Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The type III secretion injectisome

Key Points

  • The type III secretion injectisome is a nanomachine that delivers bacterial proteins into the cytosol of eukaryotic target cells. It is evolutionarily related to the flagellum, with which it shares structural and functional similarities.

  • It consists of a basal structure made of several rings spanning the inner and the outer membranes, connected by a central tube. A dodecameric ATPase forms a ring structure at the cytoplasmic side of this basal structure.

  • On top of the basal body is a short, stiff needle or a needle and a filament (animal pathogens) or a pilus (plant pathogens). This distal structure allows bacteria to reach the plasma membrane of the target cell.

  • The needle terminates with a specific tip structure. This structure functions as a scaffold for the formation of the translocation pore.

  • The length of the needle is controlled and adapted to match the length of various macromolecules at the surface of the bacterium and the host cell.

  • The export apparatus, localized in the basal structure, exports the protein subunits that form the external elements of the injectisome. When assembly is complete, the export apparatus changes its substrate specificity and is ready to export the pore formers and the effector proteins. Export of the proteins will only occur on contact with a target cell.

  • Contact to a eukaryotic cell membrane triggers export, by a complex mechanism that is not understood. In some cases, the presence of cholesterol in the target membrane is required. Delivery of proteins by the T3SS is a fast process.

  • The assembly and operation requires the presence of specific cytosolic chaperones dedicated either to effector proteins (class I), to the pore formers (class II) or to substructures subunits (class III). The common main function could be to hide polymerization or aggregation-prone domains in the bacterial cytosol.

Abstract

The type III secretion injectisome is a complex nanomachine that allows bacteria to deliver protein effectors across eukaryotic cellular membranes. In recent years, significant progress has been made in our understanding of its structure, assembly and mode of operation. The principal structural components of the injectisome, from the base located in the bacterial cytosol to the tip of the needle protruding from the cell surface, have been investigated in detail. The structures of several constituent proteins were solved at the atomic level and important insights into the assembly process have been gained. However, despite the ongoing concerted efforts of molecular and structural biologists, the role of many of the constituent components of this nanomachine remain unknown.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the flagellum and the injectisomes.
Figure 2: Structure of the injectisome.
Figure 3: Class I and class III chaperone structures.
Figure 4: LcrV forms a structure at the tip of the needle.
Figure 5: Hypothetical model of the function of the LcrV tip complex.
Figure 6: Control of the length of the needle and the hook.
Figure 7: The role of the needle structure.

Similar content being viewed by others

References

  1. Cornelis, G. R. & Wolf-Watz, H. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol. Microbiol. 23, 861–867 (1997).

    CAS  PubMed  Google Scholar 

  2. Galan, J. E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322–1328 (1999).

    CAS  PubMed  Google Scholar 

  3. Cornelis, G. R. & Van Gijsegem, F. Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 54, 735–774 (2000).

    CAS  PubMed  Google Scholar 

  4. Mota, L. J. & Cornelis, G. R. The bacterial injection kit: type III secretion systems. Ann. Med. 37, 234–249 (2005).

    CAS  PubMed  Google Scholar 

  5. Alfano, J. R. & Collmer, A. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42, 385–414 (2004).

    CAS  PubMed  Google Scholar 

  6. Grant, S. R., Fisher, E. J., Chang, J. H., Mole, B. M. & Dangl, J. L. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu. Rev. Microbiol. 5 June 2006 [epub ahead of print].

  7. Yip, C. K. & Strynadka, N. C. New structural insights into the bacterial type III secretion system. Trends Biochem. Sci. 31, 223–230 (2006).

    CAS  PubMed  Google Scholar 

  8. Van Gijsegem, F. et al. The hrp gene locus of Pseudomonas solanacearum, which controls the production of a type III secretion system, encodes eight proteins related to components of the bacterial flagellar biogenesis complex. Mol. Microbiol. 15, 1095–1114 (1995).

    CAS  PubMed  Google Scholar 

  9. Fields, K. A., Plano, G. V. & Straley, S. C. A low-Ca2+ response (LCR) secretion (ysc) locus lies within the lcrB region of the LCR plasmid in Yersinia pestis. J. Bacteriol. 176, 569–579 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Woestyn, S., Allaoui, A., Wattiau, P. & Cornelis, G. R. YscN, the putative energizer of the Yersinia Yop secretion machinery. J. Bacteriol. 176, 1561–1569 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Macnab, R. M. How bacteria assemble flagella. Annu. Rev. Microbiol. 57, 77–100 (2003).

    CAS  PubMed  Google Scholar 

  12. Young, G. M., Schmiel, D. H. & Miller, V. L. A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc. Natl Acad. Sci. USA 96, 6456–6461 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998).

    CAS  PubMed  Google Scholar 

  14. Gophna, U., Ron, E. Z. & Graur, D. Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312, 151–163 (2003).

    CAS  PubMed  Google Scholar 

  15. Pallen, M. J., Beatson, S. A. & Bailey, C. M. Bioinformatics, genomics and evolution of non-flagellar type III secretion systems: a Darwinian perspective. FEMS Microbiol. Rev. 29, 201–229 (2005).

    CAS  PubMed  Google Scholar 

  16. Troisfontaines, P. & Cornelis, G. R. Type III secretion: more systems than you think. Physiology (Bethesda) 20, 326–339 (2005).

    CAS  Google Scholar 

  17. Roy-Burman, A. et al. Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J. Infect. Dis. 183, 1767–1774 (2001).

    CAS  PubMed  Google Scholar 

  18. Burr, S. E., Wahli, T., Segner, H., Pugovkin, D. & Frey, J. Association of type III secretion genes with virulence of Aeromonas salmonicida subsp. salmonicida. Dis. Aquat. Organ. 57, 167–171 (2003).

    CAS  PubMed  Google Scholar 

  19. Zhou, D. & Galan, J. Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect. 3, 1293–1298 (2001).

    CAS  PubMed  Google Scholar 

  20. Waterman, S. R. & Holden, D. W. Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol. 5, 501–511 (2003).

    CAS  PubMed  Google Scholar 

  21. Sekiya, K. et al. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl Acad. Sci. USA 98, 11638–11643 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tamano, K. et al. Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J. 19, 3876–3887 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Blocker, A. et al. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147, 683–693. (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kimbrough, T. G. & Miller, S. I. Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc. Natl Acad. Sci. USA 97, 11008–11013 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Daniell, S. J. et al. The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell Microbiol. 3, 865–871 (2001).

    CAS  PubMed  Google Scholar 

  26. Ogino, T. et al. Assembly of the type III secretion apparatus of enteropathogenic Escherichia coli. J. Bacteriol. 188, 2801–2811 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Morita-Ishihara, T. et al. Shigella Spa33 is an essential C-ring component of type III secretion machinery. J. Biol. Chem. 281, 599–607 (2006).

    CAS  PubMed  Google Scholar 

  28. Blocker, A. et al. Structure and composition of the Shigella flexneri 'needle complex', a part of its type III secreton. Mol. Microbiol. 39, 652–663 (2001).

    CAS  PubMed  Google Scholar 

  29. Feldman, M. F., Muller, S., Wuest, E. & Cornelis, G. R. SycE allows secretion of YopE-DHFR hybrids by the Yersinia enterocolitica type III Ysc system. Mol. Microbiol. 46, 1183–1197 (2002).

    CAS  PubMed  Google Scholar 

  30. Marlovits, T. C. et al. Structural insights into the assembly of the type III secretion needle complex. Science 306, 1040–1042 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Young, H. S., Dang, H., Lai, Y., DeRosier, D. J. & Khan, S. Variable symmetry in Salmonella typhimurium flagellar motors. Biophys. J. 84, 571–577 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bogdanove, A. J. et al. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol. 20, 681–683 (1996).

    CAS  PubMed  Google Scholar 

  33. Kubori, T., Sukhan, A., Aizawa, S. I. & Galan, J. E. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl Acad. Sci. USA 97, 10225–10230 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Koster, M. et al. The outer membrane component, YscC, of the Yop secretion machinery of Yersinia enterocolitica forms a ring-shaped multimeric complex. Mol. Microbiol. 26, 789–797 (1997).

    CAS  PubMed  Google Scholar 

  35. Burghout, P. et al. Structure and electrophysiological properties of the YscC secretin from the type III secretion system of Yersinia enterocolitica J. Bacteriol. 186, 4645–4654 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chami, M. et al. Structural insights into the secretin PulD and its trypsin-resistant core. J. Biol. Chem. 280, 37732–37741 (2005).

    CAS  PubMed  Google Scholar 

  37. Collins, R. F. et al. Structure of the Neisseria meningitidis outer membrane PilQ secretin complex at 12 A resolution. J. Biol. Chem. 279, 39750–39756 (2004).

    CAS  PubMed  Google Scholar 

  38. Russel, M. Phage assembly: a paradigm for bacterial virulence factor export? Science 265, 612–614 (1994).

    CAS  PubMed  Google Scholar 

  39. Burghout, P. et al. Role of the pilot protein YscW in the biogenesis of the YscC secretin in Yersinia enterocolitica. J. Bacteriol. 186, 5366–5375 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Daefler, S. & Russel, M. The Salmonella typhimurium InvH protein is an outer membrane lipoprotein required for the proper localization of InvG. Mol. Microbiol. 28, 1367–1380 (1998).

    CAS  PubMed  Google Scholar 

  41. Crago, A. M. & Koronakis, V. Salmonella InvG forms a ring-like multimer that requires the InvH lipoprotein for outer membrane localization. Mol. Microbiol. 30, 47–56 (1998).

    CAS  PubMed  Google Scholar 

  42. Crepin, V. F. et al. Structural and functional studies of the enteropathogenic Escherichia coli type III needle complex protein EscJ. Mol. Microbiol. 55, 1658–1670 (2005).

    CAS  PubMed  Google Scholar 

  43. Yip, C. K. et al. Structural characterization of the molecular platform for type III secretion system assembly. Nature 435, 702–707 (2005).

    CAS  PubMed  Google Scholar 

  44. Sukhan, A., Kubori, T. & Galan, J. E. Synthesis and localization of the Salmonella SPI-1 type III secretion needle complex proteins PrgI and PrgJ. J. Bacteriol. 185, 3480–3483 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fadouloglou, V. E. et al. Structure of HrcQB-C, a conserved component of the bacterial type III secretion systems. Proc. Natl Acad. Sci. USA 101, 70–75 (2004).

    CAS  PubMed  Google Scholar 

  46. Gonzalez-Pedrajo, B., Fraser, G. M., Minamino, T. & Macnab, R. M. Molecular dissection of Salmonella FliH, a regulator of the ATPase FliI and the type III flagellar protein export pathway. Mol. Microbiol. 45, 967–982 (2002).

    CAS  PubMed  Google Scholar 

  47. Jackson, M. W. & Plano, G. V. Interactions between type III secretion apparatus components from Yersinia pestis detected using the yeast two-hybrid system. FEMS Microbiol. Lett. 186, 85–90 (2000).

    CAS  PubMed  Google Scholar 

  48. Blaylock, B., Riordan, K. E., Missiakas, D. M. & Schneewind, O. Characterization of the Yersinia enterocolitica type III secretion ATPase YscN and its regulator, YscL. J. Bacteriol. 188, 3525–3534 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jouihri, N. et al. MxiK and MxiN interact with the Spa47 ATPase and are required for transit of the needle components MxiH and MxiI, but not of Ipa proteins, through the type III secretion apparatus of Shigella flexneri. Mol. Microbiol. 49, 755–767 (2003).

    CAS  PubMed  Google Scholar 

  50. Minamino, T. & MacNab, R. M. Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol. Microbiol. 35, 1052–1064 (2000).

    CAS  PubMed  Google Scholar 

  51. Pozidis, C. et al. Type III protein translocase: HrcN is a peripheral ATPase that is activated by oligomerization. J. Biol. Chem. 278, 25816–25824 (2003).

    CAS  PubMed  Google Scholar 

  52. Muller, S. A. et al. Double hexameric ring assembly of the type III protein translocase ATPase HrcN. Mol. Microbiol. 61, 119–125 (2006).

    CAS  PubMed  Google Scholar 

  53. Claret, L., Calder, S. R., Higgins, M. & Hughes, C. Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly. Mol. Microbiol. 48, 1349–1355 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Akeda, Y. & Galan, J. E. Chaperone release and unfolding of substrates in type III secretion. Nature 437, 911–915 (2005).

    CAS  PubMed  Google Scholar 

  55. Hoiczyk, E. & Blobel, G. Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc. Natl Acad. Sci. USA 98, 4669–4674 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cordes, F. S. et al. Helical structure of the needle of the type III secretion system of Shigella flexneri. J Biol Chem 278, 17103–7 (2003).

    CAS  PubMed  Google Scholar 

  57. Deane, J. E. et al. Molecular model of a type III secretion system needle: implications for host-cell sensing. Proc. Natl Acad. Sci. USA (2006).

  58. Yonekura, K., Maki-Yonekura, S. & Namba, K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643–650 (2003).

    CAS  PubMed  Google Scholar 

  59. Mueller, C. A. et al. The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science 310, 674–676 (2005).

    CAS  PubMed  Google Scholar 

  60. Derewenda, U. et al. The structure of Yersinia pestis V-antigen, an essential virulence factor and mediator of immunity against plague. Structure (Camb) 12, 301–306 (2004).

    CAS  Google Scholar 

  61. Jin, Q. & He, S. Y. Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae. Science 294, 2556–2558 (2001).

    CAS  PubMed  Google Scholar 

  62. Hakansson, S., Galyov, E. E., Rosqvist, R. & Wolf-Watz, H. The Yersinia YpkA Ser/Thr kinase is translocated and subsequently targeted to the inner surface of the HeLa cell plasma membrane. Mol. Microbiol. 20, 593–603. (1996).

    CAS  PubMed  Google Scholar 

  63. Neyt, C. & Cornelis, G. R. Insertion of a Yop translocation pore into the macrophage plasma membrane by Yersinia enterocolitica: requirement for translocators YopB and YopD, but not LcrG. Mol. Microbiol. 33, 971–981 (1999).

    CAS  PubMed  Google Scholar 

  64. Rosqvist, R., Magnusson, K. E. & Wolf-Watz, H. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 13, 964–972 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sory, M. P. & Cornelis, G. R. Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol. Microbiol. 14, 583–594 (1994).

    CAS  PubMed  Google Scholar 

  66. Pettersson, J. et al. The V-antigen of Yersinia is surface exposed before target cell contact and involved in virulence protein translocation. Mol. Microbiol. 32, 961–976 (1999).

    CAS  PubMed  Google Scholar 

  67. Boland, A. et al. Status of YopM and YopN in the Yersinia Yop virulon: YopM of Y. enterocolitica is internalized inside the cytosol of PU5–1. 8 macrophages by the YopB, D, N delivery apparatus. EMBO J. 15, 5191–5201 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sarker, M. R., Neyt, C., Stainier, I. & Cornelis, G. R. The Yersinia Yop virulon: LcrV is required for extrusion of the translocators YopB and YopD. J. Bacteriol. 180, 1207–1214 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Menard, R., Sansonetti, P., Parsot, C. & Vasselon, T. Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri. Cell 79, 515–525 (1994).

    CAS  PubMed  Google Scholar 

  70. Harrington, A. et al. Characterization of the interaction of single tryptophan containing mutants of IpaC from Shigella flexneri with phospholipid membranes. Biochemistry 45, 626–636 (2006).

    CAS  PubMed  Google Scholar 

  71. Hume, P. J., McGhie, E. J., Hayward, R. D. & Koronakis, V. The purified Shigella IpaB and Salmonella SipB translocators share biochemical properties and membrane topology. Mol. Microbiol. 49, 425–439 (2003).

    CAS  PubMed  Google Scholar 

  72. Schoehn, G. et al. Oligomerization of type III secretion proteins PopB and PopD precedes pore formation in Pseudomonas. EMBO J. 22, 4957–4967 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Faudry, E., Vernier, G., Neumann, E., Forge, V. & Attree, I. Synergistic pore formation by type III toxin translocators of Pseudomonas aeruginosa. Biochemistry 45, 8117–8123 (2006).

    CAS  PubMed  Google Scholar 

  74. Fields, K. A., Nilles, M. L., Cowan, C. & Straley, S. C. Virulence role of V antigen of Yersinia pestis at the bacterial surface. Infect. Immun. 67, 5395–5408 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Marenne, M. N., Journet, L., Mota, L. J. & Cornelis, G. R. Genetic analysis of the formation of the Ysc-Yop translocation pore in macrophages by Yersinia enterocolitica: role of LcrV, yscF and YopN. Microb. Pathogen. 35, 243–258 (2003).

    CAS  Google Scholar 

  76. Hakansson, S. et al. The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J. 15, 5812–5823. (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Goure, J. et al. The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes. Infect. Immun. 72, 4741–4750 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Goure, J., Broz, P., Attree, O., Cornelis, G. R. & Attree, I. Protective anti-V antibodies inhibit Pseudomonas and Yersinia translocon assembly within host membranes. J. Infect. Dis. 192, 218–225 (2005).

    CAS  PubMed  Google Scholar 

  79. Picking, W. L. et al. IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes. Infect. Immun. 73, 1432–1440 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Espina, M. et al. IpaD localizes to the tip of the type III secretion system needle of Shigella flexneri. Infect. Immun. 74, 4391–4400 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Warawa, J., Finlay, B. B. & Kenny, B. Type III secretion-dependent hemolytic activity of enteropathogenic Escherichia coli. Infect. Immun. 67, 5538–5540 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yonekura, K. et al. The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. Science 290, 2148–2152 (2000).

    CAS  PubMed  Google Scholar 

  83. Li, C. M. et al. The Hrp pilus of Pseudomonas syringae elongates from its tip and acts as a conduit for translocation of the effector protein HrpZ. EMBO J. 21, 1909–1915 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Crepin, V. F., Shaw, R., Abe, C. M., Knutton, S. & Frankel, G. Polarity of enteropathogenic Escherichia coli EspA filament assembly and protein secretion. J. Bacteriol. 187, 2881–2889 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Marlovits, T. C. et al. Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441, 637–640 (2006).

    CAS  PubMed  Google Scholar 

  86. Ikeda, T., Asakura, S. & Kamiya, R. 'Cap' on the tip of Salmonella flagella. J. Mol. Biol. 184, 735–737 (1985).

    CAS  PubMed  Google Scholar 

  87. Quinaud, M. et al. The PscE-PscF-PscG complex controls type III secretion needle biogenesis in Pseudomonas aeruginosa. J. Biol. Chem. 280, 36293–36300 (2005).

    CAS  PubMed  Google Scholar 

  88. Journet, L., Agrain, C., Broz, P. & Cornelis, G. R. The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302, 1757–1760 (2003).

    CAS  PubMed  Google Scholar 

  89. Williams, A. W. et al. Mutations in fliK and flhB affecting flagellar hook and filament assembly in Salmonella typhimurium. J. Bacteriol. 178, 2960–2970 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Magdalena, J. et al. Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri from needle components to Ipa proteins. J. Bacteriol. 184, 3433–3441 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Makishima, S., Komoriya, K., Yamaguchi, S. & Aizawa, S. I. Length of the flagellar hook and the capacity of the type III export apparatus. Science 291, 2411–2413 (2001).

    CAS  PubMed  Google Scholar 

  92. Agrain, C. et al. Characterization of a type III secretion substrate specificity switch (T3S4) domain in YscP from Yersinia enterocolitica. Mol. Microbiol. 56, 54–67 (2005).

    CAS  PubMed  Google Scholar 

  93. Agrain, C., Sorg, I., Paroz, C. & Cornelis, G. R. Secretion of YscP from Yersinia enterocolitica is essential to control the length of the injectisome needle but not to change the type III secretion substrate specificity. Mol. Microbiol. 57, 1415–1427 (2005).

    CAS  PubMed  Google Scholar 

  94. Creighton, T. E. Proteins: structures and molecular properties 2nd edn (W. H. Freeman, New York, 1992).

    Google Scholar 

  95. Kutsukake, K., Minamino, T. & Yokoseki, T. Isolation and characterization of FliK-independent flagellation mutants from Salmonella typhimurium. J. Bacteriol. 176, 7625–7629 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hirano, T., Yamaguchi, S., Oosawa, K. & Aizawa, S. Roles of FliK and FlhB in determination of flagellar hook length in Salmonella typhimurium. J. Bacteriol. 176, 5439–5449 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Edqvist, P. J. et al. YscP and YscU regulate substrate specificity of the Yersinia type III secretion system. J. Bacteriol. 185, 2259–2266 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Minamino, T. et al. Domain organization and function of Salmonella FliK, a flagellar hook-length control protein. J. Mol. Biol. 341, 491–502 (2004).

    CAS  PubMed  Google Scholar 

  99. Minamino, T. & Macnab, R. M. Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching. J. Bacteriol. 182, 4906–4914 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Moriya, N., Minamino, T., Hughes, K. T., Macnab, R. M. & Namba, K. The type III flagellar export specificity switch is dependent on FliK ruler and a molecular clock. J. Mol. Biol. 359, 466–477 (2006).

    CAS  PubMed  Google Scholar 

  101. Tamano, K., Katayama, E., Toyotome, T. & Sasakawa, C. Shigella Spa32 is an essential secretory protein for functional type III secretion machinery and uniformity of its needle length. J. Bacteriol. 184, 1244–1252 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Chakravortty, D., Rohde, M., Jager, L., Deiwick, J. & Hensel, M. Formation of a novel surface structure encoded by Salmonella pathogenicity island 2. EMBO J. 24, 2043–2052 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mota, L. J., Journet, L., Sorg, I., Agrain, C. & Cornelis, G. R. Bacterial injectisomes: needle length does matter. Science 307, 1278 (2005).

    PubMed  Google Scholar 

  104. West, N. P. et al. Optimization of virulence functions through glucosylation of Shigella LPS. Science 307, 1313–1317 (2005).

    CAS  PubMed  Google Scholar 

  105. Pettersson, J. et al. Modulation of virulence factor expression by pathogen target cell contact. Science 273, 1231–1233 (1996).

    CAS  PubMed  Google Scholar 

  106. Forsberg, A., Viitanen, A. M., Skurnik, M. & Wolf-Watz, H. The surface-located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis. Mol. Microbiol. 5, 977–986 (1991).

    CAS  PubMed  Google Scholar 

  107. Day, J. B. & Plano, G. V. A complex composed of SycN and YscB functions as a specific chaperone for YopN in Yersinia pestis. Mol. Microbiol. 30, 777–788 (1998).

    CAS  PubMed  Google Scholar 

  108. Iriarte, M. & Cornelis, G. R. YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol. 29, 915–929 (1998).

    CAS  PubMed  Google Scholar 

  109. Skryzpek, E. & Straley, S. C. LcrG, a secreted protein involved in negative regulation of the low-calcium response in Yersinia pestis. J. Bacteriol. 175, 3520–3528 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Schubot, F. D. et al. Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. J. Mol. Biol. 346, 1147–1161 (2005).

    CAS  PubMed  Google Scholar 

  111. Nilles, M. L., Williams, A. W., Skrzypek, E. & Straley, S. C. Yersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low-Ca2+ response. J. Bacteriol. 179, 1307–1316 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. van der Goot, F. G., Tran van Nhieu, G., Allaoui, A., Sansonetti, P. & Lafont, F. Rafts can trigger contact-mediated secretion of bacterial effectors via a lipid-based mechanism. J. Biol. Chem. 279, 47792–47798 (2004).

    CAS  PubMed  Google Scholar 

  113. Hayward, R. D. et al. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol. Microbiol. 56, 590–603 (2005).

    CAS  PubMed  Google Scholar 

  114. Kenjale, R. et al. The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J. Biol. Chem. 280, 42929–42937 (2005).

    CAS  PubMed  Google Scholar 

  115. Andersson, K. et al. YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Mol. Microbiol. 20, 1057–10569 (1996).

    CAS  PubMed  Google Scholar 

  116. Schlumberger, M. C. et al. Real-time imaging of type III secretion: Salmonella SipA injection into host cells. Proc. Natl Acad. Sci. USA 102, 12548–12553 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Enninga, J., Mounier, J., Sansonetti, P. & Tran Van Nhieu, G. Secretion of type III effectors into host cells in real time. Nature Methods 2, 959–965 (2005).

    CAS  PubMed  Google Scholar 

  118. Cornelis, G. R., Agrain, C. & Sorg, I. Length control of extended protein structures in bacteria and bacteriophages. Curr. Opin. Microbiol. 9, 201–206 (2006).

    CAS  PubMed  Google Scholar 

  119. Evdokimov, A. G. et al. Similar modes of polypeptide recognition by export chaperones in flagellar biosynthesis and type III secretion. Nature Struct. Biol. 10, 789–793 (2003).

    CAS  PubMed  Google Scholar 

  120. Birtalan, S. & Ghosh, P. Structure of the Yersinia type III secretory system chaperone SycE. Nature Struct. Biol. 8, 974–978 (2001).

    CAS  PubMed  Google Scholar 

  121. Birtalan, S. C., Phillips, R. M. & Ghosh, P. Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens. Mol. Cell. 9, 971–980 (2002).

    CAS  PubMed  Google Scholar 

  122. Stebbins, C. E. & Galan, J. E. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414, 77–81 (2001).

    CAS  PubMed  Google Scholar 

  123. Fraser, G. M., Bennett, J. C. & Hughes, C. Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol. Microbiol. 32, 569–580 (1999).

    CAS  PubMed  Google Scholar 

  124. Auvray, F., Thomas, J., Fraser, G. M. & Hughes, C. Flagellin polymerisation control by a cytosolic export chaperone. J. Mol. Biol. 308, 221–229 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Bennett, J. C. & Hughes, C. From flagellum assembly to virulence: the extended family of type III export chaperones. Trends Microbiol. 8, 202–204 (2000).

    CAS  PubMed  Google Scholar 

  126. Neyt, C. & Cornelis, G. R. Role of SycD, the chaperone of the Yersinia Yop translocators YopB and YopD. Mol. Microbiol. 31, 143–156 (1999).

    CAS  PubMed  Google Scholar 

  127. Wattiau, P., Bernier, B., Deslee, P., Michiels, T. & Cornelis, G. R. Individual chaperones required for Yop secretion by Yersinia. Proc. Natl Acad. Sci. USA 91, 10493–10497 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Darwin, K. H. & Miller, V. L. Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in Salmonella typhimurium. EMBO J. 20, 1850–1862 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Page, A. L. & Parsot, C. Chaperones of the type III secretion pathway: jacks of all trades. Mol. Microbiol. 46, 1–11 (2002).

    CAS  PubMed  Google Scholar 

  130. Feldman, M. F. & Cornelis, G. R. The multitalented type III chaperones: all you can do with 15 kDa. FEMS Microbiol. Lett. 219, 151–158 (2003).

    CAS  PubMed  Google Scholar 

  131. Ghosh, P. Process of protein transport by the type III secretion system. Microbiol. Mol. Biol. Rev. 68, 771–795 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Parsot, C., Hamiaux, C. & Page, A. L. The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol. 6, 7–14 (2003).

    CAS  PubMed  Google Scholar 

  133. Wattiau, P. & Cornelis, G. R. SycE, a chaperone-like protein of Yersinia enterocolitica involved in the secretion of YopE. Mol. Microbiol. 8, 123–131 (1993).

    CAS  PubMed  Google Scholar 

  134. Luo, Y. et al. Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nature Struct. Biol. 8, 1031–1036 (2001).

    CAS  PubMed  Google Scholar 

  135. Evdokimov, A. G., Tropea, J. E., Routzahn, K. M. & Waugh, D. S. Three-dimensional structure of the type III secretion chaperone SycE from Yersinia pestis. Acta Crystallogr. D Biol. Crystallogr. 58, 398–406 (2002).

    PubMed  Google Scholar 

  136. Locher, M. et al. Crystal Structure of the Yersinia enterocolitica type III secretion chaperone SycT. J. Biol. Chem. 280, 31149–31155 (2005).

    CAS  PubMed  Google Scholar 

  137. Trame, C. B. & McKay, D. B. Structure of the Yersinia enterocolitica molecular-chaperone protein SycE. Acta Crystallogr. D Biol. Crystallogr. 59, 389–392 (2003).

    PubMed  Google Scholar 

  138. Phan, J., Tropea, J. E. & Waugh, D. S. Structure of the Yersinia pestis type III secretion chaperone SycH in complex with a stable fragment of YscM2. Acta Crystallogr. D Biol. Crystallogr. 60, 1591–1599 (2004).

    PubMed  Google Scholar 

  139. van Eerde, A., Hamiaux, C., Perez, J., Parsot, C. & Dijkstra, B. W. Structure of Spa15, a type III secretion chaperone from Shigella flexneri with broad specificity. EMBO Rep. 5, 477–483 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Buttner, C. R., Cornelis, G. R., Heinz, D. W. & Niemann, H. H. Crystal structure of Yersinia enterocolitica type III secretion chaperone SycT. Protein Sci. 14, 1993–2002 (2005).

    PubMed  PubMed Central  Google Scholar 

  141. Boyd, A. P., Lambermont, I. & Cornelis, G. R. Competition between the Yops of Yersinia enterocolitica for delivery into eukaryotic cells: role of the SycE chaperone binding domain of YopE. J. Bacteriol. 182, 4811–4821 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Page, A. L., Sansonetti, P. & Parsot, C. Spa15 of Shigella flexneri, a third type of chaperone in the type III secretion pathway. Mol. Microbiol. 43, 1533–1542 (2002).

    CAS  PubMed  Google Scholar 

  143. Letzelter, M. et al. The discovery of SycO highlights a new function for type III secretion effector chaperones. EMBO J. 25, 3223–3233 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Swietnicki, W. et al. Novel protein-protein interactions of the Yersinia pestis type III secretion system elucidated with a matrix analysis by surface plasmon resonance and mass spectrometry. J. Biol. Chem. 279, 38693–38700 (2004).

    CAS  PubMed  Google Scholar 

  145. Krall, R., Zhang, Y. & Barbieri, J. T. Intracellular membrane localization of pseudomonas ExoS and Yersinia YopE in mammalian cells. J. Biol. Chem. 279, 2747–2753 (2004).

    CAS  PubMed  Google Scholar 

  146. Ehrbar, K., Hapfelmeier, S., Stecher, B. & Hardt, W. D. InvB is required for type III-dependent secretion of SopA in Salmonella enterica serovar Typhimurium. J. Bacteriol. 186, 1215–1219 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Creasey, E. A. et al. CesT is a bivalent enteropathogenic Escherichia coli chaperone required for translocation of both Tir and Map. Mol. Microbiol. 47, 209–221 (2003).

    CAS  PubMed  Google Scholar 

  148. Lee, S. H. & Galan, J. E. Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol. Microbiol. 51, 483–495 (2004).

    CAS  PubMed  Google Scholar 

  149. Wulff-Strobel, C. R., Williams, A. W. & Straley, S. C. LcrQ and SycH function together at the Ysc type III secretion system in Yersinia pestis to impose a hierarchy of secretion. Mol. Microbiol. 43, 411–423 (2002).

    CAS  PubMed  Google Scholar 

  150. Parsot, C. et al. A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri. Mol. Microbiol. 56, 1627–1635 (2005).

    CAS  PubMed  Google Scholar 

  151. Hanson, P. I. & Whiteheart, S. W. AAA+ proteins: have engine, will work. Nature Rev. Mol. Cell Biol. 6, 519–529 (2005).

    CAS  Google Scholar 

  152. Yip, C.K., Finlay, B.B. & Strynadka, N.C. Structural characterization of a type III secretion system filament protein in complex with its chaperone. Nature Struct. Mol. Biol. 12, 75–81 (2005).

    CAS  Google Scholar 

  153. Kauppi, A. M., Nordfelth, R., Uvell, H., Wolf-Watz, H. & Elofsson, M. Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem. Biol. 10, 241–249 (2003).

    CAS  PubMed  Google Scholar 

  154. Wolf, K. et al. Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle. Mol. Microbiol. 61, 1543–1555 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Muschiol, S. et al. A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. Proc. Natl Acad. Sci. USA 103, 14566–14571 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review does not claim to be comprehensive. For the sake of coherence, the Yersinia Ysc archetype was taken as a unifying thread, which means that there is a bias in favour of work on this organism. I apologize to colleagues whose work could not be cited for these two reasons. I sincerely thank P. Broz and M. Letzelter for help in the conception of the illustrations and for challenging discussions. I am grateful to P. Broz, M. Letzelter and I. Sorg for discussions, information and critical assessment of the manuscript. I also thank J. Galan for exchange of information. Work in my laboratory is supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Aeromonas salmonicida

Escherichia coli

Pseudomonas aeruginosa

Pseudomonas syringae

S. typhimurium

Shigella flexneri

Yersinia enterocolitica

Yersinia pseudotuberculosis

FURTHER INFORMATION

Guy R. Cornelis's homepage

Glossary

Injectisome

The injectisome is a nanomachine that evolved for the delivery of bacterial proteins, by type III secretion, across eukaryotic cell membranes. In the present stage of knowledge, it consists of a basal structure, which resembles the basal structure of the flagellum, surmounted by either a needle, a needle and a filament or a long pilus.

Flagellum

The flagellum is a motility organelle consisting of a rotating long filament connected to a rotary motor by a short curved structure called the hook. The motor is powered by the flow of ions down an electrochemical gradient across the cytoplasmic membrane into the cell. The ions are typically H+ (protons) in Escherichia coli and enterobacteria and Na+ in alkalophiles and marine Vibrio species.

Needle complex

The needle complex is the part of the injectisome that was characterized in great detail by cryo-EM28,30,85. This structure contains neither the ATPase nor the putative C ring.

Basal structure

Here, the basal structure is defined as the injectisome without its needle, filament or pilus.

Type II secretion apparatus

The type II secretion apparatus is a complex nanomachine that translocates proteins across the outer membrane. This machine involves a secretin in the outer membrane and a dynamic short pilus that functions as a piston.

Type IV pili

Type IV pili are retractable pili involved in adherence and motility and found on diverse bacteria. They are related to the piston of the type II secretion apparatus.

Lipoprotein

A Lipoprotein (LP) is a protein that is synthesized with a signal peptide followed by a cysteine onto which a diacylglycerol is covalently attached by a thioether bond during export. LPs insert either in the plasma membrane or in the outer membrane.

AAA+

(ATPases associated with various cellular activities) The AAA+ family is a large and functionally diverse group of enzymes that can induce conformational changes in a wide range of substrate proteins. The defining feature of the family is a structurally conserved ATPase domain that assembles into oligomeric rings and undergoes conformational changes during cycles of nucleotide binding and hydrolysis. AAA+ are associated with several ATP-dependent bacterial proteases, including ClpXP and ClpAP. They unfold proteins and translocate the unfolded polypeptide into the proteolytic chamber for degradation. See Ref. 152 for a review.

General secretory pathway

(Sec pathway) The General Secretory pathway is the most essential bacterial export pathway. It is involved in the assembly of inner membrane proteins and it translocates many proteins across the plasma membrane. The Sec machine recognizes its substrates by an amino-terminal signal peptide that is cleaved off during translocation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornelis, G. The type III secretion injectisome. Nat Rev Microbiol 4, 811–825 (2006). https://doi.org/10.1038/nrmicro1526

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1526

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing