control of the cell surface. Nature Rev. Cancer 4, 45–60 (2004).

    CAS  Google Scholar 

  2. Schenkman, S. et al. Mucin-like glycoproteins linked to the membrane by glycosylphosphatidylinositol anchor are the major acceptors of sialic acid in a reaction catalyzed by trans-sialidase in metacyclic forms of Trypanosoma cruzi. Mol. Biochem. Parasitol. 59, 293–303 (1993).

    CAS  PubMed  Google Scholar 

  3. Pereira-Chioccola, V. L. et al. Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-α-galactosyl antibodies. J. Cell Sci. 113, 1299–1307 (2000).

    CAS  PubMed  Google Scholar 

  4. Templeton, T. J. et al. Comparative analysis of apicomplexa and genomic diversity in eukaryotes. Genome Res. 14, 1686–1695 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lischke, A. et al. Isolation and characterization of glycosylphosphatidylinositol-anchored, mucin-like surface glycoproteins from bloodstream forms of the freshwater-fish parasite Trypanosoma carassii. Biochem. J. 345, 693–700 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Barrett, M. P. et al. The trypanosomiases. Lancet 362, 1469–1480 (2003).

    PubMed  Google Scholar 

  7. Tibayrenc, M. & Ayala, F. J. The clonal theory of parasitic protozoa: 12 years on. Trends Parasitol. 18, 405–410 (2002).

    CAS  PubMed  Google Scholar 

  8. Buscaglia, C. A. & Di Noia, J. M. Trypanosoma cruzi clonal diversity and the epidemiology of Chagas' disease. Microbes Infect. 5, 419–427 (2003).

    CAS  PubMed  Google Scholar 

  9. Previato, J. O. et al. O-glycosidically linked N-acetylglucosamine-bound oligosaccharides from glycoproteins of Trypanosoma cruzi. Biochem. J. 301, 151–159 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Almeida, I. C. et al. Highly purified glycosylphosphatidylinositols from Trypanosoma cruzi are potent proinflammatory agents. EMBO J. 19, 1476–1485 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Allen, C. L. & Kelly, J. M. Trypanosoma cruzi: mucin pseudogenes organized in a tandem array. Exp. Parasitol. 97, 173–177 (2001).

    CAS  PubMed  Google Scholar 

  12. Previato, J. O. et al. Structural characterization of the major glycosylphosphatidylinositol membrane-anchored glycoprotein from epimastigote forms of Trypanosoma cruzi Y-strain. J. Biol. Chem. 270, 7241–7250 (1995).

    CAS  PubMed  Google Scholar 

  13. Previato, J. O. Characterization of the novel uridine diphospho-N-acetylglucosamine:polypeptide N-acetylglucosaminyltransferase-catalyzing formation of N-acetylglucosamine α1-O-threonine. J. Biol. Chem. 273, 14982–14988 (1998).

    CAS  PubMed  Google Scholar 

  14. Roper, J. R. & Ferguson, M. A. Cloning and characterisation of the UDP-glucose 4'-epimerase of Trypanosoma cruzi. Mol. Biochem. Parasitol. 132, 47–53 (2003).

    CAS  PubMed  Google Scholar 

  15. Serrano, A. A. et al. The lipid structure of the glycosyl phosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J. Biol. Chem. 270, 27244–27253 (1995).

    CAS  PubMed  Google Scholar 

  16. Pollevick, G. D. et al. Trypanosoma cruzi surface mucins with exposed variant epitopes. J. Biol. Chem. 275, 27671–27680 (2000).

    CAS  PubMed  Google Scholar 

  17. Todeschini, A. R. et al. Structure of O-glycosidically linked oligosaccharides from glycoproteins of Trypanosoma cruzi CL-Brener strain: evidence for the presence of O-linked sialyl-oligosaccharides. Glycobiology 11, 47–55 (2001).

    CAS  PubMed  Google Scholar 

  18. Agrellos, O. A., Jones, C., Todeschini, A. R., Previato, J. O. & Mendonça-Previato, L. A novel sialylated and galactofuranose-containing O-linked glycan, Neu5Acα2→3Galpβ1→6(Galfβ1→4)GlcNAc, is expressed on the sialoglycoprotein of Trypanosoma cruzi Dm28c. Mol. Biochem. Parasitol. 126, 93–96 (2003).

    CAS  PubMed  Google Scholar 

  19. Jones, C., Todeschini, A. R., Agrellos, O. A., Previato, J. O. & Mendonça-Previato, L. Heterogeneity in the biosynthesis of mucin O-glycans from Trypanosoma cruzi tulahuen strain with the expression of novel galactofuranosyl-containing oligosaccharides. Biochemistry 43, 11889–11897 (2004).

    CAS  PubMed  Google Scholar 

  20. Acosta-Serrano, A., Almeida, I. C., Freitas-Junior, L. H., Yoshida, N. & Schenkman, S. The mucin-like glycoprotein super-family of Trypanosoma cruzi: structure and biological roles. Mol. Biochem. Parasitol. 114, 143–150 (2001).

    CAS  PubMed  Google Scholar 

  21. Mortara, R. A., da Silva, S., Araguth, M. F., Blanco, S. A. & Yoshida, N. Polymorphism of the 35- and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi metacyclic trypomastigotes. Infect. Immun. 60, 4673–4678 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Di Noia, J. M. et al. High diversity in mucin genes and mucin molecules in Trypanosoma cruzi. J. Biol. Chem. 271, 32078–32083 (1996).

    CAS  PubMed  Google Scholar 

  23. Yoshida, N., Mortara, R. A., Araguth, M. F., Gonzalez, J. C. & Russo, M. Metacyclic neutralizing effect of monoclonal antibody 10D8 directed to the 35- and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi. Infect. Immun. 57, 1663–1667 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mendonça-Previato, L., Todeschini, A. R., Heise, N. & Previato, J. O. Protozoan parasite-specific carbohydrate structures. Curr. Opin. Struct. Biol. 15, 499–505 (2005).

    PubMed  Google Scholar 

  25. Previato, J. O., Andrade, A. F., Pessolani, M. C. & Mendonça-Previato, L. Incorporation of sialic acid into Trypanosoma cruzi macromolecules. A proposal for a new metabolic route. Mol. Biochem. Parasitol. 16, 85–96 (1985).

    CAS  PubMed  Google Scholar 

  26. Medina-Acosta, E. et al. Trans-sialidase and sialidase activities discriminate between morphologically indistinguishable trypanosomatids. Eur. J. Biochem. 225, 333–339 (1994).

    CAS  PubMed  Google Scholar 

  27. Mattos-Guaraldi, A. L., Formiga, L. C. & Andrade, A. F. Trans-sialidase activity for sialic acid incorporation on Corynebacterium diphtheriae. FEMS Microbiol. Lett. 168, 167–172 (1998).

    CAS  PubMed  Google Scholar 

  28. Agüero, F. et al. Gene discovery in the freshwater fish parasite Trypanosoma carassii: identification of trans-sialidase-like and mucin-like genes. Infect. Immun. 70, 7140–7144 (2002).

    PubMed  PubMed Central  Google Scholar 

  29. Engstler, M., Schauer, R. & Brun, R. Distribution of developmentally regulated trans-sialidases in the Kinetoplastida and characterization of a shed trans-sialidase activity from procyclic Trypanosoma congolense. Acta Trop. 59, 117–129 (1995).

    CAS  PubMed  Google Scholar 

  30. Nagamune, K. et al. Surface sialic acids taken from the host allow trypanosome survival in tsetse fly vectors. J. Exp. Med. 199, 1445–1450 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Reyes, M. B., Pollevick, G. D. & Frasch, A. C. An unusually small gene encoding a putative mucin-like glycoprotein in Trypanosoma cruzi. Gene 140, 139–140 (1994).

    CAS  PubMed  Google Scholar 

  32. Di Noia, J. M., Sánchez, D. O. & Frasch, A. C. The protozoan Trypanosoma cruzi has a family of genes resembling the mucin genes of mammalian cells. J. Biol. Chem. 270, 24146–24149 (1995).

    CAS  PubMed  Google Scholar 

  33. Di Noia, J. M., D'Orso, I., Åslund, L., Sánchez, D. O. & Frasch, A. C. The Trypanosoma cruzi mucin family is transcribed from hundreds of genes having hypervariable regions. J. Biol. Chem. 273, 10843–10850 (1998).

    CAS  PubMed  Google Scholar 

  34. Agüero, F., Verdun, R. E., Frasch, A. C. & Sánchez, D. O. A random sequencing approach for the analysis of the Trypanosoma cruzi genome: general structure, large gene and repetitive DNA families, and gene discovery. Genome Res. 10, 1996–2005 (2000).

    PubMed  PubMed Central  Google Scholar 

  35. El-Sayed, N. M. et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309, 409–415 (2005).

    CAS  PubMed  Google Scholar 

  36. Freitas-Junior, L. H., Briones, M. R. & Schenkman, S. Two distinct groups of mucin-like genes are differentially expressed in the developmental stages of Trypanosoma cruzi. Mol. Biochem. Parasitol. 93, 101–114 (1998).

    CAS  PubMed  Google Scholar 

  37. Campo, V. et al. Differential accumulation of mutations localized in particular domains of the mucin genes expressed in the vertebrate host stage of Trypanosoma cruzi. Mol. Biochem. Parasitol. 133, 81–91 (2004).

    CAS  PubMed  Google Scholar 

  38. Vanhamme, L. & Pays, E. Control of gene expression in trypanosomes. Microbiol. Rev. 59, 223–240 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Atwood, J. A. 3rd et al. The Trypanosoma cruzi proteome. Science 309, 473–476 (2005).

    CAS  PubMed  Google Scholar 

  40. Di Noia, J. M., D'Orso, I., Sánchez, D. O. & Frasch, A. C. AU-rich elements in the 3′-untranslated region of a new mucin-type gene family of Trypanosoma cruzi confers mRNA instability and modulates translation efficiency. J. Biol. Chem. 275, 10218–10227 (2000).

    CAS  PubMed  Google Scholar 

  41. D'Orso, I. & Frasch, A. C. TcUBP-1, a developmentally regulated U-rich RNA-binding protein involved in selective mRNA destabilization in trypanosomes. J. Biol. Chem. 276, 34801–34809 (2001).

    CAS  PubMed  Google Scholar 

  42. Buscaglia, C. A. et al. The surface coat of the mammal-dwelling infective trypomastigote stage of Trypanosoma cruzi is formed by highly diverse immunogenic mucins. J. Biol. Chem. 279, 15860–15869 (2004).

    CAS  PubMed  Google Scholar 

  43. Campo, V. A., Buscaglia, C. A., Di Noia, J. M. & Frasch, A. C. Immunocharacterization of the mucin-type proteins from the intracellular stage of Trypanosoma cruzi. Microbes Infect. 15 Sep 2005 (10.1016/j.micinf.2005.07.008).

  44. Conticello, S. G., Pilpel, Y., Glusman, G. & Fainzilber, M. Position-specific codon conservation in hypervariable gene families. Trends Genet. 16, 57–59 (2000).

    CAS  PubMed  Google Scholar 

  45. Roth, C., Bringaud, F., Layden, R. E., Baltz, T. & Eisen, H. Active late-appearing variable surface antigen genes in Trypanosoma equiperdum are constructed entirely from pseudogenes. Proc. Natl Acad. Sci. USA 86, 9375–9379 (1989).

    CAS  PubMed  Google Scholar 

  46. Brayton, K. A., Palmer, G. H., Lundgren, A., Yi, J. & Barbet, A. F. Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion. Mol. Microbiol. 43, 1151–1159 (2002).

    CAS  PubMed  Google Scholar 

  47. Biet, E., Sun, J. & Dutreix, M. Conserved sequence preference in DNA binding among recombination proteins: an effect of ssDNA secondary structure. Nucleic Acids Res. 27, 596–600 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Duhagon, M. A. et al. A novel type of single-stranded nucleic acid binding protein recognizing a highly frequent motif in the intergenic regions of Trypanosoma cruzi. Biochem. Biophys. Res. Commun. 309, 183–188 (2003).

    CAS  PubMed  Google Scholar 

  49. Machado, C. R., Augusto-Pinto, L., McCulloch, R. & Teixeira, S. M. DNA metabolism and genetic diversity in Trypanosomes. Mutat. Res. 612, 40–57 (2006).

    CAS  PubMed  Google Scholar 

  50. Ruiz R. C., Rigoni, V. L., Gonzalez, J. & Yoshida, N. The 35/50 kDa surface antigen of Trypanosoma cruzi metacyclic trypomastigotes, an adhesion molecule involved in host cell invasion. Parasite Immunol. 15, 121–125 (1993).

    CAS  Google Scholar 

  51. Ruiz, R. C. et al. Infectivity of Trypanosoma cruzi strains is associated with differential expression of surface glycoproteins with differential Ca2+ signalling activity. Biochem. J. 330, 505–511 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Moreno, S. N., Silva, J., Vercesi, A. E. & Docampo, R. Cytosolic-free calcium elevation in Trypanosoma cruzi is required for cell invasion. J. Exp. Med. 180, 1535–1540 (1994).

    CAS  PubMed  Google Scholar 

  53. Yoshida, N. et al. Removal of sialic acid from mucin-like surface molecules of Trypanosoma cruzi metacyclic trypomastigotes enhances parasite–host cell interaction. Mol. Biochem. Parasitol. 84, 57–67 (1997).

    CAS  PubMed  Google Scholar 

  54. Frasch, A. C. Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi. Parasitol. Today 16, 282–286 (2000).

    CAS  PubMed  Google Scholar 

  55. Alcaide, P. & Fresno, M. AgC10, a mucin from Trypanosoma cruzi, destabilizes TNF and cyclooxygenase-2 mRNA by inhibiting mitogen-activated protein kinase p38. Eur. J. Immunol. 34, 1695–1704 (2004).

    CAS  PubMed  Google Scholar 

  56. Schenkman, S., Jiang, M. S., Hart, G. W. & Nussenzweig, V. A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell 65, 1117–1125 (1991).

    CAS  PubMed  Google Scholar 

  57. Tomlinson, S., Pontes de Carvalho, L. C., Vandekerckhove, F. & Nussenzweig, V. Role of sialic acid in the resistance of Trypanosoma cruzi trypomastigotes to complement. J. Immunol. 153, 3141–3147 (1994).

    CAS  PubMed  Google Scholar 

  58. Almeida, I. C., Ferguson, M. A., Schenkman, S. & Travassos, L. R. Lytic anti-α-galactosyl antibodies from patients with chronic Chagas' disease recognize novel O-linked oligosaccharides on mucin-like glycosyl-phosphatidylinositol-anchored glycoproteins of Trypanosoma cruzi. Biochem. J. 304, 793–802 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Almeida, I. C. & Gazzinelli, R. T. Proinflammatory activity of glycosylphosphatidylinositol anchors derived from Trypanosoma cruzi: structural and functional analyses. J. Leuk. Biol. 70, 467–477 (2001).

    CAS  Google Scholar 

  60. Procopio, D. O. et al. Glycosylphosphatidylinositol-anchored mucin-like glycoproteins from Trypanosoma cruzi bind to CD1d but do not elicit dominant innate or adaptive immune responses via the CD1d/NKT cell pathway. J. Immunol. 169, 3926–3933 (2002).

    CAS  PubMed  Google Scholar 

  61. Previato, J. O. et al. Glycoinositolphospholipid from Trypanosoma cruzi: structure, biosynthesis and immunobiology. Adv. Parasitol. 56, 1–41 (2004).

    PubMed  Google Scholar 

  62. Borst, P. & Fairlamb, A. H. Surface receptors and transporters of Trypanosoma brucei. Annu. Rev. Microbiol. 52, 745–778 (1998).

    CAS  PubMed  Google Scholar 

  63. Stringer, J. R. & Keely, S. P. Genetics of surface antigen expression in Pneumocystis carinii. Infect. Immun. 69, 627–639 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Freitas-Junior, L. H. et al. Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121, 25–36 (2005).

    CAS  PubMed  Google Scholar 

  65. Nash, T. E. Surface antigenic variation in Giardia lamblia. Mol. Microbiol. 45, 585–590 (2002).

    CAS  PubMed  Google Scholar 

  66. Dubois, M. E., Demick, K. P. & Mansfield, J. M. Trypanosomes expressing a mosaic variant surface glycoprotein coat escape early detection by the immune system. Infect. Immun. 73, 2690–2697 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bouhdoud, L., Villain, P., Merzouki, A., Arella, M. & Couture, C. T-cell receptor-mediated anergy of a human immunodeficiency virus (HIV) gp120-specific CD4+ cytotoxic T-cell clone, induced by a natural HIV type 1 variant peptide. J. Virol. 74, 2121–2130 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Plebanski, M. et al. Altered peptide ligands narrow the repertoire of cellular immune responses by interfering with T-cell priming. Nature Med. 5, 565–571 (1999).

    CAS  PubMed  Google Scholar 

  69. Millar, A. E., Wleklinski-Lee, M. & Kahn, S. J. The surface protein superfamily of Trypanosoma cruzi stimulates a polarized Th1 response that becomes anergic. J. Immunol. 162, 6092–6099 (1999).

    CAS  PubMed  Google Scholar 

  70. Pitcovsky, T. A., Buscaglia, C. A., Mucci, J. & Campetella, O. A functional network of intramolecular cross-reacting epitopes delays the elicitation of neutralizing antibodies to Trypanosoma cruzi trans-sialidase. J. Infect. Dis. 186, 397–404 (2002).

    CAS  PubMed  Google Scholar 

  71. Cruz, L. J. et al. Different immune response of mice immunized with conjugates containing multiple copies of either consensus or mixotope versions of the V3 loop peptide from human immunodeficiency virus type 1. Bioconjug. Chem. 15, 1110–1117 (2004).

    CAS  PubMed  Google Scholar 

  72. Lekutis, C., Ferguson, D. J., Grigg, M. E., Camps, M. & Boothroyd, J. C. Surface antigens of Toxoplasma gondii: variations on a theme. Int. J. Parasitol. 31, 1285–1292 (2001).

    CAS  PubMed  Google Scholar 

  73. Kleshchenko, Y. Y. et al. Human galectin-3 promotes Trypanosoma cruzi adhesion to human coronary artery smooth muscle cells. Infect. Immun. 72, 6717–6721 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chuenkova, M. & Pereira, M. E. Trypanosoma cruzi trans-sialidase: enhancement of virulence in a murine model of Chagas' disease. J. Exp. Med. 181, 1693–1703 (1995).

    CAS  PubMed  Google Scholar 

  75. Norris, K. A. Stable transfection of Trypanosoma cruzi epimastigotes with the trypomastigote-specific complement regulatory protein cDNA confers complement resistance. Infect. Immun. 66, 2460–2465 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chuenkova, M. V. & Pereira, M. A. A trypanosomal protein synergizes with the cytokines ciliary neurotrophic factor and leukemia inhibitory factor to prevent apoptosis of neuronal cells. Mol. Biol. Cell 11, 1487–1498 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mucci, J. et al. Thymocyte depletion in Trypanosoma cruzi infection is mediated by trans-sialidase-induced apoptosis on nurse cells complex. Proc. Natl Acad. Sci. USA 99, 3896–3901 (2002).

    CAS  PubMed  Google Scholar 

  78. Todeschini, A. R. et al. Costimulation of host T lymphocytes by a trypanosomal trans-sialidase: involvement of CD43 signaling. J. Immunol. 168, 5192–5198 (2002).

    CAS  PubMed  Google Scholar 

  79. Tribulatti, M. V., Mucci, J., Van Rooijen, N., Leguizamón, M. S. & Campetella, O. The trans-sialidase from Trypanosoma cruzi induces thrombocytopenia during acute Chagas' disease by reducing the platelet sialic acid contents. Infect. Immun. 73, 201–207 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Buschiazzo, A., Amaya, M. F., Cremona, M. L., Frasch, A. C. & Alzari, P. M. The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. Mol. Cell 10, 757–768 (2002).

    CAS  PubMed  Google Scholar 

  81. Agusti, R., Paris, G., Ratier, L., Frasch, A. C. & de Lederkremer, R. M. Lactose derivatives are inhibitors of Trypanosoma cruzi trans-sialidase activity toward conventional substrates in vitro and in vivo. Glycobiology 14, 659–670 (2004).

    CAS  PubMed  Google Scholar 

  82. Di Noia, J. M., Buscaglia, C. A., De Marchi, C. R., Almeida, I. C. & Frasch, A. C. A Trypanosoma cruzi small surface molecule provides the first immunological evidence that Chagas' disease is due to a single parasite lineage. J. Exp. Med. 195, 401–413 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to people whose work was not referenced due to limited space. We thank I.C. Almeida (University of Texas, El Paso, USA) for critical reading of the manuscript and for sharing with us his unpublished results. We also thank J.C. Hafalla (New York University, New York, USA) for critical reading of the manuscript. The experimental work described in this article was carried out with the financial support of the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) of Argentina, an International Research Scholar grant from the Howard Hughes Medical Institute, and a National Institutes of Health grant to A.C.C.F.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos A. Buscaglia or Javier M. Di Noia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Anaplasma marginale

Cryptosporidium parvum

Giardia lamblia

Plasmodium falciparum

Pneumocystis carinii

Toxoplasma gondii

Trypanosoma brucei

Trypanosoma cruzi

FURTHER INFORMATION

Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomús

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buscaglia, C., Campo, V., Frasch, A. et al. Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol 4, 229–236 (2006). https://doi.org/10.1038/nrmicro1351

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing