Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs: expression, avoidance and subversion by vertebrate viruses

Key Points

  • The genomes of some vertebrate viruses encode small non-protein-coding transcripts that can be processed by the host-cell RNA interference (RNAi) pathway to yield mature 21-nucleotide microRNAs (miRNAs). miRNAs were first discovered in Caenorhabditis elegans, and the host-cell machinery that synthesizes miRNAs has been characterized.

  • Several DNA viruses encode miRNAs. Some members of the herpesvirus family encode miRNAs that are produced during both lytic and latent phases of the viral life cycle. In herpes simplex virus type 1, the latency-associated transcript LAT (which is non-protein-coding) is processed to yield an miRNA — miR-LAT — that downregulates the expression of genes involved in transforming growth factor-β-mediated signalling. This, in turn, protects latently infected neurons from undergoing apoptosis.

  • An miRNA that is present in the simian-virus-40 genome downregulates the amount of mRNA that encodes the viral tumour antigens. This renders infected cells less susceptible to lysis by cytotoxic T lymphocytes that target viral tumour antigens.

  • Unlike DNA viruses, sequences that encode miRNAs have not been found in RNA viruses. This is thought to result from the replication strategy of RNA viruses, in which full-length genomic RNAs are required to produce progeny viral RNAs. In addition, the genomes of RNA viruses are usually localized to the host-cell cytoplasm and therefore cannot use nuclear components of the RNAi machinery.

  • Several viral genomes interact with cellular miRNAs. Importantly, studies on hepatitis C virus have revealed that a liver-specific miRNA known as miR-122 is recruited for the selective amplification of viral RNAs in cultured liver cells. This finding indicates the potential of using cellular miRNAs as targets for antiviral therapeutics.

Abstract

MicroRNAs (miRNAs), which can be expressed in a cell-type and tissue-specific manner, can influence the activities of genes that control cell growth and differentiation. Viruses often have clear tissue tropisms, raising the possibility that cellular miRNAs might modulate their pathogenesis. In this Review, we discuss recent findings that some vertebrate viruses either encode miRNAs or subvert cellular miRNAs, and that these miRNAs participate in both the infectious and the latent phase of the viral life cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MicroRNA (miRNA) biogenesis pathway.
Figure 2: Simian virus 40 (SV40)-encoded microRNAs (miRNAs) reduce susceptibility to lysis by cytotoxic T lymphocytes (CTLs).
Figure 3: The diverse functions of adenovirus virus-associated 1 (VA1) RNA.
Figure 4: Interaction of cellular microRNAs (miRNAs) with viral genomes.
Figure 5: Cholesterol-biosynthesis-pathway genes that are upregulated by miR-122.

Similar content being viewed by others

References

  1. Chalfie, M., Horvitz, H. R. & Sulston, J. E. Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24, 59–69 (1981).

    CAS  PubMed  Google Scholar 

  2. Horvitz, H. R. & Sulston, J. E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 96, 435–454 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ambros, V. & Horvitz, H. R. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409–416 (1984).

    CAS  PubMed  Google Scholar 

  4. Ambros, V. & Horvitz, H. R. The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Genes Dev. 1, 398–414 (1987).

    CAS  PubMed  Google Scholar 

  5. Ambros, V. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 57, 49–57 (1989).

    CAS  PubMed  Google Scholar 

  6. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    CAS  PubMed  Google Scholar 

  7. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    CAS  PubMed  Google Scholar 

  8. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999). This classic paper revealed that a small RNA regulator — which turned out to be the paradigmatic lin-4 miRNA — controls gene expression of target lin-14 mRNA at the post-transcriptional level.

    CAS  PubMed  Google Scholar 

  9. Slack, F. J. et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659–669 (2000).

    CAS  PubMed  Google Scholar 

  10. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    CAS  PubMed  Google Scholar 

  11. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    CAS  PubMed  Google Scholar 

  12. Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    CAS  PubMed  Google Scholar 

  13. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    CAS  PubMed  Google Scholar 

  14. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001). References 12–14 were the first reports of the identification of a large number of small (21-nucleotide) RNAs, leading to the realization that these molecules constitute a new class of RNA molecule.

    CAS  PubMed  Google Scholar 

  15. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  16. Griffiths-Jones, S. The microRNA Registry. Nucleic Acids Res. 32, D109–D111 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734–736 (2004). This was the first study to show that DNA viruses can encode miRNAs.

    CAS  PubMed  Google Scholar 

  18. Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nature Methods 2, 269–276 (2005). This study identified virus-encoded miRNAs in the genomes of KSHV, MHV68 and HCMV. In addition, evidence was provided that MHV68 miRNAs are transcribed by RNA polymerase III.

    CAS  PubMed  Google Scholar 

  19. Samols, M. A., Hu, J., Skalsky, R. L. & Renne, R. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J. Virol. 79, 9301–9305 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sullivan, C. S., Grundhoff, A. T., Tevethia, S., Pipas, J. M. & Ganem, D. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435, 682–686 (2005). This was the first paper to report a biological function for a virus-encoded miRNA. Specifically, an SV40-encoded miRNA was found to downregulate virus-encoded mRNAs, reducing susceptibility to clearance by cytotoxic T lymphocytes.

    CAS  PubMed  Google Scholar 

  21. Grey, F. et al. Identification and characterization of human cytomegalovirus-encoded microRNAs. J. Virol. 79, 12095–12099 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai, X. et al. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl Acad. Sci. USA 102, 5570–5575 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Andersson, M. G. et al. Suppression of RNA interference by adenovirus virus-associated RNA. J. Virol. 79, 9556–9565 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sano, M., Kato, Y. & Taira, K. Sequence-specific interference by small RNAs derived from adenovirus VAI RNA. FEBS Lett. 580, 1553–1564 (2006).

    CAS  PubMed  Google Scholar 

  25. Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002). This paper showed that miRNAs are processed by a series of cleavage events that occurs in the nucleus and the cytoplasm.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L. & Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nature Rev. Mol. Cell Biol. 6, 376–385 (2005).

    CAS  Google Scholar 

  28. Cai, X., Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell 125, 887–901 (2006).

    CAS  PubMed  Google Scholar 

  31. Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).

    CAS  PubMed  Google Scholar 

  33. Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–191 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Forstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 3, e236 (2005).

    PubMed  PubMed Central  Google Scholar 

  36. Haase, A. D. et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6, 961–967 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Patel, R. C. & Sen, G. C. PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J. 17, 4379–4390 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, Y. et al. The role of PACT in the RNA silencing pathway. EMBO J. 25, 522–532 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Basyuk, E., Suavet, F., Doglio, A., Bordonne, R. & Bertrand, E. Human let-7 stem–loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res. 31, 6593–6597 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    CAS  PubMed  Google Scholar 

  41. Zamore, P. D. Thirty-three years later, a glimpse at the ribonuclease III active site. Mol. Cell 8, 1158–1160 (2001).

    CAS  PubMed  Google Scholar 

  42. Maniataki, E. & Mourelatos, Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 19, 2979–2990 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296 (2000).

    CAS  PubMed  Google Scholar 

  44. Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    CAS  PubMed  Google Scholar 

  45. Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16, 720–728 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sasaki, T., Shiohama, A., Minoshima, S. & Shimizu, N. Identification of eight members of the Argonaute family in the human genome. Genomics 82, 323–330 (2003).

    CAS  PubMed  Google Scholar 

  47. Meister, G. et al. Identification of novel Argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005).

    CAS  PubMed  Google Scholar 

  48. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    CAS  PubMed  Google Scholar 

  49. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    CAS  PubMed  Google Scholar 

  50. Nelson, P. T., Hatzigeorgiou, A. G. & Mourelatos, Z. miRNP:mRNA association in polyribosomes in a human neuronal cell line. RNA 10, 387–394 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jin, P. et al. Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature Neurosci. 7, 113–117 (2004).

    CAS  PubMed  Google Scholar 

  52. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    CAS  PubMed  Google Scholar 

  53. Zeng, Y., Wagner, E. J. & Cullen, B. R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).

    CAS  PubMed  Google Scholar 

  54. Pillai, R. S. et al. Inhibition of translational initiation by let-7 microRNA in human cells. Science 309, 1573–1576 (2005).

    CAS  PubMed  Google Scholar 

  55. Humphreys, D. T., Westman, B. J., Martin, D. I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl Acad. Sci. USA 102, 16961–16966 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21, 533–542 (2006).

    CAS  PubMed  Google Scholar 

  57. Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).

    CAS  PubMed  Google Scholar 

  58. Cai, X. et al. Epstein–Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog. 2, e23 (2006).

    PubMed  PubMed Central  Google Scholar 

  59. Cai, X. & Cullen, B. R. Transcriptional origin of Kaposi's sarcoma-associated herpesvirus microRNAs. J. Virol. 80, 2234–2242 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Furnari, F. B., Adams, M. D. & Pagano, J. S. Unconventional processing of the 3′ termini of the Epstein–Barr virus DNA polymerase mRNA. Proc. Natl Acad. Sci. USA 90, 378–382 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Grundhoff, A., Sullivan, C. & Ganem, D. A combined computational and microarray-based approach identifies novel microRNAs encoded by human γ−herpesviruses. RNA 12, 733–750 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gupta, A., Gartner, J. J., Sethupathy, P., Hatzigeorgiou, A. G. & Fraser, N. W. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442, 82–85 (2006). This report shows that the non-protein-coding transcript LAT of HSV-1 encodes an miRNA that downregulates genes involved in the onset of apoptosis. This implies that an miRNA has a role in the protection of latently infected neurons.

    CAS  PubMed  Google Scholar 

  63. Luciano, D. J., Mirsky, H., Vendetti, N. J. & Maas, S. RNA editing of a miRNA precursor. RNA 10, 1174–1177 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bowden, R. J., Simas, J. P., Davis, A. J. & Efstathiou, S. Murine γherpesvirus 68 encodes tRNA-like sequences which are expressed during latency. J. Gen. Virol. 78, 1675–1687 (1997).

    CAS  PubMed  Google Scholar 

  65. Dunn, W. et al. Human cytomegalovirus expresses novel microRNAs during productive viral infection. Cell. Microbiol. 7, 1684–1695 (2005).

    CAS  PubMed  Google Scholar 

  66. Mathews, M. B. & Shenk, T. Adenovirus virus-associated RNA and translation control. J. Virol. 65, 5657–5662 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gwizdek, C. et al. Exportin-5 mediates nuclear export of minihelix-containing RNAs. J. Biol. Chem. 278, 5505–5508 (2003).

    CAS  PubMed  Google Scholar 

  68. Lu, S. & Cullen, B. R. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J. Virol. 78, 12868–12876 (2004). This study provided the first evidence that a vertebrate-virus gene product inhibited RNA silencing by blocking different stages of the miRNA processing pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Aparicio, O., Razquin, N., Zaratiegui, M., Narvaiza, I. & Fortes, P. Adenovirus virus-associated RNA is processed to functional interfering RNAs involved in virus production. J. Virol. 80, 1376–1384 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Omoto, S. & Fujii, Y. R. Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J. Gen. Virol. 86, 751–755 (2005).

    CAS  PubMed  Google Scholar 

  71. Bennasser, Y., Le, S. Y., Benkirane, M. & Jeang, K. T. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 22, 607–619 (2005).

    CAS  PubMed  Google Scholar 

  72. Lecellier, C. H. & Saib, A. Foamy viruses: between retroviruses and pararetroviruses. Virology 271, 1–8 (2000).

    CAS  PubMed  Google Scholar 

  73. Lecellier, C. H. et al. A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 (2005). This is an interesting study in which an interaction between a cellular miRNA and a vertebrate virus (PFV-1) was shown. A suppressor protein encoded by the virus was shown to counteract the repressive effect of human miR-32 in a heterologous plant system.

    CAS  PubMed  Google Scholar 

  74. Lakatos, L. et al. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J. 25, 2768–2780 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lakatos, L., Szittya, G., Silhavy, D. & Burgyan, J. Molecular mechanism of RNA silencing suppression mediated by p19 protein of tombusviruses. EMBO J. 23, 876–884 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Dunoyer, P., Lecellier, C. H., Parizotto, E. A., Himber, C. & Voinnet, O. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16, 1235–1250 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Baunach, G., Maurer, B., Hahn, H., Kranz, M. & Rethwilm, A. Functional analysis of human foamy virus accessory reading frames. J. Virol. 67, 5411–5418 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Meiering, C. D., Comstock, K. E. & Linial, M. L. Multiple integrations of human foamy virus in persistently infected human erythroleukemia cells. J. Virol. 74, 1718–1726 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Saib, A., Peries, J. & de The, H. A defective human foamy provirus generated by pregenome splicing. EMBO J. 12, 4439–4444 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005). This paper provides an example of a cellular miRNA that binds and positively regulates a viral RNA. The liver-specific miRNA miR-122 was found to interact with the 5′-non-protein-coding region of HCV and increase viral RNA production, probably at the level of replication.

    CAS  PubMed  Google Scholar 

  81. Moradpour, D. et al. Membrane association of the RNA-dependent RNA polymerase is essential for hepatitis C virus RNA replication. J. Virol. 78, 13278–13284 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Moradpour, D. et al. Membrane association of hepatitis C virus nonstructural proteins and identification of the membrane alteration that harbors the viral replication complex. Antiviral Res. 60, 103–109 (2003).

    CAS  PubMed  Google Scholar 

  83. El-Hage, N. & Luo, G. Replication of hepatitis C virus RNA occurs in a membrane-bound replication complex containing nonstructural viral proteins and RNA. J. Gen. Virol. 84, 2761–2769 (2003).

    CAS  PubMed  Google Scholar 

  84. Zhu, Q., Guo, J. T. & Seeger, C. Replication of hepatitis C virus subgenomes in nonhepatic epithelial and mouse hepatoma cells. J. Virol. 77, 9204–9210 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. De Francesco, R. & Migliaccio, G. Challenges and successes in developing new therapies for hepatitis C. Nature 436, 953–960 (2005).

    CAS  PubMed  Google Scholar 

  86. Chang, J. E. N. et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 1, 106–113 (2004).

    CAS  PubMed  Google Scholar 

  87. Krützfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    PubMed  Google Scholar 

  88. Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98 (2006). References 87 and 88 examine the effect of miR-122 inhibition on the level of transcripts in mouse liver. They showed that miR-122 has an important role in upregulation of genes involved in cholesterol biosynthesis and fatty-acid metabolism.

    CAS  PubMed  Google Scholar 

  89. Kapadia, S. B. & Chisari, F. V. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc. Natl Acad. Sci. USA 102, 2561–2566 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ye, J. et al. Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation. Proc. Natl Acad. Sci. USA 100, 15865–15870 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Clarke, P. A. & Mathews, M. B. Interactions between the double-stranded RNA binding motif and RNA: definition of the binding site for the interferon-induced protein kinase DAI (PKR) on adenovirus VA RNA. RNA 1, 7–20 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratory was supported by grants from the National Institutes of Health (USA), the Alberta Heritage Foundation for Medical Research (Canada) (to K.L.N.) and the Damon Runyon Cancer Research Foundation (USA) (to K.A.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sarnow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome

EBV

HCV

HHV3

HHV6

HHV7

HSV-1

KSHV

MHV68

Glossary

MicroRNA molecules

(miRNAs). Small RNAs produced by Drosha- andDicer-mediated cleavage of RNA-hairpin structures that are encoded in cellular and viral genomes.

Endoribonuclease III enzymes

A large family of endoribonucleases, including Drosha and Dicer, that cleave double-stranded RNAs leaving monophosphates at the 5′ terminus and hydroxyl groups at the 3′ terminus.

Argonaute family

A family of proteins that contain the domain PAZ (named after a domain that is present in the proteins Piwi, Argonaute and ZWILLE) and the domain PIWI (named after a domain in the protein Piwi). Mammals have four AGO-subfamily members (AGO1, AGO2, AGO3 and AGO4), each of which might be a component of an RNA-induced silencing complex. Only AGO2 has been shown to induce cleavage of target RNA.

Stage III latency

Three forms of latent infection — latency type I, type II and type III — have been described for B cells that are infected with Epstein–Barr virus. Latency types are characterized by the expression of specific sets of viral proteins.

Viral tumour antigens

Proteins that are encoded by viral genes and can cause cellular transformation. These proteins can, however, also be essential for replication of the viral genome.

2′-O-methyl-antisense oligonucleotides

Oligonucleotides that are synthesized to be complementary to a target microRNA and inhibit its activity.

Small interfering RNA molecules

(siRNAs). RNAs that are produced by Dicer-mediated cleavage of long double-stranded RNA that has been formed by base pairing between two independent transcripts.

Antagomirs

A new class of chemically modified, cholesterol-conjugated single-stranded RNA analogues that are complementary to microRNAs. The design of these molecules is an extension of the 2′-O-methyl-antisense-oligonucleotide concept, and their function is similar to that of 2′-O-methoxyethyl phosphorothioate-modified antisense oligonucleotides. These types of molecule can be used to silence specific microRNAs in vivo and could provide a way to silence microRNAs in individuals with particular diseases.

Hepatic steatosis

Lipid-droplet accumulation in liver cells. It can occur as a result of abnormal fatty-acid metabolism, and is associated with several diseases and conditions, including hepatitis C and obesity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarnow, P., Jopling, C., Norman, K. et al. MicroRNAs: expression, avoidance and subversion by vertebrate viruses. Nat Rev Microbiol 4, 651–659 (2006). https://doi.org/10.1038/nrmicro1473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1473

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing