Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling

Key Points

  • Many pathogens deploy a sophisticated virulence effector repertoire to promote their colonization, entry, survival and dissemination within mammalian hosts. Many of these subversive effectors target the cellular actin cytoskeleton.

  • Upon adhesion to host intestinal cells, enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC, respectively) induce dramatic reorganization of the host-cell actin cytoskeleton to promote their intimate attachment, a phenotype associated with disease in humans and animals.

  • EPEC and EHEC uniquely deliver their own receptor termed translocated intimin receptor (Tir) into the target-cell plasma membrane to trigger actin-pedestal assembly, which is engaged by the bacterial surface protein intimin. This ligand–receptor mimicry provides a tractable experimental system to dissect eukaryotic transmembrane-receptor signalling.

  • We discuss how studies of intimin have provided important insights into the molecular basis of ligand–receptor interaction, and have also revealed how intimin binding induces Tir clustering to trigger intracellular actin polymerization.

  • The translocated EPEC receptor Tir is tyrosine-phosphorylated. We consider how EPEC Tir can be used to model host tyrosine-kinase signalling and adaptor-protein docking at cellular transmembrane receptors, including those controlling immunological-synapse and focal-adhesion formation.

  • The translocated EHEC O157:H7 receptor Tir is not tyrosine-phosphorylated. We discuss how it can be used to decipher tyrosine-kinase-independent signalling cascades at the plasma membrane.

  • We discuss the prospects for exploiting the adaptor-like EHEC O157:H7 effector EspFU to provide insights into the regulation of cellular nucleation-promoting factors such as neural Wiskott–Aldrich syndrome protein, and to probe for other factors that control Arp2/3-dependent actin assembly at the plasma membrane.

Abstract

Many microbial pathogens manipulate the actin cytoskeleton of eukaryotic target cells to promote their internalization, intracellular motility and dissemination. Enteropathogenic and enterohaemorrhagic Escherichia coli, which both cause severe diarrhoeal disease, can adhere to mammalian intestinal cells and induce reorganization of the actin cytoskeleton into 'pedestal-like' pseudopods beneath the extracellular bacteria. As pedestal assembly is triggered by E. coli virulence factors that mimic several host cell-signalling components, such as transmembrane receptors, their cognate ligands and cytoplasmic adaptor proteins, it can serve as a powerful model system to study eukaryotic transmembrane signalling. Here, we consider the impact of recent data on our understanding of both E. coli pathogenesis and cell biology, and the rich prospects for exploiting these bacterial factors as versatile tools to probe cellular signalling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein composition of adhesion pedestals formed by enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC).
Figure 2: The structure of neural Wiskott–Aldrich syndrome protein (N-WASP) and WASP-interacting adaptor proteins.
Figure 3: Comparison of the cellular signalling cascades subverted by microbial pathogens to manipulate host actin polymerization.
Figure 4: Intimin-induced clustering of the translocated intimin receptor (Tir) in the host plasma membrane.
Figure 5: Comparison of the tyrosine-kinase recruitment and activation underlying signalling by cellular transmembrane receptors and pathogen virulence effectors.
Figure 6: Neural Wiskott–Aldrich syndrome protein (N-WASP) activation by enterohaemorrhagic Escherichia coli (EHEC), Shigella and mammalian transmembrane receptors.

Similar content being viewed by others

References

  1. Cossart, P. & Sansonetti, P. J. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304, 242–248 (2004).

    CAS  PubMed  Google Scholar 

  2. Stebbins, C. E. & Galan, J. E. Structural mimicry in bacterial virulence. Nature 412, 701–705 (2001).

    CAS  PubMed  Google Scholar 

  3. Nataro, J. P. & Kaper, J. B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142–201 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dean-Nystrom, E. A., Bosworth, B. T., Moon, H. W. & O'Brien, A. D. Escherichia coli O157:H7 requires intimin for enteropathogenicity in calves. Infect. Immun. 66, 4560–4563 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Donnenberg, M. S. et al. The role of the eae gene of enterohemorrhagic Escherichia coli in intimate attachment in vitro and in a porcine model. J. Clin. Invest. 92, 1418–1424 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Donnenberg, M. S. et al. Role of the eaeA gene in experimental enteropathogenic Escherichia coli infection. J. Clin. Invest. 92, 1412–1417 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng, W., Vallance, B. A., Li, Y., Puente, J. L. & Finlay, B. B. Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colonic hyperplasia in mice. Mol. Microbiol. 48, 95–115 (2003).

    CAS  PubMed  Google Scholar 

  8. Shaner, N. C., Sanger, J. W. & Sanger, J. M. Actin and α-actinin dynamics in the adhesion and motility of EPEC and EHEC on host cells. Cell Motil. Cytoskeleton 60, 104–120 (2005).

    CAS  PubMed  Google Scholar 

  9. Sanger, J. M., Chang, R., Ashton, F., Kaper, J. B. & Sanger, J. W. Novel form of actin-based motility transports bacteria on the surfaces of infected cells. Cell Motil. Cytoskeleton 34, 279–287 (1996).

    CAS  PubMed  Google Scholar 

  10. Knutton, S., Baldwin, T., Williams, P. H. & McNeish, A. S. Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect. Immun. 57, 1290–1298 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nicholson-Dykstra, S., Higgs, H. N. & Harris, E. S. Actin dynamics: growth from dendritic branches. Curr. Biol. 15, R346–R357 (2005).

    CAS  PubMed  Google Scholar 

  12. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    CAS  PubMed  Google Scholar 

  13. Carragher, N. O. & Frame, M. C. Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol. 14, 241–249 (2004).

    CAS  PubMed  Google Scholar 

  14. Thrasher, A. J. WASP in immune-system organization and function. Nature Rev. Immunol. 2, 635–646 (2002).

    CAS  Google Scholar 

  15. Welch, M. D. & Mullins, R. D. Cellular control of actin nucleation. Annu. Rev. Cell. Dev. Biol. 18, 247–288 (2002).

    CAS  PubMed  Google Scholar 

  16. Millard, T. H., Sharp, S. J. & Machesky, L. M. Signalling to actin assembly via the WASP (Wiskott–Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem. J. 380, 1–17 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Higgs, H. N. & Pollard, T. D. Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu. Rev. Biochem. 70, 649–676 (2001).

    CAS  PubMed  Google Scholar 

  18. Burns, S., Cory, G. O., Vainchenker, W. & Thrasher, A. J. Mechanisms of WASP-mediated hematologic and immunologic disease. Blood 104, 3454–3462 (2004).

    CAS  PubMed  Google Scholar 

  19. Stradal, T. E. et al. Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol. 14, 303–311 (2004).

    CAS  PubMed  Google Scholar 

  20. Goley, E. D., Rodenbusch, S. E., Martin, A. C. & Welch, M. D. Critical conformational changes in the Arp2/3 complex are induced by nucleotide and nucleation promoting factor. Mol. Cell 16, 269–279 (2004).

    CAS  PubMed  Google Scholar 

  21. Prehoda, K. E., Scott, J. A., Mullins, R. D. & Lim, W. A. Integration of multiple signals through cooperative regulation of the N-WASP–Arp2/3 complex. Science 290, 801–806 (2000).

    CAS  PubMed  Google Scholar 

  22. Rohatgi, R., Ho, H. Y. & Kirschner, M. W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 150, 1299–1310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K. Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature 404, 151–158 (2000).

    CAS  PubMed  Google Scholar 

  24. Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391, 93–96 (1998).

    CAS  PubMed  Google Scholar 

  25. Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biol. 2, 441–448 (2000).

    CAS  PubMed  Google Scholar 

  26. Martinez-Quiles, N. et al. WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Nature Cell Biol. 3, 484–491 (2001).

    CAS  PubMed  Google Scholar 

  27. Anton, I. M., Lu, W., Mayer, B. J., Ramesh, N. & Geha, R. S. The Wiskott–Aldrich syndrome protein-interacting protein (WIP) binds to the adaptor protein Nck. J. Biol. Chem. 273, 20992–20995 (1998).

    CAS  PubMed  Google Scholar 

  28. Suetsugu, S., Miki, H. & Takenawa, T. The essential role of profilin in the assembly of actin for microspike formation. EMBO J. 17, 6516–6526 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ho, H. Y. et al. Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP–WIP complex. Cell 118, 203–216 (2004).

    CAS  PubMed  Google Scholar 

  30. Suetsugu, S. et al. Sustained activation of N-WASP through phosphorylation is essential for neurite extension. Dev. Cell 3, 645–658 (2002).

    CAS  PubMed  Google Scholar 

  31. Carlier, M. F. et al. GRB2 links signaling to actin assembly by enhancing interaction of neural Wiskott–Aldrich syndrome protein (N-WASP) with actin-related protein (ARP2/3) complex. J. Biol. Chem. 275, 21946–21952 (2000).

    CAS  PubMed  Google Scholar 

  32. Rohatgi, R., Nollau, P., Ho, H. Y., Kirschner, M. W. & Mayer, B. J. Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP–Arp2/3 pathway. J. Biol. Chem. 276, 26448–26452 (2001).

    CAS  PubMed  Google Scholar 

  33. Martinez-Quiles, N., Ho, H. Y., Kirschner, M. W., Ramesh, N. & Geha, R. S. Erk/Src phosphorylation of cortactin acts as a switch on–switch off mechanism that controls its ability to activate N-WASP. Mol. Cell Biol. 24, 5269–5280 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cory, G. O., Cramer, R., Blanchoin, L. & Ridley, A. J. Phosphorylation of the WASP-VCA domain increases its affinity for the Arp2/3 complex and enhances actin polymerization by WASP. Mol. Cell 11, 1229–1239 (2003).

    CAS  PubMed  Google Scholar 

  35. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    CAS  PubMed  Google Scholar 

  36. Lommel, S., Benesch, S., Rohde, M., Wehland, J. & Rottner, K. Enterohaemorrhagic and enteropathogenic Escherichia coli use different mechanisms for actin pedestal formation that converge on N-WASP. Cell. Microbiol. 6, 243–254 (2004). Both EPEC and EHEC require N-WASP for pedestal assembly, but each uses different mechanisms of recruitment and activation.

    CAS  PubMed  Google Scholar 

  37. Kalman, D. et al. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nature Cell Biol. 1, 389–391 (1999).

    CAS  PubMed  Google Scholar 

  38. Lommel, S. et al. Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO Rep. 2, 850–857 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ebel, F., von Eichel-Streiber, C., Rohde, M. & Chakraborty, T. Small GTP-binding proteins of the Rho- and Ras-subfamilies are not involved in the actin rearrangements induced by attaching and effacing Escherichia coli. FEMS Microbiol. Lett. 163, 107–112 (1998).

    CAS  PubMed  Google Scholar 

  40. Ben-Ami, G. et al. Agents that inhibit Rho, Rac, and Cdc42 do not block formation of actin pedestals in HeLa cells infected with enteropathogenic Escherichia coli. Infect. Immun. 66, 1755–1758 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jerse, A. E., Yu, J., Tall, B. D. & Kaper, J. B. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl Acad. Sci. USA 87, 7839–7843 (1990).

    CAS  PubMed  Google Scholar 

  42. McDaniel, T. K. & Kaper, J. B. A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol. Microbiol. 23, 399–407 (1997).

    CAS  PubMed  Google Scholar 

  43. Elliott, S. J. et al. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol. Microbiol. 28, 1–4 (1998).

    CAS  PubMed  Google Scholar 

  44. Ebel, F. et al. Initial binding of Shiga toxin-producing Escherichia coli to host cells and subsequent induction of actin rearrangements depend on filamentous EspA-containing surface appendages. Mol. Microbiol. 30, 147–161 (1998).

    CAS  PubMed  Google Scholar 

  45. Knutton, S. et al. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17, 2166–2176 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sekiya, K. et al. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl Acad. Sci. USA 98, 11638–11643 (2001).

    CAS  PubMed  Google Scholar 

  47. Dean, P., Maresca, M. & Kenny, B. EPEC's weapons of mass subversion. Curr. Opin. Microbiol. 8, 28–34 (2005).

    CAS  PubMed  Google Scholar 

  48. Garmendia, J., Frankel, G. & Crepin, V. F. Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infect. Immun. 73, 2573–2585 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rosenshine, I. et al. A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO J. 15, 2613–2624 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kenny, B. et al. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520 (1997). The first demonstration that a bacterium could transfer its own receptor into a mammalian host cell. This paper also defined a link between actin nucleation and TirEPEC.

    CAS  PubMed  Google Scholar 

  51. Deibel, C., Kramer, S., Chakraborty, T. & Ebel, F. EspE, a novel secreted protein of attaching and effacing bacteria, is directly translocated into infected host cells, where it appears as a tyrosine-phosphorylated 90 kDa protein. Mol. Microbiol. 28, 463–474 (1998).

    CAS  PubMed  Google Scholar 

  52. Patel, A. et al. Host protein interactions with enteropathogenic Escherichia coli (EPEC): 14-3-3τ binds Tir and has a role in EPEC-induced actin polymerization. Cell. Microbiol. 8, 55–71 (2006).

    CAS  PubMed  Google Scholar 

  53. Goosney, D. L. et al. Enteropathogenic E. coli translocated intimin receptor, Tir, interacts directly with α-actinin. Curr. Biol. 10, 735–738 (2000).

    CAS  PubMed  Google Scholar 

  54. Freeman, N. L. et al. Interaction of the enteropathogenic Escherichia coli protein, translocated intimin receptor (Tir), with focal adhesion proteins. Cell Motil. Cytoskeleton 47, 307–318 (2000).

    CAS  PubMed  Google Scholar 

  55. Cantarelli, V. V. et al. Cortactin is necessary for F-actin accumulation in pedestal structures induced by enteropathogenic Escherichia coli infection. Infect. Immun. 70, 2206–2209 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Goosney, D. L., DeVinney, R. & Finlay, B. B. Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect. Immun. 69, 3315–3322 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Campellone, K. G. & Leong, J. M. Tails of two Tirs: actin pedestal formation by enteropathogenic E. coli and enterohemorrhagic E. coli O157:H7. Curr. Opin. Microbiol. 6, 82–90 (2003).

    CAS  PubMed  Google Scholar 

  58. Campellone, K. G., Giese, A., Tipper, D. J. & Leong, J. M. A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals. Mol. Microbiol. 43, 1227–1241 (2002).

    CAS  PubMed  Google Scholar 

  59. Gruenheid, S. et al. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nature Cell Biol. 3, 856–859 (2001). Identified Nck adaptor proteins as critical host-cell determinants of EPEC virulence that engage phosphorylated Y474 of TirEPEC.

    CAS  PubMed  Google Scholar 

  60. Kenny, B. Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modifications. Mol. Microbiol. 31, 1229–1241 (1999).

    CAS  PubMed  Google Scholar 

  61. Phillips, N., Hayward, R. D. & Koronakis, V. Phosphorylation of the enteropathogenic E. coli receptor by the Src-family kinase c-Fyn triggers actin pedestal formation. Nature Cell Biol. 6, 618–625 (2004). Used the 'priming and challenge' model to demonstrate that intimin-induced clustering of membrane-integral TirEPEC induces Y474 phosphorylation by the host SFK c-Fyn.

    CAS  PubMed  Google Scholar 

  62. Swimm, A. et al. Enteropathogenic Escherichia coli use redundant tyrosine kinases to form actin pedestals. Mol. Biol. Cell 15, 3520–3529 (2004). Demonstrated that wild-type EPEC can use redundant host SFKs and Abl-family kinases to form pedestals on cultured cells. This study also highlighted pyrido[2,3- d ]pyrimidine compounds as potential inhibitors of EPEC infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Rivera, G. M., Briceno, C. A., Takeshima, F., Snapper, S. B. & Mayer, B. J. Inducible clustering of membrane-targeted SH3 domains of the adaptor protein Nck triggers localized actin polymerization. Curr. Biol. 14, 11–22 (2004).

    CAS  PubMed  Google Scholar 

  64. Campellone, K. G., Robbins, D. & Leong, J. M. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev. Cell 7, 217–228 (2004). Identified an effector (EspF U /TccP) encoded outside the LEE that links TirEHEC to N-WASP independently of tyrosine phosphorylation, which triggers localized actin assembly. This study was independent of reference 99.

    CAS  PubMed  Google Scholar 

  65. Campellone, K. G. et al. Clustering of Nck by a 12-residue Tir phosphopeptide is sufficient to trigger localized actin assembly. J. Cell Biol. 164, 407–416 (2004). Determined the minimal requirements for EPEC-mediated actin assembly by demonstrating that Nck clustering by a 12-residue Y474-spanning phosphopeptide triggered actin comet-tail formation in Xenopus egg extracts.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Campellone, K. G. & Leong, J. M. Nck-independent actin assembly is mediated by two phosphorylated tyrosines within enteropathogenic Escherichia coli Tir. Mol. Microbiol. 56, 416–432 (2005).

    CAS  PubMed  Google Scholar 

  67. Frischknecht, F. & Way, M. Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol. 11, 30–38 (2001).

    CAS  PubMed  Google Scholar 

  68. Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature 401, 926–929 (1999).

    CAS  PubMed  Google Scholar 

  69. Reeves, P. M. et al. Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nature Med. 11, 731–739 (2005).

    CAS  PubMed  Google Scholar 

  70. Scaplehorn, N. et al. Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr. Biol. 12, 740–745 (2002).

    CAS  PubMed  Google Scholar 

  71. Tzipori, S. et al. The role of the eaeA gene in diarrhea and neurological complications in a gnotobiotic piglet model of enterohemorrhagic Escherichia coli infection. Infect. Immun. 63, 3621–3627 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Frankel, G. et al. Intimin and the host cell — is it bound to end in Tir(s)? Trends Microbiol. 9, 214–218 (2001).

    CAS  PubMed  Google Scholar 

  73. Sinclair, J. F. & O'Brien, A. D. Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-γ of enterohemorrhagic Escherichia coli O157:H7. J. Biol. Chem. 277, 2876–2885 (2002).

    CAS  PubMed  Google Scholar 

  74. Liu, H., Magoun, L., Luperchio, S., Schauer, D. B. & Leong, J. M. The Tir-binding region of enterohaemorrhagic Escherichia coli intimin is sufficient to trigger actin condensation after bacterial-induced host cell signalling. Mol. Microbiol. 34, 67–81 (1999).

    PubMed  Google Scholar 

  75. Luo, Y. et al. Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405, 1073–1077 (2000). The crystal structures of an EPEC intimin fragment alone, and in complex with the TirEPEC intimin-binding domain, provided the first insights into the molecular mechanisms underlying intimate adhesion.

    CAS  PubMed  Google Scholar 

  76. Batchelor, M. et al. Structural basis for recognition of the translocated intimin receptor (Tir) by intimin from enteropathogenic Escherichia coli. EMBO J. 19, 2452–2464 (2000). Used NMR and mutagenesis approaches to resolve the structure of the extracellular domain of EPEC intimin and to delineate the Tir binding site.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hamburger, Z. A., Brown, M. S., Isberg, R. R. & Bjorkman, P. J. Crystal structure of invasin: a bacterial integrin-binding protein. Science 286, 291–295 (1999).

    CAS  PubMed  Google Scholar 

  78. Thomason, P. A., Wolanin, P. M. & Stock, J. B. Signal transduction: receptor clusters as information processing arrays. Curr. Biol. 12, R399–R401 (2002).

    CAS  PubMed  Google Scholar 

  79. Cochran, J. R., Aivazian, D., Cameron, T. O. & Stern, L. J. Receptor clustering and transmembrane signaling in T cells. Trends Biochem. Sci. 26, 304–310 (2001).

    CAS  PubMed  Google Scholar 

  80. Touze, T., Hayward, R. D., Eswaran, J., Leong, J. M. & Koronakis, V. Self-association of EPEC intimin mediated by the β-barrel-containing anchor domain: a role in clustering of the Tir receptor. Mol. Microbiol. 51, 73–87 (2004).

    CAS  PubMed  Google Scholar 

  81. Dersch, P. & Isberg, R. R. A region of the Yersinia pseudotuberculosis invasin protein enhances integrin-mediated uptake into mammalian cells and promotes self-association. EMBO J. 18, 1199–1213 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Harder, T. & Simons, K. Clusters of glycolipid and glycosylphosphatidylinositol-anchored proteins in lymphoid cells: accumulation of actin regulated by local tyrosine phosphorylation. Eur. J. Immunol. 29, 556–562 (1999).

    CAS  PubMed  Google Scholar 

  83. Foger, N., Marhaba, R. & Zoller, M. Involvement of CD44 in cytoskeleton rearrangement and raft reorganization in T cells. J. Cell Sci. 114, 1169–1178 (2001).

    CAS  PubMed  Google Scholar 

  84. Zobiack, N. et al. Cell-surface attachment of pedestal-forming enteropathogenic E. coli induces a clustering of raft components and a recruitment of annexin 2. J. Cell Sci. 115, 91–98 (2002).

    CAS  PubMed  Google Scholar 

  85. Fuller, C. L., Braciale, V. L. & Samelson, L. E. All roads lead to actin: the intimate relationship between TCR signaling and the cytoskeleton. Immunol. Rev. 191, 220–236 (2003).

    CAS  PubMed  Google Scholar 

  86. Palacios, E. H. & Weiss, A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23, 7990–8000 (2004).

    CAS  PubMed  Google Scholar 

  87. Lowell, C. A. Src-family kinases: rheostats of immune cell signaling. Mol. Immunol. 41, 631–643 (2004).

    CAS  PubMed  Google Scholar 

  88. Sasahara, Y. et al. Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation. Mol. Cell 10, 1269–1281 (2002).

    CAS  PubMed  Google Scholar 

  89. ffrench-Constant, C. & Colognato, H. Integrins: versatile integrators of extracellular signals. Trends Cell Biol. 14, 678–686 (2004).

    CAS  PubMed  Google Scholar 

  90. Drevot, P. et al. TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 21, 1899–1908 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zipfel, P. A., Zhang, W., Quiroz, M. & Pendergast, A. M. Requirement for Abl kinases in T cell receptor signaling. Curr. Biol. 14, 1222–1231 (2004).

    CAS  PubMed  Google Scholar 

  92. Playford, M. P. & Schaller, M. D. The interplay between Src and integrins in normal and tumor biology. Oncogene 23, 7928–7946 (2004).

    CAS  PubMed  Google Scholar 

  93. Leitinger, B. & Hogg, N. The involvement of lipid rafts in the regulation of integrin function. J. Cell Sci. 115, 963–972 (2002).

    CAS  PubMed  Google Scholar 

  94. Wiesner, S., Legate, K. R. & Fassler, R. Integrin-actin interactions. Cell Mol. Life Sci. 62, 1081–1099 (2005).

    CAS  PubMed  Google Scholar 

  95. Newsome, T. P., Scaplehorn, N. & Way, M. SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 306, 124–129 (2004).

    CAS  PubMed  Google Scholar 

  96. Newsome, T. P., Weisswange, I., Frischknecht, F. & Way, M. Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus. Cell. Microbiol. 8, 233–241 (2006).

    CAS  PubMed  Google Scholar 

  97. Yang, H. et al. Antiviral chemotherapy facilitates control of poxvirus infections through inhibition of cellular signal transduction. J. Clin. Invest. 115, 379–387 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hernandez, S. E., Krishnaswami, M., Miller, A. L. & Koleske, A. J. How do Abl family kinases regulate cell shape and movement? Trends Cell Biol. 14, 36–44 (2004).

    CAS  PubMed  Google Scholar 

  99. Garmendia, J. et al. TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell. Microbiol. 6, 1167–1183 (2004). Identified an effector (EspF U /TccP) encoded outside the LEE that links TirEHEC to N-WASP independently of tyrosine phosphorylation, which triggers localized actin assembly. This study was independent of reference 64.

    CAS  PubMed  Google Scholar 

  100. DeVinney, R. et al. Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect. Immun. 67, 2389–2398 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Chuang, C. H., Chiu, H. J., Hsu, S. C., Ho, J. Y. & Syu, W. J. Comparison of Tir from enterohemorrhagic and enteropathogenic Escherichia coli strains: two homologues with distinct intracellular properties. J. Biomed. Sci. 13, 73–87 (2006).

    CAS  PubMed  Google Scholar 

  102. DeVinney, R., Puente, J. L., Gauthier, A., Goosney, D. & Finlay, B. B. Enterohaemorrhagic and enteropathogenic Escherichia coli use a different Tir-based mechanism for pedestal formation. Mol. Microbiol. 41, 1445–1458 (2001).

    CAS  PubMed  Google Scholar 

  103. Kenny, B. The enterohaemorrhagic Escherichia coli (serotype O157:H7) Tir molecule is not functionally interchangeable for its enteropathogenic E. coli (serotype O127:H6) homologue. Cell. Microbiol. 3, 499–510 (2001).

    CAS  PubMed  Google Scholar 

  104. Viswanathan, V. K. et al. Comparative analysis of EspF from enteropathogenic and enterohemorrhagic Escherichia coli in alteration of epithelial barrier function. Infect. Immun. 72, 3218–3227 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Stevens, J. H., Galyov, E. E. & Stevens, M. P. Actin-dependent movement of bacterial pathogens. Nature Rev. Microbiol. 4, 91–101 (2006).

    CAS  Google Scholar 

  106. Egile, C. et al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146, 1319–1332 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Suzuki, T., Miki, H., Takenawa, T. & Sasakawa, C. Neural Wiskott–Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. EMBO J. 17, 2767–2776 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Mounier, J. et al. Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J. Cell Sci. 112, 2069–2080 (1999).

    CAS  PubMed  Google Scholar 

  109. Shibata, T., Takeshima, F., Chen, F., Alt, F. W. & Snapper, S. B. Cdc42 facilitates invasion but not the actin-based motility of Shigella. Curr. Biol. 12, 341–345 (2002).

    CAS  PubMed  Google Scholar 

  110. Suzuki, T. et al. Rho family GTPase Cdc42 is essential for the actin-based motility of Shigella in mammalian cells. J. Exp. Med. 191, 1905–1920 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Snapper, S. B. et al. N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nature Cell Biol. 3, 897–904 (2001).

    CAS  PubMed  Google Scholar 

  112. Suzuki, T. et al. Neural Wiskott–Aldrich syndrome protein (N-WASP) is the specific ligand for Shigella VirG among the WASP family and determines the host cell type allowing actin-based spreading. Cell. Microbiol. 4, 223–233 (2002).

    CAS  PubMed  Google Scholar 

  113. Wu, X., Suetsugu, S., Cooper, L. A., Takenawa, T. & Guan, J. L. Focal adhesion kinase regulation of N-WASP subcellular localization and function. J. Biol. Chem. 279, 9565–9576 (2004).

    CAS  PubMed  Google Scholar 

  114. Torres, E. & Rosen, M. K. Contingent phosphorylation/dephosphorylation provides a mechanism of molecular memory in WASP. Mol. Cell 11, 1215–1227 (2003).

    CAS  PubMed  Google Scholar 

  115. Abdul-Manan, N. et al. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott–Aldrich syndrome' protein. Nature 399, 379–383 (1999).

    CAS  PubMed  Google Scholar 

  116. Niedergang, F. & Chavrier, P. Regulation of phagocytosis by Rho GTPases. Curr. Top. Microbiol. Immunol. 291, 43–60 (2005).

    CAS  PubMed  Google Scholar 

  117. Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23–32 (2004).

    CAS  PubMed  Google Scholar 

  118. Torres, E. & Rosen, M. K. Protein tyrosine kinase and GTPase signals cooperate to phosphorylate and activate WASP/N-WASP. J. Biol. Chem. 281, 3513–3520 (2006).

    CAS  PubMed  Google Scholar 

  119. Campellone, K. G. et al. Enterohaemorrhagic Escherichia coli Tir requires a C-terminal 12-residue peptide to initiate EspFU-mediated actin assembly and harbors N-terminal sequences that influence pedestal length. Cell. Microbiol. (in the press).

  120. Garmendia, J. et al. Distribution of TccP in clinical enterohemorrhagic and enteropathogenic Escherichia coli isolates. J. Clin. Microbiol. 43, 5715–5720 (2005). Identification of an O119:H6 EPEC strain encoding both EspF U (TccP) characteristic of EHEC O157:H7 and a Tir protein harbouring Y474.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bompard, G. & Caron, E. Regulation of WASP/WAVE proteins: making a long story short. J. Cell Biol. 166, 957–962 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Quinlan, M. E., Heuser, J. E., Kerkhoff, E. & Mullins, R. D. Drosophila Spire is an actin nucleation factor. Nature 433, 382–388 (2005).

    CAS  PubMed  Google Scholar 

  123. Wallar, B. J. & Alberts, A. S. The formins: active scaffolds that remodel the cytoskeleton. Trends Cell Biol. 13, 435–446 (2003).

    CAS  PubMed  Google Scholar 

  124. Jones, N. et al. Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature 8 Mar 2006 (doi:10.1038/nature04662).

  125. Alto, N. M. et al. Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124, 133–145 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Phillips, D. Tipper and E. Koronakis for discussions and critique of the manuscript, and M. Brady, N. Phillips, S. Snapper, R. DeVinney, T. Newsome and M. Way for discussion and communication of unpublished results. Our work is supported by a Wellcome Trust programme grant, a Medical Research Council project grant and Biotechnology and Biological Research Council Studentship to V.K., and a National Institutes of Health (NIH) grant to J.M.L. K.G.C. visited the Koronakis laboratory with support from a Human Frontier Science Program international fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John M. Leong or Vassilis Koronakis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome

vaccinia virus

Entrez Genome Project

O157:H7

Yersinia pseudotuberculosis

FURTHER INFORMATION

Vassils Koronakis' homepage

John M. Leong's homepage

Glossary

Microvilli

Small, finger-like projections found on the exposed surfaces of epithelial cells that maximize the surface area.

Macropinocytosis

A form of regulated, actin-dependent endocytosis that involves the formation of large endocytic vesicles after the closure of cell-surface membrane ruffles.

Filopodia

Thin, transient actin protrusions that extend out from the cell surface and are formed by the elongation of bundled actin filaments in the core.

Lamellipodia

Flattened protrusions at the leading edge of a moving cell that are enriched with a branched network of actin filaments.

Tight junction

A seal between adjacent epithelial cells, just beneath the apical surface, that forms a semi-permeable diffusion barrier between individual cells.

Focal adhesions

Cellular structures that link the extracellular matrix on the outside of the cell to the actin cytoskeleton inside the cell through integrin receptors.

Pathogenicity island

A contiguous block of genes acquired by horizontal transfer in which at least a subset of the genes code for virulence factors.

C-type lectin

Calcium-dependent carbohydrate-binding protein.

Immunological synapse

A large junctional structure formed at the cell surface between a T cell and an antigen-presenting cell, also known as the supramolecular activation cluster. Important molecules that are involved in T-cell activation — including the T-cell receptor, numerous signal-transduction molecules and molecular adaptors — accumulate in an orderly manner at this site. Immunological synapses are now known to also form between other types of immune cells, for example, between dendritic cells and natural killer cells.

Immunoreceptor tyrosine-based activation motif

(ITAM). A sequence found in the cytoplasmic domains of the invariant chains of various cell-surface immune receptors, such as the T-cell receptor. Following phosphorylation of their tyrosine residue, ITAMs function as docking sites for Src-homology-2-domain-containing tyrosine kinases and adaptor molecules, thereby facilitating intracellular-signalling cascades.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayward, R., Leong, J., Koronakis, V. et al. Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling. Nat Rev Microbiol 4, 358–370 (2006). https://doi.org/10.1038/nrmicro1391

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1391

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing