Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A fatty-acid synthesis mechanism specialized for parasitism

Key Points

  • Trypanosoma brucei, T. cruzi and Leishmania spp. parasites are early branching eukaryotes that cause disease mainly in tropical countries. T. brucei synthesizes fatty acids (FAs) de novo. While bloodstream forms make myristate (C14) for glycosylphosphatidylinositol (GPI) anchors of their variant surface glycoprotein (which mediate antigenic variation), procyclic forms make mainly stearate (C18).

  • Rather than a conventional type I or II FA synthase, T. brucei uses a coenzyme A (CoA)-dependent microsomal FA elongase (ELO) pathway for most of its de novo synthesis. In other eukaryotes, the ELO pathway simply lengthens already long fatty acyl-CoAs. The T. brucei mitochondrial type II synthase is more specialized and makes octanoate (C8), a lipoic-acid precursor, as well as longer FAs up to C16.

  • While TbELO1–3 elongate C4 primer to C18, TbELO4 functions as a polyunsaturated FA ELO that lengthens arachidonate (C20:4) salvaged from the host. In addition to TbELO1–4 orthologues, L. major has desaturases and an extra polyunsaturated FA (PUFA) ELO needed to synthesize C22:5n-6 and C22:6n-3 from C18. By contrast, the two trypanosomes seem to have lost the portion of their PUFA pathway that converts 18:2n-6 to 20:4n-6 and 20:5n-3.

  • T. cruzi and Leishmania spp. have additional TbELO1–3 homologues that are probably involved in synthesis of the very-long-chain saturated acyl and alkyl groups that are found on surface GPI anchors and glycoconjugates. These GPIs, depending on the fatty chain length and degree of saturation, are involved in immunity and inflammation in different life-cycle stages. The selective regulation of the various ELOs could explain how these parasites produce the various FAs needed during different life-cycle stages, as happens in T. brucei.

  • Other eukaryotic parasitic protozoans such as the mucosal parasites and apicomplexans use mechanisms apparently dissimilar to those in trypanosomatids to make or acquire their bulk FAs.

  • Trypanosomatid mitochondrial type II and ELO pathways are apparently essential for parasite survival and could serve as potential drug targets.

  • The ELO pathway seems to have evolved to accommodate the complex and parasitic life-style of the trypanosomatids, allowing it to produce the different FAs that are needed as it migrates between different compartments in the vector and host.

Abstract

Most cells use either a type I or type II synthase to make fatty acids. Trypanosoma brucei, the sleeping sickness parasite, provides the first example of a third mechanism for this process. Trypanosomes use microsomal elongases to synthesize fatty acids de novo, whereas other cells use elongases to make long-chain fatty acids even longer. The modular nature of the pathway allows synthesis of different fatty-acid end products, which have important roles in trypanosome biology. Indeed, this newly discovered mechanism seems ideally suited for the parasitic lifestyle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trypanosoma brucei organelles and fatty-acid-related pathways.
Figure 2: Life cycle of Trypanosoma brucei.
Figure 3: Enzymology of the elongase (ELO) pathway.
Figure 4: Phylogenetic tree of trypanosomatid, apicomplexan and yeast elongases (ELOs).

Similar content being viewed by others

References

  1. Opperdoes, F. R. Compartmentation of carbohydrate metabolism in trypanosomes. Annu. Rev. Microbiol. 41, 127–151 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, S. H., Stephens, J. L., Paul, K. S. & Englund, P. T. Fatty acid synthesis by elongases in trypanosomes. Cell 126, 691–699 (2006). Reported biochemical evidence for de novo synthesis of FAs by the ELO pathway in T. brucei.

    Article  CAS  PubMed  Google Scholar 

  3. Paul, K. S., Jiang, D., Morita, Y. S. & Englund, P. T. Fatty acid synthesis in African trypanosomes: a solution to the myristate mystery. Trends Parasitol. 17, 381–387 (2001). Summarizes the importance of myristate to T. brucei biology and reviews FA synthesis and other aspects of lipid metabolism.

    Article  CAS  PubMed  Google Scholar 

  4. van Hellemond, J. J. & Tielens, A. G. Adaptations in the lipid metabolism of the protozoan parasite Trypanosoma brucei. FEBS Lett. 580, 5552–5558 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Grab, D. J. et al. African trypanosome interactions with an in vitro model of the human blood–brain barrier. J. Parasitol. 90, 970–979 (2004).

    Article  PubMed  Google Scholar 

  6. Besteiro, S., Barrett, M. P., Riviere, L. & Bringaud, F. Energy generation in insect stages of Trypanosoma brucei: metabolism in flux. Trends Parasitol. 21, 185–191 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Dixon, H., Ginger, C. D. & Williamson, J. The lipid metabolism of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense. Comp. Biochem. Physiol. B 39, 247–266 (1971).

    Article  CAS  PubMed  Google Scholar 

  8. Mellors, A. & Samad, A. The acquisition of lipids by African trypanosomes. Parasitol. Today 5, 239–244 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Voorheis, H. P. Fatty acid uptake by bloodstream forms of Trypanosoma brucei and other species of the kinetoplastida. Mol. Biochem. Parasitol. 1, 177–186 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Dixon, H. & Williamson, J. The lipid composition of blood and culture forms of Trypanosoma lewisi and Trypanosoma rhodesiense compared with that of their environment. Comp. Biochem. Physiol. 33, 111–128 (1970).

    Article  CAS  PubMed  Google Scholar 

  11. Coppens, I., Baudhuin, P., Opperdoes, F. R. & Courtoy, P. J. Receptors for the host low density lipoproteins on the hemoflagellate Trypanosoma brucei: purification and involvement in the growth of the parasite. Proc. Natl Acad. Sci. USA 85, 6753–6757 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coppens, I., Opperdoes, F. R., Courtoy, P. J. & Baudhuin, P. Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei. J. Protozool. 34, 465–473 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Green, H. P., Del Pilar Molina Portela, M., St Jean, E. N., Lugli, E. B. & Raper, J. Evidence for a Trypanosoma brucei lipoprotein scavenger receptor. J. Biol. Chem. 278, 422–427 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Coppens, I., Levade, T. & Courtoy, P. J. Host plasma low density lipoprotein particles as an essential source of lipids for the bloodstream forms of Trypanosoma brucei. J. Biol. Chem. 270, 5736–5741 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Gilbert, R. J., Klein, R. A. & Miller, P. G. The role of threonine in the metabolism of acetyl coenzyme A by T rypanosoma brucei brucei. Comp. Biochem. Physiol. B 74, 277–281 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Donelson, J. E. Antigenic variation and the African trypanosome genome. Acta Trop. 85, 391–404 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson, M. A. & Cross, G. A. Myristylation of the membrane form of a Trypanosoma brucei variant surface glycoprotein. J. Biol. Chem. 259, 3011–3015 (1984).

    CAS  PubMed  Google Scholar 

  18. Morita, Y. S., Paul, K. S. & Englund, P. T. Specialized fatty acid synthesis in African trypanosomes: myristate for GPI anchors. Science 288, 140–143 (2000). The first report of FA synthesis by BSF T. brucei that also describes the different end products of synthesis by BSFs and PCFs.

    Article  CAS  PubMed  Google Scholar 

  19. Cross, G. A., Klein, R. A. & Linstead, D. J. Utilization of amino acids by Trypanosoma brucei in culture: L-threonine as a precursor for acetate. Parasitology 71, 311–326 (1975).

    Article  CAS  PubMed  Google Scholar 

  20. Smith, S. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J. 8, 1248–1259 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Rock, C. O. & Jackowski, S. Forty years of bacterial fatty acid synthesis. Biochem. Biophys. Res. Commun. 292, 1155–1166 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Toke, D. A. & Martin, C. E. Isolation and characterization of a gene affecting fatty acid elongation in Saccharomyces cerevisiae. J. Biol. Chem. 271, 18413–18422 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Kohlwein, S. D. et al. Tsc13p is required for fatty acid elongation and localizes to a novel structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 109–125 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oh, C. S., Toke, D. A., Mandala, S. & Martin, C. E. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J. Biol. Chem. 272, 17376–17384 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Han, G. et al. The Saccharomyces cerevisiae YBR159W gene encodes the 3-ketoreductase of the microsomal fatty acid elongase. J. Biol. Chem. 277, 35440–35449 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Jakobsson, A., Westerberg, R. & Jacobsson, A. Fatty acid elongases in mammals: their regulation and roles in metabolism. Prog. Lipid Res. 45, 237–249 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Leonard, A. E., Pereira, S. L., Sprecher, H. & Huang, Y. S. Elongation of long-chain fatty acids. Prog. Lipid Res. 43, 36–54 (2004). Reviews the different types of FA elongation, including that of PUFAs.

    Article  CAS  PubMed  Google Scholar 

  28. Zank, T. K. et al. Cloning and functional characterisation of an enzyme involved in the elongation of δ6-polyunsaturated fatty acids from the moss Physcomitrella patens. Plant J. 31, 255–268 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Paul, S. et al. Members of the Arabidopsis FAE1-like 3-ketoacyl-CoA synthase gene family substitute for the Elop proteins of Saccharomyces cerevisiae. J. Biol. Chem. 281, 9018–9029 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Steiger, R. F. & Steiger, E. Cultivation of Leishmania donovani and Leishmania braziliensis in defined media: nutritional requirements. J. Protozool. 24, 437–441 (1977).

    Article  CAS  PubMed  Google Scholar 

  31. Petrini, G. A., Altabe, S. G. & Uttaro, A. D. Trypanosoma brucei oleate desaturase may use a cytochrome b5-like domain in another desaturase as an electron donor. Eur. J. Biochem. 271, 1079–1086 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Tripodi, K. E., Buttigliero, L. V., Altabe, S. G. & Uttaro, A. D. Functional characterization of front-end desaturases from trypanosomatids depicts the first polyunsaturated fatty acid biosynthetic pathway from a parasitic protozoan. FEBS J. 273, 271–280 (2006). Reports the specificities of L. major, T. cruzi and T. brucei PUFA desaturases and predicts the pathways present in trypanosomatids.

    Article  CAS  PubMed  Google Scholar 

  33. Patnaik, P. K. et al. Molecular species analysis of phospholipids from Trypanosoma brucei bloodstream and procyclic forms. Mol. Biochem. Parasitol. 58, 97–105 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Oliveira, M. M., Timm, S. L. & Costa, S. C. Lipid composition of Trypanosoma cruzi. Comp. Biochem. Physiol. B 58, 195–199 (1977).

    Article  CAS  PubMed  Google Scholar 

  35. Venkatesan, S. & Ormerod, W. E. Lipid content of the slender and stumpy forms of Trypanosoma brucei rhodesiense: a comparative study. Comp. Biochem. Physiol. B 53, 481–487 (1976).

    Article  CAS  PubMed  Google Scholar 

  36. Livore, V. I., Tripodi, K. E. & Uttaro, A. D. Elongation of polyunsaturated fatty acids in trypanosomatids. FEBS J. 274, 264–274 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Doering, T. L., Pessin, M. S., Hart, G. W., Raben, D. M. & Englund, P. T. The fatty acids in unremodelled trypanosome glycosyl-phosphatidylinositols. Biochem.J. 299, 741–746 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferguson, M. A. The surface glycoconjugates of trypanosomatid parasites. Philos. Trans. R. Soc. Lond. B. 352, 1295–1302 (1997). Reviews the structures of abundant trypanosomatid cell-surface GPI anchors and glycoconjugates.

    Article  CAS  Google Scholar 

  39. Opperdoes, F. R. Localization of the initial steps in alkoxyphospholipid biosynthesis in glycosomes (microbodies) of Trypanosoma brucei. FEBS Lett. 169, 35–39 (1984).

    Article  CAS  PubMed  Google Scholar 

  40. Opperdoes, F. R. & Szikora, J. P. In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes. Mol. Biochem. Parasitol. 147, 193–206 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Zomer, A. W., Opperdoes, F. R. & van den Bosch, H. Alkyl dihydroxyacetone phosphate synthase in glycosomes of Trypanosoma brucei. Biochim. Biophys. Acta 1257, 167–173 (1995).

    Article  PubMed  Google Scholar 

  42. Heise, N. & Opperdoes, F. R. The dihydroxyacetonephosphate pathway for biosynthesis of ether lipids in Leishmania mexicana promastigotes. Mol. Biochem. Parasitol. 89, 61–72 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Martin, K. L. & Smith, T. K. Phosphatidylinositol synthesis is essential in bloodstream form Trypanosoma brucei. Biochem. J. 396, 287–295 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schofield, L. & Hackett, F. Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J. Exp. Med. 177, 145–153 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Magez, S. et al. The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the trypanosome variant-specific surface glycoprotein are distinct macrophage-activating factors. J. Immunol. 160, 1949–1956 (1998).

    CAS  PubMed  Google Scholar 

  46. Camargo, M. M. et al. Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzi trypomastigotes initiate the synthesis of proinflammatory cytokines by macrophages. J. Immunol. 158, 5890–5901 (1997). Shows that the unsaturated fatty groups in the GPI anchor are essential for the pro-inflammatory activity of T. cruzi mucin.

    CAS  PubMed  Google Scholar 

  47. de Veer, M. J. et al. MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling. Eur. J. Immunol. 33, 2822–2831 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Campos, M. A. et al. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J. Immunol. 167, 416–423 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Oliveira, A. C. et al. Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi. J. Immunol. 173, 5688–5696 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Gazzinelli, R. T. & Denkers, E. Y. Protozoan encounters with Toll-like receptor signalling pathwayssss: implications for host parasitism. Nature Rev. Immunol. 6, 895–906 (2006).

    Article  CAS  Google Scholar 

  51. Almeida, I. C. & Gazzinelli, R. T. Proinflammatory activity of glycosylphosphatidylinositol anchors derived from Trypanosoma cruzi: structural and functional analyses. J. Leukoc. Biol. 70, 467–477 (2001).

    CAS  PubMed  Google Scholar 

  52. Almeida, I. C. et al. Highly purified glycosylphosphatidylinositols from Trypanosoma cruzi are potent proinflammatory agents. EMBO J. 19, 1476–1485 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Doering, T. L. et al. Trypanosome metabolism of myristate, the fatty acid required for the variant surface glycoprotein membrane anchor. J. Biol. Chem. 268, 9215–9222 (1993).

    CAS  PubMed  Google Scholar 

  54. Florin-Christensen, M. et al. Temperature acclimation of Trypanosoma cruzi epimastigote and metacyclic trypomastigote lipids. Mol. Biochem. Parasitol. 88, 25–33 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Das, S. et al. Lipid metabolism in mucous-dwelling amitochondriate protozoa. Int. J. Parasitol. 32, 655–675 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Beach, D. H., Holz, G. G. Jr, Singh, B. N. & Lindmark, D. G. Fatty acid and sterol metabolism of cultured Trichomonas vaginalis and Tritrichomonas foetus. Mol. Biochem. Parasitol. 38, 175–190 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. White, S. W., Zheng, J., Zhang, Y. M. & Rock, C. O. The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 74, 791–831 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Waller, R. F. et al. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl Acad. Sci. USA 95, 12352–12357 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mazumdar, J., E, H. W., Masek, K., C, A. H. & Striepen, B. Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc. Natl Acad. Sci. USA 103, 13192–13197 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Surolia, A., Ramya, T. N., Ramya, V. & Surolia, N. 'FAS't inhibition of malaria. Biochem. J. 383, 401–412 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gunther, S., McMillan, P. J., Wallace, L. J. & Muller, S. Plasmodium falciparum possesses organelle-specific α-keto acid dehydrogenase complexes and lipoylation pathways. Biochem. Soc. Trans. 33, 977–980 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Wrenger, C. & Muller, S. The human malaria parasite Plasmodium falciparum has distinct organelle-specific lipoylation pathways. Mol. Microbiol. 53, 103–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Zhu, G., Keithly, J. S. & Philippe, H. What is the phylogenetic position of Cryptosporidium? Int. J. Syst. Evol. Microbiol. 50, 1673–1681 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Zhu, G. Current progress in the fatty acid metabolism in Cryptosporidium parvum. J. Eukaryot. Microbiol. 51, 381–388 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Crawford, M. J., Zhu, G. & Roos, D. S. Both Type I and Type II fatty acid synthases in Toxoplasma gondii. Molecular Parasitology Meeting XIV, Abstract 14C (2003).

    Google Scholar 

  66. Zhu, G., Marchewka, M. J., Woods, K. M., Upton, S. J. & Keithly, J. S. Molecular analysis of a Type I fatty acid synthase in Cryptosporidium parvum. Mol. Biochem. Parasitol. 105, 253–260 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Stephens, J. L., Lee, S. H., Paul, K. S. & Englund, P. T. Mitochondrial fatty acid synthesis in Trypansoma brucei. J. Biol. Chem. 282, 4427–4436 (2007). The first report showing the role of mitochondrial type II FA synthesis in a trypanosomatid.

    Article  CAS  PubMed  Google Scholar 

  68. van Weelden, S. W., van Hellemond, J. J., Opperdoes, F. R. & Tielens, A. G. New functions for parts of the Krebs cycle in procyclic Trypanosoma brucei, a cycle not operating as a cycle. J. Biol. Chem. 280, 12451–12460 (2005). In addition to showing the disjointed role of the Kreb's cycle in T. brucei , this work presents an overview of T. brucei metabolism.

    Article  CAS  PubMed  Google Scholar 

  69. Brody, S., Oh, C., Hoja, U. & Schweizer, E. Mitochondrial acyl carrier protein is involved in lipoic acid synthesis in Saccharomyces cerevisiae. FEBS Lett. 408, 217–220 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, L., Joshi, A. K., Hofmann, J., Schweizer, E. & Smith, S. Cloning, expression, and characterization of the human mitochondrial β-ketoacyl synthase. Complementation of the yeast CEM1 knock-out strain. J. Biol. Chem. 280, 12422–12429 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Wada, H., Shintani, D. & Ohlrogge, J. Why do mitochondria synthesize fatty acids? Evidence for involvement in lipoic acid production. Proc. Natl Acad. Sci. USA 94, 1591–1596 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rawsthorne, S. Carbon flux and fatty acid synthesis in plants. Prog. Lipid Res. 41, 182–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Gueguen, V., Macherel, D., Jaquinod, M., Douce, R. & Bourguignon, J. Fatty acid and lipoic acid biosynthesis in higher plant mitochondria. J. Biol. Chem. 275, 5016–5025 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Shintani, D. K. & Ohlrogge, J. B. The characterization of a mitochondrial acyl carrier protein isoform isolated from Arabidopsis thaliana. Plant Physiol. 104, 1221–1229 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mikolajczyk, S. & Brody, S. De novo fatty acid synthesis mediated by acyl-carrier protein in Neurospora crassa mitochondria. Eur. J. Biochem. 187, 431–437 (1990).

    Article  CAS  PubMed  Google Scholar 

  76. Zensen, R., Husmann, H., Schneider, R., Peine, T. & Weiss, H. De novo synthesis and desaturation of fatty acids at the mitochondrial acyl-carrier protein, a subunit of NADH:ubiquinone oxidoreductase in Neurospora crassa. FEBS Lett. 310, 179–181 (1992).

    Article  CAS  PubMed  Google Scholar 

  77. Schneider, F. & Cassagne, C. Specific inhibition of plant fatty acid elongation by a long-chain cerulenin analogue. Eur. J. Biochem. 228, 704–709 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Paul, K. S., Bacchi, C. J. & Englund, P. T. Multiple triclosan targets in Trypanosoma brucei. Eukaryot. Cell 3, 855–861 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Simpson, A. G., Stevens, J. R. & Lukes, J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 22, 168–174 (2006). Presents recent thoughts on the evolution of trypanosomatids.

    Article  CAS  PubMed  Google Scholar 

  80. Waller, R. F., McConville, M. J. & McFadden, G. I. More plastids in human parasites? Trends Parasitol. 20, 54–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. El-Sayed, N. M. et al. Comparative genomics of trypanosomatid parasitic protozoa. Science 309, 404–409 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Worsham, L. M., Williams, S. G. & Ernst-Fonberg, M. L. Early catalytic steps of Euglena gracilis chloroplast type II fatty acid synthase. Biochim. Biophys. Acta 1170, 62–71 (1993).

    Article  CAS  PubMed  Google Scholar 

  84. Leander, B. S. Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol. 12, 251–258 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Hoffmeister, M., Piotrowski, M., Nowitzki, U. & Martin, W. Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. J. Biol. Chem. 280, 4329–4338 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Thuillier-Bruston, F., Briand, J. & Laval-Martin, D. Effects of a first exposure to ethanol on the compositions of neutral and polar lipids in Euglena gracilis Z, taken as a hepatic cell model: equilibration by citrulline-malate. Biochem. Med. Metab. Biol. 44, 159–174 (1990).

    Article  CAS  PubMed  Google Scholar 

  87. Ilg, T. et al. Structure of Leishmania mexicana lipophosphoglycan. J. Biol. Chem. 267, 6834–6840 (1992).

    CAS  PubMed  Google Scholar 

  88. Nomura, S., Horiuchi, T., Hata, T. & Omura, S. Inhibition of sterol and fatty acid biosyntheses by cerulenin in cell-free systems of yeast. J. Antibiot. (Tokyo) 25, 365–368 (1972).

    Article  CAS  Google Scholar 

  89. Hayashi, T., Yamamoto, O., Sasaki, H., Kawaguchi, A. & Okazaki, H. Mechanism of action of the antibiotic thiolactomycin inhibition of fatty acid synthesis of Escherichia coli. Biochem. Biophys. Res. Commun. 115, 1108–1113 (1983).

    Article  CAS  PubMed  Google Scholar 

  90. McMurry, L. M., Oethinger, M. & Levy, S. B. Triclosan targets lipid synthesis. Nature 394, 531–532 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Banerjee, A. et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227–230 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Hogenauer, G. & Woisetschlager, M. A diazaborine derivative inhibits lipopolysaccharide biosynthesis. Nature 293, 662–664 (1981).

    Article  CAS  PubMed  Google Scholar 

  93. Zhang, Y. M. et al. Acyl carrier protein is a cellular target for the antibacterial action of the pantothenamide class of pantothenate antimetabolites. J. Biol. Chem. 279, 50969–50975 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Jones, S. M. et al. Analogues of thiolactomycin as potential antimalarial agents. J. Med. Chem. 48, 5932–5941 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, J. et al. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441, 358–361 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Ondeyka, J. G. et al. Discovery of bacterial fatty acid synthase inhibitors from a Phoma species as antimicrobial agents using a new antisense-based strategy. J. Nat. Prod. 69, 377–380 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Gilbert, R. & Klein, R. A. Carnitine stimulates ATP synthesis in Trypanosoma brucei brucei. FEBS Lett. 141, 271–274 (1982).

    Article  CAS  PubMed  Google Scholar 

  98. Klein, R. A., Angus, J. M. & Waterhouse, A. E. Carnitine in Trypanosoma brucei brucei. Mol. Biochem. Parasitol. 6, 93–110 (1982).

    Article  CAS  PubMed  Google Scholar 

  99. Kumar, S., Tamura, K. & Nei, M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5, 150–163 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Pays, E. et al. The trypanolytic factor of human serum. Nature Rev. Microbiol. 4, 477–486 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Beverley, R. Gazzinelli, D. Hanasekaran, J. Lukes, Y. Morita, K. Paul, J. Pevsner, S. Prigge, D. Roos, J. Samuelson and S. Subramanian for discussions. We would also like to thank R. Gazzinelli and A. Uttaro for sharing unpublished manuscripts. We are grateful to G. Yildirir and other members of our laboratory for support. Work in the authors' laboratory has been supported by a grant from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul T. Englund.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez protein 

CAJ02037

CAJ02963

CAJ02967

CAJ02975

CAJ02982

CAJ02986

CAJ03003

CAJ03006

CAJ03013

CAJ03016

CAJ03023

CAJ03028

CAJ03035

CAJ08636

NP_009963

NP_012339

NP_013476

NP_703294

NP_704739

XP_808770

XP_809644

XP_813970

XP_813971

XP_813972

XP_966049

Saccharomyces genome database 

AYR1

ELO1

ELO2

ELO3

TSC13

YBR159W

ToxoDB 

20.m00392

52.m01617

49.m03288

FURTHER INFORMATION

Chagas' disease

GeneDB: Trypanosoma brucei genome

GiardiaDB

Leishmaniasis

Sleeping sickness

The Englund Laboratory

TIGR Database: Entamoeba histolytica Genome Project

TIGR Database: Toxoplasma gondii Genome Project

TIGR Database: Trichomonas vaginlis Genome Project

Glossary

Glycosome

An organelle, related to peroxisomes, found in trypanosomatid protozoans that contain enzymes of the glycolytic and other metabolic pathways.

Glycosylphosphatidylinositol

(GPI). A glycolipid, covalently linked to the C terminus of many eukaryotic proteins, which anchors them to the plasma membrane. Some polysaccharides, such as lipophosphoglycan (LPG) in Leishmania spp., are also GPI anchored.

Primer

A short, pre-existing acyl group that initiates chain growth in FA synthesis.

Phosphopantetheine

A component of CoA or a prosthetic group of ACP; during FA synthesis the growing acyl chain is thioesterified to the phosphopantetheine sulphydryl group.

HXXH amino-acid motif

A sequence, composed of two histidines (H) and two non-conserved amino acids (X), that is found in FA ELOs.

Epimastigote, promastigote and trypomastigote

Life-cycle stages of trypanosomatid protozoans that differ morphologically in the positioning of the flagellum.

Jaccard clustering

An algorithm for grouping highly related proteins.

Ceramide

A molecule composed of sphingosine and an FA that forms the lipid moiety of some GPI anchors and the phospholipid sphingomyelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Stephens, J. & Englund, P. A fatty-acid synthesis mechanism specialized for parasitism. Nat Rev Microbiol 5, 287–297 (2007). https://doi.org/10.1038/nrmicro1617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1617

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing