Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of key metabolic intersections in Bacillus subtilis

Key Points

  • Bacteria adapt readily to many different nutritional environments by altering gene expression in accordance with the availability of particular nutrients. Each metabolic gene or operon is regulated by specific factors that sense the intracellular concentrations of substrates for degradation or the end-products of biosynthesis.

  • Overlying this operon-specific regulation are at least two additional levels of regulation. The first coordinates the expression of groups of operons according to their general function (for example, the use of carbon souces). The second coordinates the expression of large groups of genes according to their impact on the overall balance of central metabolism.

  • In Bacillus subtilis, three global regulatory proteins mediate both function- and metabolism-coordinating gene expression. CcpA and TnrA are the global regulators for carbon metabolism and nitrogen metabolism, respectively, and part of their function is to influence the activity of a third global regulator, CodY.

  • If glucose is available, B. subtilis CodY functions in conjunction with CcpA to repress the use of alternative carbon sources and activate the expression of carbon-overflow pathways.

  • If cells are in a rich medium, CodY also represses the use of alternative nitrogen sources; if the cell has to depend on poor nitrogen sources, repression by CodY is relieved, but at the same time positive regulation of the same genes by TnrA is activated.

  • The activity of CodY as a DNA-binding protein is greatly stimulated by two types of ligands — GTP and the branched-chain amino acids. Both CcpA and TnrA regulate the synthesis of these amino acids, thereby helping to determine the extent to which CodY is active. A fourth global regulatory system, the stringent response to amino-acid deprivation, leads to a drop in the intracellular GTP pool and, therefore, also influences the activity of CodY.

  • In some Gram-positive pathogens, CcpA and CodY proteins control virulence genes as well as metabolism genes, which connects the expression of virulence to the metabolic state of the cell.

Abstract

The remarkable ability of bacteria to adapt efficiently to a wide range of nutritional environments reflects their use of overlapping regulatory systems that link gene expression to intracellular pools of a small number of key metabolites. By integrating the activities of global regulators, such as CcpA, CodY and TnrA, Bacillus subtilis manages traffic through two metabolic intersections that determine the flow of carbon and nitrogen to and from crucial metabolites, such as pyruvate, 2-oxoglutarate and glutamate. Here, the latest knowledge on the control of these key intersections in B. subtilis is reviewed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interactions of the global regulators CcpA and CodY with carbon-overflow metabolism in Bacillus subtilis.
Figure 2: Interactions of global regulators with the citric acid cycle in Bacillus subtilis.
Figure 3: Bacillus subtilis global regulators at the intersection between carbon and nitrogen metabolism.
Figure 4: The metabolic context of the Bacillus subtilis branched-chain amino acid biosynthetic pathway.
Figure 5: Intersection of RelA, CcpA and CodY in the regulation of the Bacillus subtilis ilvB operon.

Similar content being viewed by others

References

  1. Hammer, B. K. & Swanson, M. S. Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol. Microbiol. 33, 721–731 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Neidhardt, F. C. et al. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (ASM, Washington DC, 1996).

  3. Deutscher, J., Galinier, A. & Verstraete-Martin, I. in Bacillus subtilis and its Closest Relatives: from Genes to Cells (eds Sonenshein, A. L., Hoch, J. A. & Losick, R. M.) 129–150 (ASM, Washington DC, 2002).

    Book  Google Scholar 

  4. Deutscher, J., Francke, C. & Postma, P. W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939–1031 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aymerich, S., Goelzer, A. & Fromion, V. in Global Regulatory Networks in Bacillus subtilis (ed. Fujita, Y.) 39–73 (Transworld Research Network, Trivandum, in the press).

  6. Sonenshein, A. L., Hoch, J. A. & Losick, R. M. (eds) Bacillus subtilis and its Closest Relatives: from Genes to Cells (ASM, Washington DC, 2002).

    Book  Google Scholar 

  7. Presecan-Siedel, E. et al. Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. J. Bacteriol. 181, 6889–6897 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shin, B. S., Choi, S. K. & Park, S. H. Regulation of the Bacillus subtilis phosphotransacetylase gene. J. Biochem. (Tokyo) 126, 333–339 (1999).

    Article  CAS  Google Scholar 

  9. Grundy, F. J., Waters, D. A., Allen, S. H. & Henkin, T. M. Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J. Bacteriol. 175, 7348–7355 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lorca, G. L. et al. Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK. J. Bacteriol. 187, 7826–7839 (2005). This paper provides a thorough analysis of the role of CcpA in the control of metabolism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moreno, M. S., Schneider, B. L., Maile, R. R., Weyler, W. & Saier, M. H. Jr. Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol. Microbiol. 39, 1366–1381 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Blencke, H. M. et al. Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Eng. 5, 133–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Grundy, F. J., Turinsky, A. J. & Henkin, T. M. Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA. J. Bacteriol. 176, 4527–4533 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shivers, R. P., Dineen, S. S. & Sonenshein, A. L. Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow. Mol. Microbiol. 62, 811–822 (2006). This study was the first to demonstrate positive regulation by CodY, and highlighted the interesting and important role of CodY in carbon-overflow pathways.

    Article  CAS  PubMed  Google Scholar 

  15. Ali, N. O., Bignon, J., Rapoport, G. & Debarbouille, M. Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. J. Bacteriol. 183, 2497–2504 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Zalieckas, J. M., Wray, L. V. Jr. & Fisher, S. H. Expression of the Bacillus subtilis acsA gene: position and sequence context affect cre-mediated carbon catabolite repression. J. Bacteriol. 180, 6649–6654 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Warner, J. B. & Lolkema, J. S. CcpA-dependent carbon catabolite repression in bacteria. Microbiol. Mol. Biol. Rev. 67, 475–490 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lulko, A. T., Buist, G., Kok, J. & Kuipers, O. P. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. J. Mol. Microbiol. Biotechnol. 12, 82–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Ludwig, H., Rebhan, N., Blencke, H. M., Merzbacher, M. & Stulke, J. Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Mol. Microbiol. 45, 543–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Hanson, K. G., Steinhauer, K., Reizer, J., Hillen, W. & Stulke, J. HPr kinase/phosphatase of Bacillus subtilis: expression of the gene and effects of mutations on enzyme activity, growth and carbon catabolite repression. Microbiology 148, 1805–1811 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Monedero, V. et al. Mutations lowering the phosphatase activity of HPr kinase/phosphatase switch off carbon metabolism. EMBO J. 20, 3928–3937 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deutscher, J., Kuster, E., Bergstedt, U., Charrier, V. & Hillen, W. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol. Microbiol. 15, 1049–1053 (1995). This paper was the first to establish a connection between CcpA activity, fructose-1,6-bisphosphate and the seryl phosphorylation of HPr.

    Article  CAS  PubMed  Google Scholar 

  23. Galinier, A., Deutscher, J. & Martin-Verstraete, I. Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. J. Mol. Biol. 286, 307–314 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Seidel, G., Diel, M., Fuchsbauer, N. & Hillen, W. Quantitative interdependence of coeffectors, CcpA and cre in carbon catabolite regulation of Bacillus subtilis. FEBS J. 272, 2566–2577 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Nicholson, W. L. et al. Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. J. Mol. Biol. 198, 609–618 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Jault, J. M. et al. The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose-1,6-bisphosphate binding. J. Biol. Chem. 275, 1773–1780 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Nessler, S. et al. HPr kinase/phosphorylase, the sensor enzyme of catabolite repression in Gram-positive bacteria: structural aspects of the enzyme and the complex with its protein substrate. J. Bacteriol. 185, 4003–4010 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schumacher, M. A., Seidel, G., Hillen, W. & Brennan, R. G. Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose-1,6-bisphosphate. J. Mol. Biol. 368, 1042–1050 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Sonenshein, A. L. CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. Curr. Opin. Microbiol. 8, 203–207 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Slack, F. J., Serror, P., Joyce, E. & Sonenshein, A. L. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Mol. Microbiol. 15, 689–702 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Wray, L. V. Jr., Ferson, A. E. & Fisher, S. H. Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H. J. Bacteriol. 179, 5494–5501 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferson, A. E., Wray, L. V. Jr. & Fisher, S. H. Expression of the Bacillus subtilis gabP gene is regulated independently in response to nitrogen and amino acid availability. Mol. Microbiol. 22, 693–701 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Fisher, S. H., Rohrer, K. & Ferson, A. E. Role of CodY in regulation of the Bacillus subtilis hut operon. J. Bacteriol. 178, 3779–3784 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bergara, F. et al. CodY is a nutritional repressor of flagellar gene expression in Bacillus subtilis. J. Bacteriol. 185, 3118–3126 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Debarbouille, M., Gardan, R., Arnaud, M. & Rapoport, G. Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J. Bacteriol. 181, 2059–2066 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Molle, V. et al. Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. J. Bacteriol. 185, 1911–1922 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Serror, P. & Sonenshein, A. L. CodY is required for nutritional repression of Bacillus subtilis genetic competence. J. Bacteriol. 178, 5910–5915 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Inaoka, T. & Ochi, K. RelA protein is involved in induction of genetic competence in certain Bacillus subtilis strains by moderating the level of intracellular GTP. J. Bacteriol. 184, 3923–3930 (2002). The first direct evidence that the activation of RelA changes the activity of CodY, which brought two major regulons together.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Inaoka, T., Takahashi, K., Ohnishi-Kameyama, M., Yoshida, M. & Ochi, K. Guanine nucleotides guanosine 5′-diphosphate 3′-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J. Biol. Chem. 278, 2169–2176 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Ratnayake-Lecamwasam, M., Serror, P., Wong, K. W. & Sonenshein, A. L. Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev. 15, 1093–1103 (2001). The first demonstration that GTP binds to CodY and increases its activity as a transcription factor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shivers, R. P. & Sonenshein, A. L. Activation of the Bacillus subtilis global regulator CodY by direct interaction with branched-chain amino acids. Mol. Microbiol. 53, 599–611 (2004). The first evidence that BCAAs interact directly with CodY and increase its affinity for DNA.

    Article  CAS  PubMed  Google Scholar 

  42. Guedon, E., Sperandio, B., Pons, N., Ehrlich, S. D. & Renault, P. Overall control of nitrogen metabolism in Lactococcus lactis by CodY, and possible models for CodY regulation in Firmicutes. Microbiology 151, 3895–3909 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. den Hengst, C. D. et al. The Lactococcus lactis CodY regulon: identification of a conserved cis-regulatory element. J. Biol. Chem. 280, 34332–34342 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Jin, S. & Sonenshein, A. L. Identification of two distinct Bacillus subtilis citrate synthase genes. J. Bacteriol. 176, 4669–4679 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jin, S., De Jesus-Berrios, M. & Sonenshein, A. L. A Bacillus subtilis malate dehydrogenase gene. J. Bacteriol. 178, 560–563 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jin, S. & Sonenshein, A. L. Transcriptional regulation of Bacillus subtilis citrate synthase genes. J. Bacteriol. 176, 4680–4690 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dingman, D. W. & Sonenshein, A. L. Purification of aconitase from Bacillus subtilis and correlation of its N-terminal amino acid sequence with the sequence of the citB gene. J. Bacteriol. 169, 3062–3067 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jourlin-Castelli, C., Mani, N., Nakano, M. M. & Sonenshein, A. L. CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. J. Mol. Biol. 295, 865–878 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Kim, H. J., Roux, A. & Sonenshein, A. L. Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. Mol. Microbiol. 45, 179–190 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, H. J., Jourlin-Castelli, C., Kim, S. I. & Sonenshein, A. L. Regulation of the Bacillus subtilis ccpC gene by ccpA and ccpC. Mol. Microbiol. 43, 399–410 (2002).

    Article  PubMed  Google Scholar 

  51. Kim, H. J., Mittal, M. & Sonenshein, A. L. CcpC-dependent regulation of citB and lmo0847 in Listeria monocytogenes. J. Bacteriol. 188, 179–190 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Blencke, H. M. et al. Regulation of citB expression in Bacillus subtilis: integration of multiple metabolic signals in the citrate pool and by the general nitrogen regulatory system. Arch. Microbiol. 185, 136–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Jobe, A. & Bourgeois, S. lac repressor-operator interaction. VI. The natural inducer of the lac operon. J. Mol. Biol. 69, 397–408 (1972).

    Article  CAS  PubMed  Google Scholar 

  54. Schlesinger, S., Scotto, P. & Magasanik, B. Exogenous and endogenous induction of the histidine-degrading enzymes in Aerobacter aerogenes. J. Biol. Chem. 240, 4331–4337 (1965).

    CAS  PubMed  Google Scholar 

  55. Kim, H. J. et al. Complex regulation of the Bacillus subtilis aconitase gene. J. Bacteriol. 185, 1672–1680 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M. & Nishioka, T. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J. Proteome Res. 2, 488–494 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Fisher, S. H. & Magasanik, B. 2-Ketoglutarate and the regulation of aconitase and histidase formation in Bacillus subtilis. J. Bacteriol. 158, 379–382 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bohannon, D. E. & Sonenshein, A. L. Positive regulation of glutamate biosynthesis in Bacillus subtilis. J. Bacteriol. 171, 4718–4727 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Belitsky, B. R., Janssen, P. J. & Sonenshein, A. L. Sites required for GltC-dependent regulation of Bacillus subtilis glutamate synthase expression. J. Bacteriol. 177, 5686–5695 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Picossi, S., Belitsky, B. R. & Sonenshein, A. L. Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC. J. Mol. Biol. 365, 1298–1313 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Commichau, F. M., Herzberg, C., Tripal, P., Valerius, O. & Stulke, J. A regulatory protein–protein interaction governs glutamate biosynthesis in Bacillus subtilis: the glutamate dehydrogenase RocG moonlights in controlling the transcription factor GltC. Mol. Microbiol. 65, 642–654 (2007). This recent paper shows that glutamate dehydrogenase interacts with GltC, thereby reducing glutamate synthesis.

    Article  CAS  PubMed  Google Scholar 

  62. Wray, L. V. Jr., Ferson, A. E., Rohrer, K. & Fisher, S. H. TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. Proc. Natl Acad. Sci. USA 93, 8841–8845 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zalieckas, J. M., Wray, L. V. Jr. & Fisher, S. H. trans-acting factors affecting carbon catabolite repression of the hut operon in Bacillus subtilis. J. Bacteriol. 181, 2883–2888 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yoshida, K. et al. Identification of additional TnrA-regulated genes of Bacillus subtilis associated with a TnrA box. Mol. Microbiol. 49, 157–165 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Wray, L. V. Jr., Zalieckas, J. M. & Fisher, S. H. Bacillus subtilis glutamine synthetase controls gene expression through a protein–protein interaction with transcription factor TnrA. Cell 107, 427–435 (2001). The authors reveal that TnrA, the global regulator of nitrogen metabolism in B. subtilis , is inactivated by direct interaction with a complex of glutamine synthetase and glutamine.

    Article  CAS  PubMed  Google Scholar 

  66. Belitsky, B. R. & Sonenshein, A. L. Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. J. Bacteriol. 180, 6298–6305 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gardan, R., Rapoport, G. & Debarbouille, M. Role of the transcriptional activator RocR in the arginine-degradation pathway of Bacillus subtilis. Mol. Microbiol. 24, 825–837 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Belitsky, B. R. & Sonenshein, A. L. An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis. Proc. Natl Acad. Sci. USA 96, 10290–10295 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ali, N. O. et al. Specificity of the interaction of RocR with the rocGrocA intergenic region in Bacillus subtilis. Microbiology 149, 739–750 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Belitsky, B. R., Kim, H. J. & Sonenshein, A. L. CcpA-dependent regulation of Bacillus subtilis glutamate dehydrogenase gene expression. J. Bacteriol. 186, 3392–3398 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Faires, N. et al. The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 1, 141–148 (1999).

    CAS  PubMed  Google Scholar 

  72. Wacker, I. et al. The regulatory link between carbon and nitrogen metabolism in Bacillus subtilis: regulation of the gltAB operon by the catabolite control protein CcpA. Microbiology 149, 3001–3009 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Belitsky, B. R. & Sonenshein, A. L. Modulation of activity of Bacillus subtilis regulatory proteins GltC and TnrA by glutamate dehydrogenase. J. Bacteriol. 186, 3399–3407 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wray, L. V. Jr., Pettengill, F. K. & Fisher, S. H. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. J. Bacteriol. 176, 1894–1902 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Strauch, M. A., Aronson, A. I., Brown, S. W., Schreier, H. J. & Sonenshein, A. L. Sequence of the Bacillus subtilis glutamine synthetase gene region. Gene 71, 257–265 (1988).

    Article  CAS  PubMed  Google Scholar 

  76. Brown, S. W. & Sonenshein, A. L. Autogenous regulation of the Bacillus subtilis glnRA operon. J. Bacteriol. 178, 2450–2454 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nakano, Y. & Kimura, K. Purification and characterization of a repressor for the Bacillus cereus glnRA operon. J. Biochem. (Tokyo) 109, 223–228 (1991).

    CAS  Google Scholar 

  78. Brandenburg, J. L. et al. Roles of PucR, GlnR, and TnrA in regulating expression of the Bacillus subtilis ure P3 promoter. J. Bacteriol. 184, 6060–6064 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zalieckas, J. M., Wray, L. V. Jr. & Fisher, S. H. Cross-regulation of the Bacillus subtilis glnRA and tnrA genes provides evidence for DNA binding site discrimination by GlnR and TnrA. J. Bacteriol. 188, 2578–2585 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schreier, H. J., Brown, S. W., Hirschi, K. D., Nomellini, J. F. & Sonenshein, A. L. Regulation of Bacillus subtilis glutamine synthetase gene expression by the product of the glnR gene. J. Mol. Biol. 210, 51–63 (1989).

    Article  CAS  PubMed  Google Scholar 

  81. Fisher, S. H. Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference! Mol. Microbiol. 32, 223–232 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Fisher, S. H. & Wray, L. V. Jr. Feedback-resistant mutations in Bacillus subtilis glutamine synthetase are clustered in the active site. J. Bacteriol. 188, 5966–5974 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kloosterman, T. G. et al. Regulation of glutamine and glutamate metabolism by GlnR and GlnA in Streptococcus pneumoniae. J. Biol. Chem. 281, 25097–25109 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Sauer, U. & Eikmanns, B. J. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol. Rev. 29, 765–794 (2005). A landmark paper that analyses the physiological consequences of metabolite flux.

    Article  CAS  PubMed  Google Scholar 

  85. Fink, P. S. in Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology and Molecular Genetics (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 307–317 (ASM, Washington DC, 1993).

    Google Scholar 

  86. Ludwig, H., Meinken, C., Matin, A. & Stulke, J. Insufficient expression of the ilv-leu operon encoding enzymes of branched-chain amino acid biosynthesis limits growth of a Bacillus subtilis ccpA mutant. J. Bacteriol. 184, 5174–5178 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tojo, S. et al. Elaborate transcription regulation of the Bacillus subtilis ilv-leu operon involved in the biosynthesis of branched-chain amino acids through global regulators of CcpA, CodY and TnrA. Mol. Microbiol. 56, 1560–1573 (2005). This paper reported simultaneously with reference 88 that CodY and CcpA have antagonistic effects on ilvB transcription, so establishing a crucial interaction between the two regulons.

    Article  CAS  PubMed  Google Scholar 

  88. Shivers, R. P. & Sonenshein, A. L. Bacillus subtilis ilvB operon: an intersection of global regulons. Mol. Microbiol. 56, 1549–1559 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Tojo, S. et al. Negative transcriptional regulation of the ilv-leu operon for biosynthesis of branched-chain amino acids through the Bacillus subtilis global regulator TnrA. J. Bacteriol. 186, 7971–7979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Calvo, J. M. & Matthews, R. G. The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol. Rev. 58, 466–490 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Paul, L., Mishra, P. K., Blumenthal, R. M. & Matthews, R. G. Integration of regulatory signals through involvement of multiple global regulators: control of the Escherichia coli gltBDF operon by Lrp, IHF, Crp, and ArgR. BMC Microbiol. 7, 2 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tani, T. H., Khodursky, A., Blumenthal, R. M., Brown, P. O. & Matthews, R. G. Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. Proc. Natl Acad. Sci. USA 99, 13471–13476 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. de Mendoza, D. in Bacillus subtilis and its Closest Relatives: From Genes to Cells (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 43–55 (ASM, Washington DC, 2002).

    Book  Google Scholar 

  94. Cashel, M., Gentry, D. R., Hernandez, V. J. & Vinella, D. in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (eds Neidhardt, F. C. et al.) 1458–1496 (ASM, Washington DC, 1996).

    Google Scholar 

  95. Wendrich, T. M. & Marahiel, M. A. Cloning and characterization of a relA/spoT homologue from Bacillus subtilis. Mol. Microbiol. 26, 65–79 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Eymann, C., Homuth, G., Scharf, C. & Hecker, M. Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J. Bacteriol. 184, 2500–2520 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ochi, K., Kandala, J. C. & Freese, E. Initiation of Bacillus subtilis sporulation by the stringent response to partial amino acid deprivation. J. Biol. Chem. 256, 6866–6875 (1981).

    CAS  PubMed  Google Scholar 

  98. Lopez, J. M., Dromerick, A. & Freese, E. Response of guanosine 5′-triphosphate concentration to nutritional changes and its significance for Bacillus subtilis sporulation. J. Bacteriol. 146, 605–613 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Krasny, L. & Gourse, R. L. An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation. EMBO J. 23, 4473–4483 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Giammarinaro, P. & Paton, J. C. Role of RegM, a homologue of the catabolite repressor protein CcpA, in the virulence of Streptococcus pneumoniae. Infect. Immun. 70, 5454–5461 (2002). One of the earliest demonstrations of a role for CcpA in pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Iyer, R., Baliga, N. S. & Camilli, A. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. J. Bacteriol. 187, 8340–8349 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Asanuma, N., Yoshii, T. & Hino, T. Molecular characterization of CcpA and involvement of this protein in transcriptional regulation of lactate dehydrogenase and pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis. Appl. Environ. Microbiol. 70, 5244–5251 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Luesink, E. J., van Herpen, R. E., Grossiord, B. P., Kuipers, O. P. & de Vos, W. M. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol. Microbiol. 30, 789–798 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Behari, J. & Youngman, P. A homolog of CcpA mediates catabolite control in Listeria monocytogenes but not carbon source regulation of virulence genes. J. Bacteriol. 180, 6316–6324 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Mertins, S. et al. Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes. J. Bacteriol. 189, 473–490 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Seidl, K. et al. Staphylococcus aureus CcpA affects virulence determinant production and antibiotic resistance. Antimicrob. Agents Chemother. 50, 1183–1194 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kreft, J. & Vazquez-Boland, J. A. Regulation of virulence genes in Listeria. Int. J. Med. Microbiol. 291, 145–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Herro, R. et al. How seryl-phosphorylated HPr inhibits PrfA, a transcription activator of Listeria monocytogenes virulence genes. J. Mol. Microbiol. Biotechnol. 9, 224–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Jankovic, I. & Bruckner, R. Carbon catabolite repression by the catabolite control protein CcpA in Staphylococcus xylosus. J. Mol. Microbiol. Biotechnol. 4, 309–314 (2002).

    CAS  PubMed  Google Scholar 

  110. Varga, J., Stirewalt, V. L. & Melville, S. B. The CcpA protein is necessary for efficient sporulation and enterotoxin (cpe) regulation in Clostridium perfringens. J. Bacteriol. 186, 5221–5229 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bennett, H. J. et al. Characterization of relA and codY mutants of Listeria monocytogenes: identification of the CodY regulon and its role in virulence. Mol. Microbiol. 63, 1453–1467 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Malke, H., Steiner, K., McShan, W. M. & Ferretti, J. J. Linking the nutritional status of Streptococcus pyogenes to alteration of transcriptional gene expression: the action of CodY and RelA. Int. J. Med. Microbiol. 296, 259–275 (2006). The first published evidence that a CodY protein in a pathogenic bacterium is involved in the regulation of virulence genes.

    Article  CAS  PubMed  Google Scholar 

  113. Petranovic, D. et al. Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic transcription regulator. Mol. Microbiol. 53, 613–621 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. den Hengst, C. D., Groeneveld, M., Kuipers, O. P. & Kok, J. Identification and functional characterization of the Lactococcus lactis CodY-regulated branched-chain amino acid permease BcaP (CtrA). J. Bacteriol. 188, 3280–3289 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chambellon, E. & Yvon, M. CodY-regulated aminotransferases AraT and BcaT play a major role in the growth of Lactococcus lactis in milk by regulating the intracellular pool of amino acids. Appl. Environ. Microbiol. 69, 3061–3068 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Guedon, E., Serror, P., Ehrlich, S. D., Renault, P. & Delorme, C. Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis. Mol. Microbiol. 40, 1227–1239 (2001). The first evidence that CodY responds in vivo to BCAAs.

    Article  CAS  PubMed  Google Scholar 

  117. den Hengst, C. D. et al. Probing direct interactions between CodY and the oppD promoter of Lactococcus lactis. J. Bacteriol. 187, 512–521 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Malke, H. & Ferretti, J. J. CodY-affected transcriptional gene expression of Streptococcus pyogenes during growth in human blood. J. Med. Microbiol. 56, 707–714 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Mani, N. & Dupuy, B. Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc. Natl Acad. Sci. USA 98, 5844–5849 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mani, N. et al. Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression. J. Bacteriol. 184, 5971–5978 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hundsberger, T. et al. Transcription analysis of the genes tcdA–E of the pathogenicity locus of Clostridium difficile. Eur. J. Biochem. 244, 735–742 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Dupuy, B. & Sonenshein, A. L. Regulated transcription of Clostridium difficile toxin genes. Mol. Microbiol. 27, 107–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Dineen, S. S., Villapakkam, A., Nordman, J. & Sonenshein, A. L. Repression of Clostridium difficile toxin genes by CodY. Mol. Microbiol. 66, 206–219 (2007). This paper presents the first example of direct interaction between CodY and a virulence-gene locus.

    Article  CAS  PubMed  Google Scholar 

  124. Tu Quoc, P. H. et al. Isolation and characterization of biofilm formation-defective mutants of Staphylococcus aureus. Infect. Immun. 75, 1079–1088 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Taylor, C. M. et al. Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J. Bacteriol. 184, 621–628 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous reviewers for many helpful suggestions. The unpublished work cited in this Review was supported by research grants from the US Public Health Service (GM042219, GM036718 and AI057637).

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus anthracis

Bacillus subtilis

Clostridium difficile

Clostridium perfringens

Escherichia coli

Lactococcus lactis

Listeria monocytogenes

Staphylococcus aureus

Staphylococcus xylosus

Streptococcus pneumoniae

Streptococcus pyogenes

Entrez Protein

CcpA

CcpC

CodY

Crh

GltC

HPr

pppGpp

RocG

RocR

TnrA

FURTHER INFORMATION

Abraham L. Sonenshein's homepage

Glossary

Glycolysis

The metabolic pathway that converts glucose into pyruvate, with the concomitant production of ATP and NADH.

Pentose-phosphate pathway

The metabolic pathway by which glucose-6-phosphate is oxidized to ribose-5-phosphate, with the concomitant production of NADPH.

Citric acid cycle

The metabolic pathway that oxidizes acetyl CoA to carbon dioxide.

2-oxoglutarate–glutamate–glutamine cycle

The metabolic pathway that connects carbon and nitrogen metabolism and permits ammonium ions to be incorporated into organic molecules.

Global regulator

A protein that controls many genes and operons in response to a specific signal.

Sporulation

A developmental programme in some microorganisms in response to unfavourable environmental conditions that results in spores that are highly resistant to environmental stresses.

LacI protein family

The proteins that are related in sequence and function to the classical repressor of the E. coli lac operon.

Phosphoenolpyruvate-dependent phosphotransferase transport system

A multi-protein phosphorelay system that couples the phosphorylation of sugars to their transport across the cytoplasmic membrane.

Competence

The ability of bacteria to take up extracellular DNA.

Homolactic fermentation

The production of lactic acid (lactate) as the sole pyruvate-derived product during growth on sugars, such as glucose.

Two-component regulatory system

A system that responds to an environmental stimulus and regulates gene expression accordingly. Composed of a histidine-kinase sensor, usually situated in the outer membrane, that phosphorylates a response regulator in the cytoplasm, which, in turn, activates transcription from selected promoters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonenshein, A. Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol 5, 917–927 (2007). https://doi.org/10.1038/nrmicro1772

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1772

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing