Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Helicobacter pylori evolution and phenotypic diversification in a changing host

Key Points

  • The human gastric pathogen Helicobacter pylori displays a high degree of intraspecies allelic diversity and variability. Almost every infected person carries one or multiple unique H. pylori strains that can be readily distinguished by MLST or other typing methods.

  • Diversity within H. pylori is generated by the unusual combination of an elevated mutation rate and frequent interstrain recombination during mixed infections. Unusually short DNA fragments are incorporated into the H. pylori genome in the course of recombination events, further contributing to allelic diversification.

  • Modern H. pylori bacteria can be subdivided into six main populations with distinct geographic distribution patterns. These modern populations are derived from five ancestral populations, and the distribution of ancestral nucleotides over the globe reflects ancient and more recent human migrations.

  • Many H. pylori genes contain hypermutable sequences, such as homopolymeric nucleotide repeats. Any large H. pylori population will therefore consist of multiple subpopulations with specific activity patterns for these so-called contingency genes (bacterial quasispecies).

  • Genetic variability that is due to intrastrain diversification and interstrain recombination is hypothesized to help the bacteria adapt to individual hosts after transmission. Although experimental evidence is still scarce, this concept is supported by the finding that extensive genetic and phenotypic variation is displayed by molecules involved in interactions with the human host, including adhesins, lipopolysaccharides and components of the cag type IV secretion apparatus, including the translocated effector CagA.

Abstract

Helicobacter pylori colonizes the stomachs of more than 50% of the world's population, making it one of the most successful of all human pathogens. One striking characteristic of H. pylori biology is its remarkable allelic diversity and genetic variability. Not only does almost every infected person harbour their own individual H. pylori strain, but strains can undergo genetic alteration in vivo, driven by an elevated mutation rate and frequent intraspecific recombination. This genetic variability, which affects both housekeeping and virulence genes, has long been thought to contribute to host adaptation, and several recently published studies support this concept. We review the available knowledge relating to the genetic variation of H. pylori, with special emphasis on the changes that occur during chronic colonization, and argue that H. pylori uses mutation and recombination processes to adapt to its individual host by modifying molecules that interact with the host. Finally, we put forward the hypothesis that the lack of opportunity for intraspecies recombination as a result of the decreasing prevalence of H. pylori could accelerate its disappearance from Western populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Helicobacter pylori and its extensive genetic heterogeneity.
Figure 2: Helicobacter pylori populations and their worldwide distribution.
Figure 3: The effect of mutation and recombination on sequences during chronic infection.
Figure 4: The cag pathogenicity island contains genes that show marked sequence variation.

Similar content being viewed by others

References

  1. Suerbaum, S. & Michetti, P. Helicobacter pylori infection. N. Engl. J. Med. 347, 1175–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Ghose, C. et al. East Asian genotypes of Helicobacter pylori strains in Amerindians provide evidence for its ancient human carriage. Proc. Natl Acad. Sci. USA 99, 15107–15111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Falush, D. et al. Traces of human migrations in Helicobacter pylori populations. Science 299, 1582–1585 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Linz, B. et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature 445, 915–918 (2007). Two analyses of the global population structure of H. pylori using multilocus sequence data. The first paper established that H. pylori can be subdivided into populations with distinct geographical distribution, and that its genes reflect human migrations. The second study compared the genetic diversity of human and H. pylori DNA, and provides evidence that H. pylori was already associated with humans at the time they migrated out of Africa 60,000 years ago.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Blaser, M. J. Who are we? Indigenous microbes and the ecology of human diseases. EMBO Rep. 7, 956–960 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Warren, J. R. & Marshall, B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1, 1273–1275 (1983).

    CAS  PubMed  Google Scholar 

  7. Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7–14 June 1994. IARC Monogr Eval. Carcinog. Risks Hum. 61, 1–241 (1994).

  8. Parkin, D. M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 118, 3030–3044 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Blaser, M. J. Helicobacter pylori: microbiology of a 'slow' bacterial infection. Trends Microbiol. 1, 255–260 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Merrell, D. S. & Falkow, S. Frontal and stealth attack strategies in microbial pathogenesis. Nature 430, 250–256 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Suerbaum, S. et al. The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus. Proc. Natl Acad. Sci. USA 100, 7901–7906 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Erdman, S. E. et al. CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am. J. Pathol. 162, 691–702 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ward, J. M. et al. Chronic active hepatitis and associated liver tumors in mice caused by a persistent bacterial infection with a novel Helicobacter species. J. Natl Cancer Inst. 86, 1222–1227 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Langenberg, W., Rauws, E. A., Widjojokusumo, A., Tytgat, G. N. & Zanen, H. C. Identification of Campylobacter pyloridis isolates by restriction endonuclease DNA analysis. J. Clin. Microbiol. 24, 414–417 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Majewski, S. I. & Goodwin, C. S. Restriction endonuclease analysis of the genome of Campylobacter pylori with a rapid extraction method: evidence for considerable genomic variation. J. Infect. Dis. 157, 465–471 (1988). These two papers were the first two descriptions of the striking allelic diversity in H. pylori.

    Article  CAS  PubMed  Google Scholar 

  16. Kansau, I. et al. Genotyping of Helicobacter pylori isolates by sequencing of PCR products and comparison with the RAPD technique. Res. Microbiol. 147, 661–669 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Akopyanz, N., Bukanov, N. O., Westblom, T. U., Kresovich, S. & Berg, D. E. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 20, 5137–5142 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bamford, K. B. et al. Helicobacter pylori: comparison of DNA fingerprints provides evidence for intrafamilial infection. Gut 34, 1348–1350 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suerbaum, S. et al. Free recombination within Helicobacter pylori. Proc. Natl Acad. Sci. USA 95, 12619–12624 (1998). Demonstrates that the population structure of H. pylori is shaped by frequent recombination, and that H. pylori behaves clonally on a short-term range after natural transmission in families.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miehlke, S., Genta, R. M., Graham, D. Y. & Go, M. F. Molecular relationships of Helicobacter pylori strains in a family with gastroduodenal disease. Am. J. Gastroenterol. 94, 364–368 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Magalhaes Queiroz, D. M. & Luzza, F. Epidemiology of Helicobacter pylori infection. Helicobacter 11 (Suppl. 1), 1–5 (2006).

    Article  PubMed  Google Scholar 

  22. Schreiber, S. et al. The spatial orientation of Helicobacter pylori in the gastric mucus. Proc. Natl Acad. Sci. USA. 101, 5024–5029 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, S. K. & Josenhans, C. Helicobacter pylori and the innate immune system. Int. J. Med. Microbiol. 295, 325–334 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Akopyanz, N., Bukanov, N. O., Westblom, T. U. & Berg, D. E. PCR-based RFLP analysis of DNA sequence diversity in the gastric pathogen Helicobacter pylori. Nucleic. Acids. Res. 20, 6221–6225 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taylor, N. S. et al. Long-term colonization with single and multiple strains of Helicobacter pylori assessed by DNA fingerprinting. J. Clin Microbiol. 33, 918–923 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuipers, E. J. et al. Quasispecies development of Helicobacter pylori observed in paired isolates obtained years apart from the same host. J. Infect. Dis. 181, 273–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Kersulyte, D., Chalkauskas, H. & Berg, D. E. Emergence of recombinant strains of Helicobacter pylori during human infection. Mol. Microbiol. 31, 31–41 (1999). First demonstration of intrahost recombination in multiple strains isolated from one individual patient.

    Article  CAS  PubMed  Google Scholar 

  28. Raymond, J. et al. Genetic and transmission analysis of Helicobacter pylori strains within a family. Emerg. Infect. Dis. 10, 1816–1821 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maynard Smith, J., Smith, N. H., O'Rourke, M. & Spratt, B. G. How clonal are bacteria? Proc. Natl Acad. Sci. USA 90, 4384–4388 (1993). A seminal paper that established the concept that different species of bacteria possess different population structures.

    Article  Google Scholar 

  30. Go, M. F., Kapur, V., Graham, D. Y. & Musser, J. M. Population genetic analysis of Helicobacter pylori by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure. J. Bacteriol. 178, 3934–3938 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maynard Smith, J. & Smith, N. H. Detecting recombination from gene trees. Mol. Biol. Evol. 15, 590–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Perez-Losada, M. et al. Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) data. Infect. Genet. Evol. 6, 97–112 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Atherton, J. C. et al. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 270, 17771–17777 (1995). This paper describes the mosaic structure of the vacA cytotoxin gene, establishes a vacA typing system for H. pylori and presents evidence for a differential association of vacA alleles with disease.

    Article  CAS  PubMed  Google Scholar 

  34. Pan, Z. J. et al. Equally high prevalences of infection with cagA-positive Helicobacter pylori in Chinese patients with peptic ulcer disease and those with chronic gastritis-associated dyspepsia. J. Clin Microbiol. 35, 1344–1347 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pan, Z. J. et al. Prevalence of vacuolating cytotoxin production and distribution of distinct vacA alleles in Helicobacter pylori from China. J. Infect. Dis. 178, 220–226 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Miehlke, S. et al. Allelic variation in the cagA gene of Helicobacter pylori obtained from Korea compared to the United States. Am. J. Gastroenterol. 91, 1322–1325 (1996).

    CAS  PubMed  Google Scholar 

  37. Achtman, M. et al. Recombination and clonal groupings within Helicobacter pylori from different geographic regions. Mol. Microbiol. 32, 459–470 (1999). First application of the multilocus sequence approach to H. pylori from different geographical regions. This paper showed that weakly clonal groupings exist despite frequent recombination.

    Article  CAS  PubMed  Google Scholar 

  38. Maiden, M. C. et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl Acad. Sci. USA 95, 3140–3145 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maiden, M. C. Multilocus sequence typing of bacteria. Annu. Rev. Microbiol. 60, 561–588 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wirth, T. et al. Distinguishing human ethnic groups by means of sequences from Helicobacter pylori: lessons from Ladakh. Proc. Natl Acad. Sci. USA 101, 4746–4751 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bjorkholm, B. et al. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc. Natl Acad. Sci. USA 98, 14607–14612 (2001). The study established that H. pylori has a higher mutation rate than the Enterobacteriaceae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kang, J. & Blaser, M. J. Bacterial populations as perfect gases: genomic integrity and diversification tensions in Helicobacter pylori. Nature Rev. Microbiol. 4, 826–836 (2006).

    Article  CAS  Google Scholar 

  44. Salaun, L., Linz, B., Suerbaum, S. & Saunders, N. J. The diversity within an expanded and redefined repertoire of phase-variable genes in Helicobacter pylori. Microbiology 150, 817–830 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. Nilsson, C. et al. An enzymatic ruler modulates Lewis antigen glycosylation of Helicobacter pylori LPS during persistent infection. Proc. Natl Acad. Sci. USA (2006). Phase variation in H. pylori LPS glycosylation genes during persistent infection suggests a possible temporal adaptation mechanism to a host niche, which changes through chronic infection.

  46. Aras, R. A. et al. Plasticity of repetitive DNA sequences within a bacterial (Type IV) secretion system component. J. Exp. Med. 198, 1349–1360 (2003). Investigation of the interstrain and intrastrain variation of the H. pylori cag pathogenicity island gene cagY in natural infection and experimental infection, and its possible role in host immune adaptation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Israel, D. A. et al. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc. Natl Acad. Sci. USA 98, 14625–14630 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, S., Kang, J. & Blaser, M. J. Antimutator role of the DNA glycosylase mutY gene in Helicobacter pylori. J. Bacteriol. 188, 6224–6234 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mathieu, A., O'Rourke, E. J. & Radicella, J. P. Helicobacter pylori genes involved in avoidance of mutations induced by 8-oxoguanine. J. Bacteriol. 188, 7464–7469 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kraft, C. & Suerbaum, S. Mutation and recombination in Helicobacter pylori: Mechanisms and role in generating strain diversity. Int. J. Med. Microbiol. 295, 299–305 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Aras, R. A., Kang, J., Tschumi, A. I., Harasaki, Y. & Blaser, M. J. Extensive repetitive DNA facilitates prokaryotic genome plasticity. Proc. Natl Acad. Sci. USA 100, 13579–13584 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Falush, D. et al. Recombination and mutation during long-term gastric colonization by Helicobacter pylori: Estimates of clock rates, recombination size and minimal age. Proc. Natl Acad. Sci. USA 98, 15056–15061 (2001). Intrahost evolution was studied using sequence comparisons from paired sequential H. pylori isolates from one host. Mathematical modelling was used to determine quantitative parameters of recombination and mutation in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lundin, A. et al. Slow genetic divergence of Helicobacter pylori strains during long-term colonization. Infect. Immun. 73, 4818–4822 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Prouzet-Mauleon, V. et al. Pathogen evolution in vivo: genome dynamics of two isolates obtained 9 years apart from a duodenal ulcer patient infected with a single Helicobacter pylori strain. J. Clin. Microbiol. 43, 4237–4241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Salama, N. R. et al. Genetic analysis of Helicobacter pylori strain populations colonizing the stomach at different times post-infection. J. Bacteriol. 189, 3834–3845 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alm, R. A. et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180 (1999). First complete genome comparison of two unrelated strains within one species.

    Article  PubMed  CAS  Google Scholar 

  58. Oh, J. D. et al. The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc. Natl Acad. Sci. USA 103, 9999–10004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Salama, N. et al. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc. Natl Acad. Sci. USA 97, 14668–14673 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gressmann, H. et al. Gain and loss of multiple genes during the evolution of Helicobacter pylori. PLoS Genet. 1, e43 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kraft, C. et al. Genomic changes during chronic Helicobacter pylori infection. J. Bacteriol. 188, 249–254 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bjorkholm, B. et al. Comparison of genetic divergence and fitness between two subclones of Helicobacter pylori. Infect. Immun. 69, 7832–7838 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tomb, J.-F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Alm, R. A. et al. Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect. Immun. 68, 4155–4168 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ilver, D. et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279, 373–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Mahdavi, J. et al. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297, 573–578 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aspholm-Hurtig, M. et al. Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science 305, 519–522 (2004). Describes the discovery of the association of the H. pylori adhesin BabA to human ethnic groupings with different blood-group prevalences. Hints at a link between adhesive properties and host adaptation.

    Article  CAS  PubMed  Google Scholar 

  68. Backstrom, A. et al. Metastability of Helicobacter pylori bab adhesin genes and dynamics in Lewis b antigen binding. Proc. Natl Acad. Sci. USA 101, 16923–16928 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Solnick, J. V., Hansen, L. M., Salama, N. R., Boonjakuakul, J. K. & Syvanen, M. Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques. Proc. Natl Acad. Sci. USA 101, 2106–2111 (2004). Currently, the only published study that shows H. pylori strain variation arising after experimental infection in rhesus monkeys.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Odenbreit, S., Till, M., Hofreuter, D., Faller, G. & Haas, R. Genetic and functional characterization of the alpAB gene locus essential for adhesion of Helicobacter pylori to human gastric tissue. Mol. Microbiol. 31, 1537–1548 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Lu, H. et al. Functional and intracellular signalling differences associated with the Helicobacter pylori AlpAB adhesin from Western and East Asian strains. J. Biol. Chem. (2007).

  72. Cover, T. L. & Blanke, S. R. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nature Rev. Microbiol. 3, 320–332 (2005).

    Article  CAS  Google Scholar 

  73. Gebert, B., Fischer, W., Weiss, E., Hoffmann, R. & Haas, R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301, 1099–1102 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Pagliaccia, C. et al. The m2 form of the Helicobacter pylori cytotoxin has cell type-specific vacuolating activity. Proc. Natl Acad. Sci. USA 95, 10212–10217 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aviles-Jimenez, F. et al. Evolution of the Helicobacter pylori vacuolating cytotoxin in a human stomach. J. Bacteriol. 186, 5182–5185 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Carroll, I. M. et al. Microevolution between paired antral and paired antrum and corpus Helicobacter pylori isolates recovered from individual patients. J. Med. Microbiol. 53, 669–677 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Aspinall, G. O. & Monteiro, M. A. Lipopolysaccharides of Helicobacter pylori strains P466 and MO19: structures of the O antigen and core oligosaccharide regions. Biochemistry 35, 2498–2504 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Monteiro, M. A. et al. Simultaneous expression of type 1 and type 2 Lewis blood group antigens by Helicobacter pylori lipopolysaccharides. Molecular mimicry between H. pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. J. Biol. Chem. 273, 11533–11543 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Appelmelk, B. J. et al. Phase variation in Helicobacter pylori lipopolysaccharide due to changes in the lengths of poly(C) tracts in α3-fucosyltransferase genes. Infect. Immun. 67, 5361–5366 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, G., Ge, Z., Rasko, D. A. & Taylor, D. E. Lewis antigens in Helicobacter pylori: biosynthesis and phase variation. Mol. Microbiol. 36, 1187–1196 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Bergman, M. P. et al. Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN. J. Exp. Med. 200, 979–990 (2004). The authors report a strain-specific influence on immune responses associated with phase-variable expression of lipopolysaccharide outer chains in H. pylori.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Josenhans, C. & Suerbaum, S. Helicobacter pylori: Molecular and Cellular Biology. (eds Achtman, O. & Suerbaum, S.) 171–184 (Horizon Scientific Press, Wymondham, 2001).

    Google Scholar 

  83. Niehus, E. et al. Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori. Mol. Microbiol. 52, 947–961 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Josenhans, C., Eaton, K. A., Thevenot, T. & Suerbaum, S. Switching of flagellar motility in Helicobacter pylori by reversible length variation of a short homopolymeric sequence repeat in fliP, a gene encoding a basal body protein. Infect. Immun. 68, 4598–4603 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thompson, L. J. et al. Chronic Helicobacter pylori infection with Sydney strain 1 and a newly identified mouse-adapted strain (Sydney strain 2000) in C57BL/6 and BALB/c mice. Infect. Immun. 72, 4668–4679 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sozzi, M., Crosatti, M., Kim, S. K., Romero, J. & Blaser, M. J. Heterogeneity of Helicobacter pylori cag genotypes in experimentally infected mice. FEMS Microbiol. Lett. 203, 109–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Figura, N. et al. cagA positive and negative Helicobacter pylori strains are simultaneously present in the stomach of most patients with non-ulcer dyspepsia: relevance to histological damage. Gut 42, 772–778 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Covacci, A. & Rappuoli, R. Helicobacter pylori: molecular evolution of a bacterial quasi-species. Curr. Opin. Microbiol. 1, 96–102 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Censini, S. et al. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl Acad. Sci. USA 93, 14648–14653 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Blomstergren, A., Lundin, A., Nilsson, C., Engstrand, L. & Lundeberg, J. Comparative analysis of the complete cag pathogenicity island sequence in four Helicobacter pylori isolates. Gene 328, 85–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Azuma, T. et al. Distinct diversity of the cag pathogenicity island among Helicobacter pylori strains in Japan. J. Clin. Microbiol. 42, 2508–2517 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Covacci, A. et al. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc. Natl Acad. Sci. USA 90, 5791–5795 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stein, M. et al. c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol. Microbiol. 43, 971–980 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Selbach, M., Moese, S., Hauck, C. R., Meyer, T. F. & Backert, S. Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J. Biol. Chem. 277, 6775–6778 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Poppe, M., Feller, S. M., Romer, G. & Wessler, S. Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene (2006).

  96. Higashi, H. et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Hatakeyama, M. & Higashi, H. Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci. 96, 835–843 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Naito, M. et al. Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA. Gastroenterology 130, 1181–1190 (2006). This study presents evidence for an influence of interstrain diversity in CagA types on host interaction.

    Article  CAS  PubMed  Google Scholar 

  99. Higashi, H. et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc. Natl Acad. Sci. USA 99, 14428–14433 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Andrzejewska, J. et al. Characterization of the pilin ortholog of the Helicobacter pylori type IV cag pathogenicity apparatus, a surface-associated protein expressed during infection. J. Bacteriol. 188, 5865–5877 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Robinson, K., Loughlin, M. F., Potter, R. & Jenks, P. J. Host adaptation and immune modulation are mediated by homologous recombination in Helicobacter pylori. J. Infect. Dis. 191, 579–587 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Loughlin, M. F., Barnard, F. M., Jenkins, D., Sharples, G. J. & Jenks, P. J. Helicobacter pylori mutants defective in RuvC Holliday junction resolvase display reduced macrophage survival and spontaneous clearance from the murine gastric mucosa. Infect. Immun. 71, 2022–2031 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fischer, W. et al. Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol. Microbiol. 42, 1337–1348 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Rohde, M., Puls, J., Buhrdorf, R., Fischer, W. & Haas, R. A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system. Mol. Microbiol. 49, 219–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Boren, T., Falk, P., Roth, K. A., Larson, G. & Normark, S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262, 1892–1895 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Crabtree, J. E. et al. Helicobacter pylori induced interleukin-8 expression in gastric epithelial cells is associated with CagA positive phenotype. J. Clin. Pathol. 48, 41–45 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Crabtree, J. E. et al. Mucosal IgA recognition of Helicobacter pylori 120 kDa protein, peptic ulceration, and gastric pathology. Lancet 338, 332–335 (1991).

    Article  CAS  PubMed  Google Scholar 

  108. Bourzac, K. M. & Guillemin, K. Helicobacter pylori-host cell interactions mediated by type IV secretion. Cell Microbiol. 7, 911–919 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S. & Cascales, E. Biogenesis, architecture, and function of bacterial type iv secretion systems. Annu. Rev. Microbiol. 59, 451–485 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Odenbreit, S. et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497–1500 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Tummuru, M. K., Cover, T. L. & Blaser, M. J. Cloning and expression of a high-molecular-mass major antigen of Helicobacter pylori: evidence of linkage to cytotoxin production. Infect. Immun. 61, 1799–1809 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nature Immunol. 5, 1166–1174 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to dedicate this article to their long-time academic teacher and mentor, W. Opferkuch, on the occasion of his 75th birthday. M. Achtman and D. Falush are acknowledged for many fruitful discussions on bacterial evolution. We also thank three anonymous reviewers for helpful suggestions. Work in the authors' laboratories was supported by grants from the German Research Foundation (DFG), the German Ministry for Education and Research (Competence network PathoGenoMik and ERA-NET Pathogenomics - HELDIVNET), the European Commission (FP6 Integrated Project INCA) and the Volkswagen Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Escherichia coli

Helicobacter hepaticus

Helicobacter pylori

Helicobacter pylori HPAG1

Helicobacter pylori J99

Helicobacter pylori 26695

FURTHER INFORMATION

MLST databases

Structure software

Glossary

RAPD

(Random amplification of polymorphic DNA). A simple method to assess the genetic relatedness of bacterial strains within one species. A single short primer is used in PCR reactions and the resulting band patterns are compared.

Microevolution

The generation of genetic variation within a species over relatively short timescales.

Polymorphic nucleotide

A position in a nucleotide sequence that displays variation in a sample population. If a sequence analysis of a gene fragment for n isolates yields three different alleles, for example, AACTTA, AAGTTA and AAATTA, the third position in this sequence is polymorphic but the other positions are not.

Multilocus enzyme electrophoresis

(MLEE). A classical method that was used to study the structure of bacterial populations. Differences between the electrophoretic mobilities of multiple enzymes in starch gels are used as indicators of allelic variation.

Homoplasy test

A method to quantify the contribution of recombination to sequence variation in a set of homologous nucleotide sequences from multiple isolates.

Panmictic

A population structure where clonal structure is lost due to frequent recombination. Species with panmictic or close to panmictic population structures include Helicobacter pylori and Neisseria gonorrhoeae; species with predominantly clonal population structures include Salmonella enterica and Mycobacterium tuberculosis.

Type IV secretion system

(T4SS). A complex bacterial secretion system that can transport bacterial protein effector molecules or DNA into a eukaryotic cell.

MLST

(Multilocus sequence typing). A nucleotide-sequence-based approach for the characterization of isolates of microorganisms. The method involves the sequence analysis of approximately seven housekeeping gene fragments. Unique sequences obtained for each fragment are assigned an allele number, and the combination of allele numbers for all fragments defines the sequence type (ST). MLST is applicable to almost all bacteria and some other microorganisms. See Further information for a central website to access MLST databases for different organisms.

Autosomal microsatellite marker

A microsatellite is a simple sequence repeat that consists of repeating units of 1–4 nucleotides. Microsatellites are highly polymorphic and are widely used as markers in human genetic studies. The term autosomal is used if a microsatellite marker is located on a non-sex chromosome (in contrast to markers located on X or Y chromosomes).

Mutator strain

A strain of a bacterial species that has an elevated mutation rate compared with the average mutation rate of the species. The mutator phenotype is due to defects in genes coding for DNA repair enzymes or proteins involved in assuring fidelity of DNA replication.

Mismatch repair

(MMR). A DNA repair mechanism that recognizes and corrects mismatches between the parental DNA strand and the copied DNA strand that is generated during replication.

Base excision repair

(BER). A DNA repair mechanism that recognizes and corrects single mutated bases in the DNA, such as oxidated or alkylated bases.

Pyrosequencing

A sequencing method that is based on the detection of released pyrophosphate (PPi) during DNA synthesis.

T helper (TH) 1 immune response

T cell immune responses can be broadly categorized into two types. TH1 responses are dominated by TH1 cells, which produce interferon-γ and tumour necrosis factor. TH2 responses are characterized by a prodominance of TH2 cells secreting interleukins (IL)-4, IL-5 and IL-13. The TH1 response is particularly geared towards the defence against intracellular bacteria, whereas the TH2 response is more suited to defend against extracellular bacteria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suerbaum, S., Josenhans, C. Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat Rev Microbiol 5, 441–452 (2007). https://doi.org/10.1038/nrmicro1658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1658

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing