Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Type VII secretion — mycobacteria show the way

Abstract

Recent evidence shows that mycobacteria have developed novel and specialized secretion systems for the transport of extracellular proteins across their hydrophobic, and highly impermeable, cell wall. Strikingly, mycobacterial genomes encode up to five of these transport systems. Two of these systems, ESX-1 and ESX-5, are involved in virulence — they both affect the cell-to-cell migration of pathogenic mycobacteria. Here, we discuss this novel secretion pathway and consider variants that are present in various Gram-positive bacteria. Given the unique composition of this secretion system, and its general importance, we propose that, in line with the accepted nomenclature, it should be called type VII secretion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the cell envelope of Mycobacterium tuberculosis.
Figure 2: Genes involved in the ESX-1 secretion system.
Figure 3: Structure of the ESAT-6–CFP-10 dimer.
Figure 4: Working model for the ESX-1 secretion system.
Figure 5: Comparison of different gene clusters that encode type VII or type VIIb secretion systems.

Similar content being viewed by others

References

  1. Finlay, B. B. & Falkow, S. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61, 136–169 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. van Wely, K. H., Swaving, J., Freudl, R. & Driessen, A. J. Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol. Rev. 25, 437–454 (2001).

    Article  CAS  Google Scholar 

  3. Pym, A. S. et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nature Med. 9, 533–539 (2003).

    Article  CAS  Google Scholar 

  4. Stanley, S. A., Raghavan, S., Hwang, W. W. & Cox, J. S. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc. Natl Acad. Sci. USA 100, 13001–13006 (2003).

    Article  CAS  Google Scholar 

  5. Hsu, T. et al. The primary mechanism of attenuation of bacillus Calmette–Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc. Natl Acad. Sci. USA 100, 12420–12425 (2003).

    Article  CAS  Google Scholar 

  6. Guinn, K. M. et al. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol. Microbiol. 51, 359–370 (2004).

    Article  CAS  Google Scholar 

  7. Sutcliffe, I. C. Cell envelope composition and organisation in the genus Rhodococcus. Antonie Van Leeuwenhoek 74, 49–58 (1998).

    Article  CAS  Google Scholar 

  8. Minnikin, D. E., Kremer, L., Dover, L. G. & Besra, G. S. The methyl-branched fortifications of Mycobacterium tuberculosis. Chem. Biol. 9, 545–553 (2002).

    Article  CAS  Google Scholar 

  9. Bayan, N., Houssin, C., Chami, M. & Leblon, G. Mycomembrane and S-layer: two important structures of Corynebacterium glutamicum cell envelope with promising biotechnology applications. J. Biotechnol. 104, 55–67 (2003).

    Article  CAS  Google Scholar 

  10. Mahairas, G. G., Sabo, P. J., Hickey, M. J., Singh, D. C. & Stover, C. K. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178, 1274–1282 (1996).

    Article  CAS  Google Scholar 

  11. Andersen, P. & Doherty, T. M. The success and failure of BCG — implications for a novel tuberculosis vaccine. Nature Rev. Microbiol. 3, 656–662 (2005).

    Article  CAS  Google Scholar 

  12. Gordon, S. V. et al. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol. Microbiol. 32, 643–655 (1999).

    Article  CAS  Google Scholar 

  13. Lewis, K. N. et al. Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette–Guerin attenuation. J. Infect. Dis. 187, 117–123 (2003).

    Article  Google Scholar 

  14. Majlessi, L. et al. Influence of ESAT-6 secretion system 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system. J. Immunol. 174, 3570–3579 (2005).

    Article  CAS  Google Scholar 

  15. Pym, A. S., Brodin, P., Brosch, R., Huerre, M. & Cole, S. T. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol. Microbiol. 46, 709–717 (2002).

    Article  CAS  Google Scholar 

  16. Tekaia, F. et al. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber. Lung Dis. 79, 329–342 (1999).

    Article  CAS  Google Scholar 

  17. Gey Van Pittius, N. C. et al. The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biol. 2, research0044.1–0044.18 (2001).

    Article  Google Scholar 

  18. Pallen, M. J. The ESAT-6/WXG100 superfamily — and a new Gram-positive secretion system? Trends Microbiol. 10, 209–212 (2002).

    Article  CAS  Google Scholar 

  19. Gao, L. Y. et al. A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion. Mol. Microbiol. 53, 1677–1693 (2004).

    Article  CAS  Google Scholar 

  20. Converse, S. E. & Cox, J. S. A protein secretion pathway critical for Mycobacterium tuberculosis virulence is conserved and functional in Mycobacterium smegmatis. J. Bacteriol. 187, 1238–1245 (2005).

    Article  CAS  Google Scholar 

  21. Flint, J. L., Kowalski, J. C., Karnati, P. K. & Derbyshire, K. M. The RD1 virulence locus of Mycobacterium tuberculosis regulates DNA transfer in Mycobacterium smegmatis. Proc. Natl Acad. Sci. USA 101, 12598–12603 (2004).

    Article  CAS  Google Scholar 

  22. MacGurn, J. A., Raghavan, S., Stanley, S. A. & Cox, J. S. A non-RD1 gene cluster is required for Snm secretion in Mycobacterium tuberculosis. Mol. Microbiol. 57, 1653–1663 (2005).

    Article  CAS  Google Scholar 

  23. Fortune, S. M. et al. Mutually dependent secretion of proteins required for mycobacterial virulence. Proc. Natl Acad. Sci. USA 102, 10676–10681 (2005).

    Article  CAS  Google Scholar 

  24. Abdallah, A. M. et al. A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol. Microbiol. 62, 667–679 (2006).

    Article  CAS  Google Scholar 

  25. Burts, M. L., Williams, W. A., DeBord, K. & Missiakas, D. M. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc. Natl Acad. Sci. USA 102, 1169–1174 (2005).

    Article  CAS  Google Scholar 

  26. Renshaw, P. S. et al. Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J. 24, 2491–2498 (2005).

    Article  CAS  Google Scholar 

  27. Brodin, P. et al. Functional analysis of early secreted antigenic target-6, the dominant T-cell antigen of Mycobacterium tuberculosis, reveals key residues involved in secretion, complex formation, virulence, and immunogenicity. J. Biol. Chem. 280, 33953–33959 (2005).

    Article  CAS  Google Scholar 

  28. Champion, P. A., Stanley, S. A., Champion, M. M., Brown, E. J. & Cox, J. S. C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 313, 1632–1636 (2006).

    Article  Google Scholar 

  29. Ize, B. & Palmer, T. Microbiology. Mycobacteria's export strategy. Science 313, 1583–1584 (2006).

    Article  CAS  Google Scholar 

  30. MacGurn, J. A. & Cox, J. S. A genetic screen for Mycobacterium tuberculosis mutants defective for phagosome maturation arrest identifies components of the ESX-1 secretion system. Infect. Immun. 75, 2668–2678 (2007).

    Article  CAS  Google Scholar 

  31. Lodes, M. J. et al. Serological expression cloning and immunological evaluation of MTB48, a novel Mycobacterium tuberculosis antigen. J. Clin. Microbiol. 39, 2485–2493 (2001).

    Article  CAS  Google Scholar 

  32. Nagai, H. et al. A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc. Natl Acad. Sci. USA 102, 826–831 (2005).

    Article  CAS  Google Scholar 

  33. Vergunst, A. C. et al. Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. Proc. Natl Acad. Sci. USA 102, 832–837 (2005).

    Article  CAS  Google Scholar 

  34. Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S. & Cascales, E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59, 451–485 (2005).

    Article  CAS  Google Scholar 

  35. Singh, A., Mai, D., Kumar, A. & Steyn, A. J. Dissecting virulence pathways of Mycobacterium tuberculosis through protein–protein association. Proc. Natl Acad. Sci. USA 103, 11346–11351 (2006).

    Article  CAS  Google Scholar 

  36. Dave, J. A., Gey Van Pittius, N. C., Beyers, A. D., Ehlers, M. R. & Brown, G. D. Mycosin-1, a subtilisin-like serine protease of Mycobacterium tuberculosis, is cell wall-associated and expressed during infection of macrophages. BMC Microbiol. 2, 30 (2002).

    Article  Google Scholar 

  37. Faller, M., Niederweis, M. & Schulz, G. E. The structure of a mycobacterial outer-membrane channel. Science 303, 1189–1192 (2004).

    Article  CAS  Google Scholar 

  38. Niederweis, M. Mycobacterial porins — new channel proteins in unique outer membranes. Mol. Microbiol. 49, 1167–1177 (2003).

    Article  CAS  Google Scholar 

  39. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  Google Scholar 

  40. Brodin, P., Rosenkrands, I., Andersen, P., Cole, S. T. & Brosch, R. ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol. 12, 500–508 (2004).

    Article  CAS  Google Scholar 

  41. Gey Van Pittius, N. C. et al. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol. Biol. 6, 95 (2006).

    Article  Google Scholar 

  42. Skjot, R. L. V. et al. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens. Infect. Immun. 68, 214–220 (2000).

    Article  CAS  Google Scholar 

  43. Alderson, M. R. et al. Expression cloning of an immunodominant family of Mycobacterium tuberculosis antigens using human CD4+ T cells. J. Exp. Med. 191, 551–559 (2000).

    Article  CAS  Google Scholar 

  44. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 8060–8065 (2006).

    Article  CAS  Google Scholar 

  45. Okkels, L. M. & Andersen, P. Protein–protein interactions of proteins from the ESAT-6 family of Mycobacterium tuberculosis. J. Bacteriol. 186, 2487–2491 (2004).

    Article  CAS  Google Scholar 

  46. Teutschbein, J. et al. A protein linkage map of the ESAT-6 secretion system 1 (ESX-1) of Mycobacterium tuberculosis. Microbiol. Res. 11 Apr 2007 (doi:10.1016/j.micres.2006.11.016).

    Google Scholar 

  47. Betts, J. C., Lukey, P. T., Robb, L. C., Mcadam, R. A. & Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43, 717–731 (2002).

    Article  CAS  Google Scholar 

  48. Maciag, A. et al. Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J. Bacteriol. 189, 730–740 (2007).

    Article  CAS  Google Scholar 

  49. Rodriguez, G. M. & Smith, I. Mechanisms of iron regulation in mycobacteria: role in physiology and virulence. Mol. Microbiol. 47, 1485–1494 (2003).

    Article  CAS  Google Scholar 

  50. Agarwal, N., Woolwine, S. C., Tyagi, S. & Bishai, W. R. Characterization of the Mycobacterium tuberculosis sigma factor SigM by assessment of virulence and identification of SigM-dependent genes. Infect. Immun. 75, 452–461 (2007).

    Article  CAS  Google Scholar 

  51. Lamichhane, G. et al. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 100, 7213–7218 (2003).

    Article  CAS  Google Scholar 

  52. Sassetti, C. M., Boyd, D. H. & Rubin, E. J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48, 77–84 (2003).

    Article  CAS  Google Scholar 

  53. Sao-Jose, C., Baptista, C. & Santos, M. A. Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J. Bacteriol. 186, 8337–8346 (2004).

    Article  CAS  Google Scholar 

  54. Francis, A. W. et al. Proteomic analysis of Bacillus anthracis Sterne vegetative cells. Biochim. Biophys. Acta 1748, 191–200 (2005).

    Article  CAS  Google Scholar 

  55. Sao-Jose, C. et al. The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA. J. Biol. Chem. 281, 11464–11470 (2006).

    Article  CAS  Google Scholar 

  56. Way, S. S. & Wilson, C. B. The Mycobacterium tuberculosis ESAT-6 homologue in Listeria monocytogenes is dispensable for growth in vitro and in vivo. Infect. Immun. 73, 6151–6153 (2005).

    Article  CAS  Google Scholar 

  57. Geluk, A. et al. Identification and characterization of the ESAT-6 homologue of Mycobacterium leprae and T-cell cross-reactivity with Mycobacterium tuberculosis. Infect. Immun. 70, 2544–2548 (2002).

    Article  CAS  Google Scholar 

  58. Stinear, T. P. et al. Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res. 17, 192–200 (2007).

    Article  CAS  Google Scholar 

  59. Brodin, P. et al. Bacterial artificial chromosome-based comparative genomic analysis identifies Mycobacterium microti as a natural ESAT-6 deletion mutant. Infect. Immun. 70, 5568–5578 (2002).

    Article  CAS  Google Scholar 

  60. Volkman, H. E. et al. Tuberculous granuloma formation is enhanced by a Mycobacterium virulence determinant. PLoS Biol. 2, 1946–1956 (2004).

    Article  CAS  Google Scholar 

  61. Stamm, L. M. et al. Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J. Exp. Med. 198, 1361–1368 (2003).

    Article  CAS  Google Scholar 

  62. van der Wel, N. et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129, 1287–1298 (2007).

    Article  CAS  Google Scholar 

  63. Derrick, S. C. & Morris, S. L. The ESAT6 protein of Mycobacterium tuberculosis induces apoptosis of macrophages by activating caspase expression. Cell. Microbiol. 9, 1547–1555 (2007).

    Article  CAS  Google Scholar 

  64. de Jonge, M. I. et al. ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J. Bacteriol. 189, 6028–6034 (2007).

    Article  CAS  Google Scholar 

  65. Varga, J. J. et al. Type IV pili-dependent gliding motility in the Gram-positive pathogen Clostridium perfringens and other Clostridia. Mol. Microbiol. 62, 680–694 (2006).

    Article  CAS  Google Scholar 

  66. Van der Auwera, G. A., Andrup, L. & Mahillon, J. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727. BMC Genomics 6, 103 (2005).

    Article  Google Scholar 

  67. Abajy, M. Y. et al. A type IV-secretion-like system is required for conjugative DNA transport of broad-host-range plasmid pIP501 in gram-positive bacteria. J. Bacteriol. 189, 2487–2496 (2007).

    Article  CAS  Google Scholar 

  68. Holland, I. B., Schmitt, L. & Young, J. Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (Review). Mol. Membr. Biol. 22, 29–39 (2005).

    Article  CAS  Google Scholar 

  69. Johnson, T. L., Abendroth, J., Hol, W. G. & Sandkvist, M. Type II secretion: from structure to function. FEMS Microbiol. Lett. 255, 175–186 (2006).

    Article  CAS  Google Scholar 

  70. Cornelis, G. R. The type III secretion injectisome. Nature Rev. Microbiol. 4, 811–825 (2006).

    Article  CAS  Google Scholar 

  71. Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C. & Ala'Aldeen, D. Type V protein secretion pathway: the autotransporter story. Microbiol. Mol. Biol. Rev. 68, 692–744 (2004).

    Article  CAS  Google Scholar 

  72. Oomen, C. J. et al. Structure of the translocator domain of a bacterial autotransporter. EMBO J. 23, 1257–1266 (2004).

    Article  CAS  Google Scholar 

  73. Mougous, J. D. et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530 (2006).

    Article  CAS  Google Scholar 

  74. Pukatzki, S. et al. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl Acad. Sci. USA 103, 1528–1533 (2006).

    Article  CAS  Google Scholar 

  75. Alteri, C. J. et al. Mycobacterium tuberculosis produces pili during human infection. Proc. Natl Acad. Sci. USA 104, 5145–5150 (2007).

    Article  CAS  Google Scholar 

  76. Li, Y., Miltner, E., Wu, M., Petrofsky, M. & Bermudez, L. E. A Mycobacterium avium PPE gene is associated with the ability of the bacterium to grow in macrophages and virulence in mice. Cell. Microbiol. 7, 539–548 (2005).

    Article  CAS  Google Scholar 

  77. Ramakrishnan, L., Federspiel, N. A. & Falkow, S. Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288, 1436–1439 (2000).

    Article  CAS  Google Scholar 

  78. Brodin, P. et al. Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect. Immun. 74, 88–98 (2006).

    Article  CAS  Google Scholar 

  79. Tan, T., Lee, W. L., Alexander, D. C., Grinstein, S. & Liu, J. The ESAT-6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation. Cell. Microbiol. 8, 1417–1429 (2006).

    Article  CAS  Google Scholar 

  80. Mostowy, S., Cousins, D. & Behr, M. A. Genomic interrogation of the dassie bacillus reveals it as a unique RD1 mutant within the Mycobacterium tuberculosis complex. J. Bacteriol. 186, 104–109 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert Bitter.

Supplementary information

Supplementary information S1 (figure)

Partial sequence alignment of the members of the ESAT-6/WXG100 protein family in Mycobacterium tuberculosis. (PDF 144 kb)

Supplementary information S2 (figure)

Proposed evolutionary scenario of mycobacteria with respect to the different Type VII secretion systems (ESX-1 to ESX-5) and the related PE and PPE gene families. (PDF 336 kb)

Supplementary information S3 (table)

Experimental evidence for the presence of the ESX gene cluster regions in the mycobacteria. (PDF 83 kb)

Supplementary information S4 (table)

Liquorice all sorts: the diverse roles of ESX-1 secretion and its substrates in mycobacteria (PDF 92 kb)

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus anthracis

Bacillus subtilis

Listeria monocytogenes

Mycobacterium bovis

Mycobacterium leprae

Mycobacterium marinum

Mycobacterium smegmatis

Mycobacterium tuberculosis

Staphylococcus aureus

Streptococcus agalactiae

Entrez Protein

CFP-10

ESAT-6

EsxA

EsxB

Rv3616c

Rv3868

Rv3869

Rv3870

Rv3871

Rv3877

Rv3881c

Rv3883c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdallah, A., Gey van Pittius, N., DiGiuseppe Champion, P. et al. Type VII secretion — mycobacteria show the way. Nat Rev Microbiol 5, 883–891 (2007). https://doi.org/10.1038/nrmicro1773

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1773

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing