Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype

Key Points

  • The emergence of drug resistance in pathogenic microorganisms provides an excellent example of evolution that has had profound consequences for human health. As the evolution of drug resistance is outpacing the development of new antimicrobial agents, it is now crucial to understand the evolutionary mechanisms that are involved in order to maintain effective therapeutic strategies.

  • Fungal pathogens pose a particularly acute challenge, owing to the limited number of clinically useful antifungal drugs that are available and the rising incidence and mortality of infections with Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. As tractable model eukaryotes, fungi also provide powerful model systems for the study of evolution, cellular signalling and the genetic architecture of complex traits.

  • This article focuses on the mechanisms that enable the evolution of fungal drug resistance by modulating the trajectory from genotype to phenotype, with an emphasis on the central role of the molecular chaperone heat shock protein 90 (Hsp90). Hsp90 regulates the form and function of diverse signal transducers and can function as a capacitor for the storage of genetic variation in a silent state that can be released in response to environmental stress.

  • Hsp90 enables the rapid evolution of resistance to the widely used azole antifungal drugs in Saccharomyces cerevisiae and C. albicans, and is also required for the phenotypic consequences of resistance that is acquired owing to diverse mutations in the genome. The role of Hsp90 in azole resistance is to enable crucial cellular stress responses to the membrane stress that is exerted by the azoles.

  • In Aspergillus species, Hsp90 potentiates basal resistance to the only new class of antifungal drugs to reach the clinic in decades, the echinocandins. The role of Hsp90 in echinocandin resistance is to enable specific cellular stress responses to the cell-wall stress that is exerted by the echinocandins.

  • The central mediator of Hsp90-dependent drug resistance is calcineurin, a key regulator of cellular signalling that requires Hsp90 to maintain its stable form and function. Inhibition of calcineurin with FK506 or cyclosporin A phenocopies the inhibition of Hsp90 with geldanamycin or radicicol, thereby reducing the drug resistance of fungi that are separated by 1 billion years of evolution. Drug resistance can evolve from Hsp90-dependence to Hsp90-independence by the accumulation of additional mutations that allow the cell to bypass the stress that is exerted by the antifungal drug.

  • Although Hsp90 provides one of the best examples of an explicit mechanism that can alter the relationship between genotype and phenotype and potentiate the evolution of drug resistance, there are other ways in which alterations in the cellular state can affect resistance phenotypes. Fungal prions — proteins that can adopt an altered conformation that is self-perpetuating and are transmitted as a protein-based element of inheritance — can have a profound impact on resistance phenotypes, as can elaboration of the complex architecture of fungal biofilms.

  • The role of Hsp90 in the emergence and maintenance of fungal drug resistance suggests a promising new combination strategy for treating fungal infections. Pharmacological inhibitors of Hsp90 that are well tolerated in humans can block the evolution of drug resistance and abrogate drug resistance in diverse fungal pathogens, and thus may render resistant pathogens responsive to treatment.

Abstract

The emergence of drug resistance in pathogenic microorganisms provides an excellent example of microbial evolution that has had profound consequences for human health. The widespread use of antimicrobial agents in medicine and agriculture exerts strong selection for the evolution of drug resistance. Selection acts on the phenotypic consequences of resistance mutations, which are influenced by the genetic variation in particular genomes. Recent studies have revealed a mechanism by which the molecular chaperone heat shock protein 90 (Hsp90) can alter the relationship between genotype and phenotype in an environmentally contingent manner, thereby 'sculpting' the course of evolution. Harnessing Hsp90 holds great promise for treating life-threatening infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antifungal drugs and their targets.
Figure 2: Azole and echinocandin resistance mechanisms.
Figure 3: Hsp90-mediated genetic capacitance.
Figure 4: The role of Hsp90 in fungal drug resistance.
Figure 5: Inhibition of Hsp90 or calcineurin function abrogates drug resistance of pathogenic fungi.

Similar content being viewed by others

References

  1. Anderson, J. B. Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nature Rev. Microbiol. 3, 547–556 (2005). An excellent introduction to fungal drug resistance from an evolutionary perspective.

    Article  CAS  Google Scholar 

  2. Antonovics, J. et al. Evolution by any other name: antibiotic resistance and avoidance of the e-word. PLoS Biol. 5, e30 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cowen, L. E. Predicting the emergence of resistance to antifungal drugs. FEMS Microbiol. Lett. 204, 1–7 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Cowen, L. E., Anderson, J. B. & Kohn, L. M. Evolution of drug resistance in Candida albicans. Annu. Rev. Microbiol. 56, 139–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Levin, B. R., Lipsitch, M. & Bonhoeffer, S. Population biology, evolution, and infectious disease: convergence and synthesis. Science 283, 806–809 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Riley, M. A. & Wertz, J. E. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 56, 117–137 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Wright, G. D. The antibiotic resistome: the nexus of chemical and genetic diversity. Nature Rev. Microbiol. 5, 175–186 (2007).

    Article  CAS  Google Scholar 

  8. Yim, G., Wang, H. H. & Davies, J. Antibiotics as signalling molecules. Phil. Trans. R. Soc. Lond. B 362, 1195–1200 (2007).

    Article  CAS  Google Scholar 

  9. Palumbi, S. R. Humans as the world's greatest evolutionary force. Science 293, 1786–1790 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Pfaller, M. A. & Diekema, D. J. Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbiol. 42, 4419–4431 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. White, T. C., Marr, K. A. & Bowden, R. A. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11, 382–402 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alekshun, M. N. & Levy, S. B. Molecular mechanisms of antibacterial multidrug resistance. Cell 128, 1037–1050 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Hastings, P. J., Rosenberg, S. M. & Slack, A. Antibiotic-induced lateral transfer of antibiotic resistance. Trends Microbiol. 12, 401–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Rambaut, A., Posada, D., Crandall, K. A. & Holmes, E. C. The causes and consequences of HIV evolution. Nature Rev. Genet. 5, 52–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Woodford, N. & Ellington, M. J. The emergence of antibiotic resistance by mutation. Clin. Microbiol. Infect. 13, 5–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Maisnier-Patin, S. & Andersson, D. I. Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Res. Microbiol. 155, 360–369 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Perlstein, E. O. et al. Revealing complex traits with small molecules and naturally recombinant yeast strains. Chem. Biol. 13, 319–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Perlstein, E. O., Ruderfer, D. M., Roberts, D. C., Schreiber, S. L. & Kruglyak, L. Genetic basis of individual differences in the response to small-molecule drugs in yeast. Nature Genet. 39, 496–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Odds, F. C., Brown, A. J. & Gow, N. A. Antifungal agents: mechanisms of action. Trends Microbiol. 11, 272–279 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Fraser, J. A. et al. Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437, 1360–1364 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Martin, G. S., Mannino, D. M., Eaton, S. & Moss, M. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546–1554 (2003).

    Article  PubMed  Google Scholar 

  23. Pfaller, M. A. & Diekema, D. J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 20, 133–163 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McNeil, M. M. et al. Trends in mortality due to invasive mycotic diseases in the United States, 1980–1997. Clin. Infect. Dis. 33, 641–647 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Wilson, L. S. et al. The direct cost and incidence of systemic fungal infections. Value Health 5, 26–34 (2002).

    Article  PubMed  Google Scholar 

  26. Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nature Rev. Genet. 4, 457–469 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Zeyl, C. Experimental evolution with yeast. FEMS Yeast Res. 6, 685–691 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Bahn, Y. S. et al. Sensing the environment: lessons from fungi. Nature Rev. Microbiol. 5, 57–69 (2007).

    Article  CAS  Google Scholar 

  29. Boone, C., Bussey, H. & Andrews, B. J. Exploring genetic interactions and networks with yeast. Nature Rev. Genet. 8, 437–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Hartman, J. L., Garvik, B. & Hartwell, L. Principles for the buffering of genetic variation. Science 291, 1001–1004 (2001). Provides an important perspective on the complex relationship between genotype and phenotype and mechanisms of buffering variation in eukaryotic genomes.

    Article  CAS  PubMed  Google Scholar 

  31. Rockman, M. V. & Kruglyak, L. Genetics of global gene expression. Nature Rev. Genet. 7, 862–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Steinmetz, L. M. & Davis, R. W. Maximizing the potential of functional genomics. Nature Rev. Genet. 5, 190–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Lupetti, A., Danesi, R., Campa, M., Del Tacca, M. & Kelly, S. Molecular basis of resistance to azole antifungals. Trends Mol. Med. 8, 76–81 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Turner, M. S., Drew, R. H. & Perfect, J. R. Emerging echinocandins for treatment of invasive fungal infections. Expert Opin. Emerg. Drugs 11, 231–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Rex, J. H. & Pfaller, M. A. Has antifungal susceptibility testing come of age? Clin. Infect. Dis. 35, 982–989 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Sanglard, D. Resistance of human fungal pathogens to antifungal drugs. Curr. Opin. Microbiol. 5, 379–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Sanglard, D. & Odds, F. C. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect. Dis. 2, 73–85 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Coste, A. et al. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot. Cell 6, 1889–1904 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. da Silva Ferreira, M. E. et al. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob. Agents Chemother. 48, 4405–4413 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nascimento, A. M. et al. Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole. Antimicrob. Agents Chemother. 47, 1719–1726 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pasrija, R., Banerjee, D. & Prasad, R. Structure and function analysis of CaMdr1p, a major facilitator superfamily antifungal efflux transporter protein of Candida albicans: identification of amino acid residues critical for drug/H+ transport. Eukaryot. Cell 6, 443–453 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Perea, S. et al. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 45, 2676–2684 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chamilos, G. & Kontoyiannis, D. P. Update on antifungal drug resistance mechanisms of Aspergillus fumigatus. Drug Resist. Updat. 8, 344–358 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Coste, A. et al. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172, 2139–2156 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Coste, A. T., Karababa, M., Ischer, F., Bille, J. & Sanglard, D. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot. Cell 3, 1639–1652 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hiller, D., Stahl, S. & Morschhauser, J. Multiple cis-acting sequences mediate upregulation of the MDR1 efflux pump in a fluconazole-resistant clinical Candida albicans isolate. Antimicrob. Agents Chemother. 50, 2300–2308 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, T. T. et al. Genome-wide expression and location analyses of the Candida albicans Tac1p regulon. Eukaryot. Cell 6, 2122–2138 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morschhauser, J. et al. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog. 3, e164 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Riggle, P. J. & Kumamoto, C. A. Transcriptional regulation of MDR1, encoding a drug efflux determinant, in fluconazole-resistant Candida albicans strains through an Mcm1p binding site. Eukaryot. Cell 5, 1957–1968 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rognon, B., Kozovska, Z., Coste, A. T., Pardini, G. & Sanglard, D. Identification of promoter elements responsible for the regulation of MDR1 from Candida albicans, a major facilitator transporter involved in azole resistance. Microbiology 152, 3701–3722 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Selmecki, A., Forche, A. & Berman, J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313, 367–370 (2006). Established a novel mechanism of fungal drug resistance that involves aneuploidy and isochromosome formation; also showcased the genomic plasticity that underpins phenotypic variability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Niimi, K. et al. Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility. Antimicrob. Agents Chemother. 50, 1148–1155 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Perlin, D. S. Resistance to echinocandin-class antifungal drugs. Drug Resist. Updat. 10, 121–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. MacPherson, S. et al. Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob. Agents Chemother. 49, 1745–1752 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Silver, P. M., Oliver, B. G. & White, T. C. Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot. Cell 3, 1391–1397 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Giaever, G. et al. Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc. Natl Acad. Sci. USA 101, 793–798 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu, W. et al. Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog. 3, e24 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu, D. et al. Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog. 3, e92 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. White, T. C. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob. Agents Chemother. 41, 1482–1487 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anderson, J. B., Ricker, N. & Sirjusingh, C. Antagonism between two mechanisms of antifungal drug resistance. Eukaryot. Cell 5, 1243–1251 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cowen, L. E., Kohn, L. M. & Anderson, J. B. Divergence in fitness and evolution of drug resistance in experimental populations of Candida albicans. J. Bacteriol. 183, 2971–2978 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cowen, L. E. et al. Evolution of drug resistance in experimental populations of Candida albicans. J. Bacteriol. 182, 1515–1522 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cowen, L. E. et al. Population genomics of drug resistance in Candida albicans. Proc. Natl Acad. Sci. USA 99, 9284–9289 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cowen, L. E., Carpenter, A. E., Matangkasombut, O., Fink, G. R. & Lindquist, S. Genetic architecture of Hsp90-dependent drug resistance. Eukaryot. Cell 5, 2184–2188 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cowen, L. E. & Lindquist, S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309, 2185–2189 (2005). Describes a new mechanism by which Hsp90 can enable the evolution of fungal drug resistance and modulate the relationship between genotype and phenotype.

    Article  CAS  PubMed  Google Scholar 

  66. Pearl, L. H. & Prodromou, C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75, 271–294 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Picard, D. Heat-shock protein 90, a chaperone for folding and regulation. Cell. Mol. Life Sci. 59, 1640–1648 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Pratt, W. B. & Toft, D. O. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. 228, 111–133 (2003).

    Article  CAS  Google Scholar 

  69. Young, J. C., Moarefi, I. & Hartl, F. U. Hsp90: a specialized but essential protein-folding tool. J. Cell. Biol. 154, 267–273 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chang, H. C. & Lindquist, S. Conservation of Hsp90 macromolecular complexes in Saccharomyces cerevisiae. J. Biol. Chem. 269, 24983–24988 (1994).

    CAS  PubMed  Google Scholar 

  71. Nathan, D. F., Vos, M. H. & Lindquist, S. In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc. Natl Acad. Sci. USA 94, 12949–12956 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Roe, S. M. et al. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 42, 260–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Whitesell, L., Mimnaugh, E. G., De Costa, B., Myers, C. E. & Neckers, L. M. Inhibition of heat shock protein HSP90–pp60v–src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl Acad. Sci. USA 91, 8324–8328 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sangster, T. A., Lindquist, S. & Queitsch, C. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 26, 348–362 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Queitsch, C., Sangster, T. A. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 417, 618–624 (2002). Demonstrated that the molecular chaperone Hsp90 buffers development from the destabilizing effects of stochastic processes and also buffers the expression of genetic variation in A. thaliana.

    Article  CAS  PubMed  Google Scholar 

  76. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998). This groundbreaking study established that Hsp90 could buffer the expression of genetic variation in Drosophila melanogaster , and therefore allow cryptic variation to accumulate until revealed by environmental stress.

    Article  CAS  PubMed  Google Scholar 

  77. Sollars, V. et al. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature Genet. 33, 70–74 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Zhao, R. et al. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. Cell 120, 715–727 (2005). Provides a high-resolution map of the physical, genetic and chemical–genetic interactions of Hsp90 in S. cerevisiae.

    Article  CAS  PubMed  Google Scholar 

  79. Ruden, D. M., Garfinkel, M. D., Sollars, V. E. & Lu, X. Waddington's widget: Hsp90 and the inheritance of acquired characters. Semin. Cell Dev. Biol. 14, 301–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Rutherford, S. L. Between genotype and phenotype: protein chaperones and evolvability. Nature Rev. Genet. 4, 263–274 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Bergman, A. & Siegal, M. L. Evolutionary capacitance as a general feature of complex gene networks. Nature 424, 549–552 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998). An insightful perspective on evolvability 2014 the capacity to generate heritable phenotypic variation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fox, D. S. & Heitman, J. Good fungi gone bad: the corruption of calcineurin. Bioessays 24, 894–903 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Heitman, J. Cell biology. A fungal Achilles' heel. Science 309, 2175–2176 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Steinbach, W. J., Reedy, J. L., Cramer, R. A. Jr, Perfect, J. R. & Heitman, J. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nature Rev. Microbiol. 5, 418–430 (2007). An excellent review of calcineurin biology in fungal pathogens and our potential to harness this cellular regulator in the treatment of fungal infections.

    Article  CAS  Google Scholar 

  87. Cruz, M. C. et al. Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J. 21, 546–559 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sanglard, D., Ischer, F., Marchetti, O., Entenza, J. & Bille, J. Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol. Microbiol. 48, 959–976 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Steinbach, W. J. et al. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. Antimicrob. Agents Chemother. 48, 1664–1669 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Imai, J. & Yahara, I. Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin. Mol. Cell. Biol. 20, 9262–9270 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kumar, R., Musiyenko, A. & Barik, S. Plasmodium falciparum calcineurin and its association with heat shock protein 90: mechanisms for the antimalarial activity of cyclosporin A and synergism with geldanamycin. Mol. Biochem. Parasitol. 141, 29–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Someren, J. S., Faber, L. E., Klein, J. D. & Tumlin, J. A. Heat shock proteins 70 and 90 increase calcineurin activity in vitro through calmodulin-dependent and independent mechanisms. Biochem. Biophys. Res. Commun. 260, 619–625 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Karababa, M. et al. CRZ1, a target of the calcineurin pathway in Candida albicans. Mol. Microbiol. 59, 1429–1451 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Santos, M. & de Larrinoa, I. F. Functional characterization of the Candida albicans CRZ1 gene encoding a calcineurin-regulated transcription factor. Curr. Genet. 48, 88–100 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Yoshimoto, H. et al. Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae. J. Biol. Chem. 277, 31079–31088 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Onyewu, C., Wormley, F. L. Jr, Perfect, J. R. & Heitman, J. The calcineurin target, Crz1, functions in azole tolerance but is not required for virulence of Candida albicans. Infect. Immun. 72, 7330–7333 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heath, V. L., Shaw, S. L., Roy, S. & Cyert, M. S. Hph1p and Hph2p, novel components of calcineurin-mediated stress responses in Saccharomyces cerevisiae. Eukaryot. Cell 3, 695–704 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McClellan, A. J. et al. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131, 121–135 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Siegal, M. L., Promislow, D. E. & Bergman, A. Functional and evolutionary inference in gene networks: does topology matter? Genetica 129, 83–103 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Waddington, C. H. Canalization of development and the inheritance of acquired characters. Nature 150, 563–565 (1942).

    Article  Google Scholar 

  101. Waddington, C. H. Genetic assimilation of an acquired character. Evolution 7, 118–126 (1953).

    Article  Google Scholar 

  102. Hasday, J. D., Fairchild, K. D. & Shanholtz, C. The role of fever in the infected host. Microbes Infect. 2, 1891–1904 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. True, H. L., Berlin, I. & Lindquist, S. L. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431, 184–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483 (2000). Describes how the yeast prion [PSI+] can uncover cryptic genetic variation and generate new heritable phenotypes.

    Article  CAS  PubMed  Google Scholar 

  105. Blankenship, J. R. & Mitchell, A. P. How to build a biofilm: a fungal perspective. Curr. Opin. Microbiol. 9, 588–594 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Nett, J. & Andes, D. Candida albicans biofilm development, modeling a host–pathogen interaction. Curr. Opin. Microbiol. 9, 340–345 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Nobile, C. J. & Mitchell, A. P. Genetics and genomics of Candida albicans biofilm formation. Cell. Microbiol. 8, 1382–1391 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Wargo, M. J. & Hogan, D. A. Fungal–bacterial interactions: a mixed bag of mingling microbes. Curr. Opin. Microbiol. 9, 359–364 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. d'Enfert, C. Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr. Drug Targets 7, 465–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Nett, J. et al. Putative role of β-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother. 51, 510–520 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Andes, D. et al. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect. Immun. 72, 6023–6031 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Baillie, G. S. & Douglas, L. J. Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob. Agents Chemother. 42, 1900–1905 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Halme, A., Bumgarner, S., Styles, C. & Fink, G. R. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116, 405–415 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. LaFleur, M. D., Kumamoto, C. A. & Lewis, K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents Chemother. 50, 3839–3846 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Levin, B. R. & Rozen, D. E. Non-inherited antibiotic resistance. Nature Rev. Microbiol. 4, 556–562 (2006).

    Article  CAS  Google Scholar 

  116. Lewis, K. Persister cells, dormancy and infectious disease. Nature Rev. Microbiol. 5, 48–56 (2007).

    Article  CAS  Google Scholar 

  117. Avery, S. V. Microbial cell individuality and the underlying sources of heterogeneity. Nature Rev. Microbiol. 4, 577–587 (2006).

    Article  CAS  Google Scholar 

  118. Keith, C. T., Borisy, A. A. & Stockwell, B. R. Multicomponent therapeutics for networked systems. Nature Rev. Drug Discov. 4, 71–78 (2005).

    Article  CAS  Google Scholar 

  119. McLellan, C. A. et al. A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiol. 145, 174–182 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lehar, J. et al. Chemical combination effects predict connectivity in biological systems. Mol. Syst. Biol. 3, 80 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yeh, P., Tschumi, A. I. & Kishony, R. Functional classification of drugs by properties of their pairwise interactions. Nature Genet. 38, 489–494 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Blankson, J. N., Persaud, D. & Siliciano, R. F. The challenge of viral reservoirs in HIV-1 infection. Annu. Rev. Med. 53, 557–593 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Griffith, K. S., Lewis, L. S., Mali, S. & Parise, M. E. Treatment of malaria in the United States: a systematic review. JAMA 297, 2264–2277 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Mukherjee, P. K., Sheehan, D. J., Hitchcock, C. A. & Ghannoum, M. A. Combination treatment of invasive fungal infections. Clin. Microbiol. Rev. 18, 163–194 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wright, G. D. & Sutherland, A. D. New strategies for combating multidrug-resistant bacteria. Trends Mol. Med. 13, 260–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Kwak, E. L., Clark, J. W. & Chabner, B. Targeted agents: the rules of combination. Clin. Cancer Res. 13, 5232–5237 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Smith, P. A. & Romesberg, F. E. Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nature Chem. Biol. 3, 549–556 (2007).

    Article  CAS  Google Scholar 

  128. Chait, R., Craney, A. & Kishony, R. Antibiotic interactions that select against resistance. Nature 446, 668–671 (2007). Demonstrates an intriguing feature of the fitness landscape 2014 specific drug interactions can select against resistant populations.

    Article  CAS  PubMed  Google Scholar 

  129. Johnson, M. D. & Perfect, J. R. Combination antifungal therapy: what can and should we expect? Bone Marrow Transplant. 40, 297–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Blankenship, J. R., Steinbach, W. J., Perfect, J. R. & Heitman, J. Teaching old drugs new tricks: reincarnating immunosuppressants as antifungal drugs. Curr. Opin. Investig. Drugs 4, 192–199 (2003).

    CAS  PubMed  Google Scholar 

  131. Pachl, J. et al. A randomized, blinded, multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin. Infect. Dis. 42, 1404–1413 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Chiosis, G. Targeting chaperones in transformed systems — a focus on Hsp90 and cancer. Expert Opin. Ther. Targets 10, 37–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Kamal, A., Boehm, M. F. & Burrows, F. J. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol. Med. 10, 283–290 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Neckers, L. & Neckers, K. Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics — an update. Expert Opin. Emerg. Drugs 10, 137–149 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Workman, P. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett. 206, 149–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Zhang, H. & Burrows, F. Targeting multiple signal transduction pathways through inhibition of Hsp90. J. Mol. Med. 82, 488–499 (2004).

    CAS  PubMed  Google Scholar 

  137. Luo, W. et al. Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc. Natl Acad. Sci. USA 104, 9511–9516 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Muchowski, P. J. & Wacker, J. L. Modulation of neurodegeneration by molecular chaperones. Nature Rev. Neurosci. 6, 11–22 (2005).

    Article  CAS  Google Scholar 

  139. Geller, R., Vignuzzi, M., Andino, R. & Frydman, J. Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes Dev. 21, 195–205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chiosis, G. & Neckers, L. Tumor selectivity of Hsp90 inhibitors: the explanation remains elusive. ACS Chem. Biol. 1, 279–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Duvvuri, M., Konkar, S., Hong, K. H., Blagg, B. S. & Krise, J. P. A new approach for enhancing differential selectivity of drugs to cancer cells. ACS Chem. Biol. 1, 309–315 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Kamal, A. et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425, 407–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Borkovich, K. A., Farrelly, F. W., Finkelstein, D. B., Taulien, J. & Lindquist, S. Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol. Cell. Biol. 9, 3919–3930 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Xu, W. et al. Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc. Natl Acad. Sci. USA 99, 12847–12852 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ali, M. M. et al. Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex. Nature 440, 1013–1017 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bagatell, R. & Whitesell, L. Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol. Cancer Ther. 3, 1021–1030 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Whitesell, L. & Lindquist, S. L. HSP90 and the chaperoning of cancer. Nature Rev. Cancer 5, 761–772 (2005).

    Article  CAS  Google Scholar 

  148. Mosser, D. D. & Morimoto, R. I. Molecular chaperones and the stress of oncogenesis. Oncogene 23, 2907–2918 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Takayama, S., Reed, J. C. & Homma, S. Heat-shock proteins as regulators of apoptosis. Oncogene 22, 9041–9047 (2003).

    Article  CAS  PubMed  Google Scholar 

  150. Falsone, S. F., Leptihn, S., Osterauer, A., Haslbeck, M. & Buchner, J. Oncogenic mutations reduce the stability of SRC kinase. J. Mol. Biol. 344, 281–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Xu, Y. & Lindquist, S. Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc. Natl Acad. Sci. USA 90, 7074–7078 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Xu, Y., Singer, M. A. & Lindquist, S. Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90. Proc. Natl Acad. Sci. USA 96, 109–114 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Dai, C., Whitesell, L., Rogers, A. B. & Lindquist, S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130, 1005–1018 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks L. Whitesell for invaluable comments on the manuscript. Work in the laboratory of L.E.C. is supported by a Career Award in the Biomedical Sciences from the Burroughs Wellcome Fund and by a Canada Research Chair in Microbial Genomics and Infectious Disease.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Genome Project

Arabidopsis thaliana

Aspergillus fumigatus

Candida albicans

Saccharomyces cerevisiae

FURTHER INFORMATION

Leah E. Cowen's homepage

Glossary

Persister cell

A metabolically quiescent cell that neither grows nor dies when exposed to cidal concentrations of antimicrobial compounds.

Polyene

A class of antifungal drug that intercalates into ergosterol-containing fungal membranes, thereby forming membrane-spanning channels that lead to the leakage of cellular components and cell death.

Azole

A class of antifungal drug that inhibits fungal cytochrome P45014DM (also known as lanosterol 14α-demethylase), which is encoded by ERG11 and catalyses a late step in the biosynthesis of ergosterol; includes the triazoles (for example, fluconazole, voriconazole and posaconazole) and the imidazoles.

Echinocandin

A class of antifungal drug that interferes with fungal cell-wall biosynthesis by inhibiting β-(1,3)-d-glucan synthase; includes caspofungin and micafungin.

Major facilitator class

A large family of proteins that uses the energy that is provided by the proton motive force of the membrane to transport substrates across the membrane.

ATP-binding cassette family

A member of a large family of proteins that uses the energy that is provided by the hydrolysis of ATP to transport substrates across membranes.

Isochromosome

An abnormal chromosome that possesses a median centromere and two identical arms.

Epigenetic variation

Variation that is caused by heritable changes that are not a result of a change in the DNA sequence.

Immunophilin

A family of cis–trans peptidylprolyl isomerases that was originally studied as a cellular receptor for immunosuppressive drugs, such as cyclosporin A and FK506; includes cyclophilins and FK506-binding proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowen, L. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol 6, 187–198 (2008). https://doi.org/10.1038/nrmicro1835

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1835

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing