Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Genomic fluidity and pathogenic bacteria: applications in diagnostics, epidemiology and intervention

Abstract

The increasing availability of DNA-sequence information for multiple pathogenic and non-pathogenic variants of individual bacterial species has indicated that both DNA acquisition and genome reduction have important roles in genome evolution. Such genomic fluidity, which is found in human pathogens such as Escherichia coli, Helicobacter pylori and Mycobacterium tuberculosis, has important consequences for the clinical management of the diseases that are caused by these pathogens and for the development of diagnostics and new molecular epidemiological methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms that contribute to bacterial genome evolution.
Figure 2: Current evolutionary scenario for pathogenic mycobacteria.
Figure 3: Contribution of horizontal acquisition of mobile genetic elements to the evolution of Escherichia coli pathotypes.

Similar content being viewed by others

References

  1. Achtman, M. et al. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl Acad. Sci. USA 96, 14043–14048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gutierrez, M. C. et al. Predominance of ancestral lineages of Mycobacterium tuberculosis in India. Emerg. Infect. Dis. 12, 1367–1374 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hammerschmidt, S., Hacker, J. & Klenk, H. D. Threat of infection: microbes of high pathogenic potential — strategies for detection, control and eradication. Int. J. Med. Microbiol. 295, 141–151 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hasnain, S. E. Molecular epidemiology of infectious diseases: a case for increased surveillance. Bull. World Health Organ. 81, 474 (2003).

    PubMed  PubMed Central  Google Scholar 

  5. Hasnain, S. E. & Ahmed, N. Leptospirosis. Lancet Infect. Dis. 4, 543 (2004).

    Article  PubMed  Google Scholar 

  6. Morschhäuser, J. et al. Evolution of microbial pathogens. Philos. Trans. R. Soc. Lond. B 355, 695–704 (2000).

    Article  Google Scholar 

  7. Chakhaiyar, P. & Hasnain, S. E. Defining the mandate of tuberculosis research in a postgenomic era. Med. Princ. Pract. 13, 177–184 (2004).

    Article  PubMed  Google Scholar 

  8. Prakash, P., Yellaboina, S., Ranjan, A. & Hasnain, S. E. Computational prediction and experimental verification of novel IdeR binding sites in the upstream sequences of Mycobacterium tuberculosis open reading frames. Bioinformatics 21, 2161–2166 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Grozdanov, L. et al. Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J. Bacteriol. 186, 5432–5441 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Doolittle, R. F. Biodiversity: microbial genomes multiply. Nature 416, 697–700 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Ziebuhr, W., Ohlsen, K., Karch, H., Korhonen, T. & Hacker, J. Evolution of bacterial pathogenesis. Cell Mol. Life Sci. 56, 719–728 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Dobrindt, U., Hochhut, B., Hentschel, U. & Hacker, J. Genomic islands in pathogenic and environmental microorganisms. Nature Rev. Microbiol. 2, 414–424 (2004).

    Article  CAS  Google Scholar 

  13. Hacker, J. & Carniel, E. Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep. 2, 376–381 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hacker, J. & Kaper, J. B. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Blum, G. et al. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect. Immun. 62, 606–614 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dobrindt, U. (Patho-)genomics of Escherichia coli. Int. J. Med. Microbiol. 295, 357–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Hacker, J., Hentschel, U. & Dobrindt, U. Prokaryotic chromosomes and disease. Science 301, 790–793 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Craven, S. H. & Neidle, E. L. Double trouble: medical implications of genetic duplication and amplification in bacteria. Future Microbiol. 2, 309–321 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Lovett, S. T. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol. Microbiol. 52, 1243–1253 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Achtman, M. et al. Microevolution and history of the plague bacillus, Yersinia pestis. Proc. Natl Acad. Sci. USA 101, 17837–17842 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chain, P. S. et al. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc. Natl Acad. Sci. USA 101, 13826–13831 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moran, N. A. Microbial minimalism: genome reduction in bacterial pathogens. Cell 108, 583–586 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Sallström, B. & Andersson, S. G. Genome reduction in the α-Proteobacteria. Curr. Opin. Microbiol. 8, 579–585 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Brosch, R. et al. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl Acad. Sci. USA 99, 3684–3689 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ahmed, N. et al. Molecular analysis of a leprosy immunotherapeutic bacillus provides insights into Mycobacterium evolution. PLoS ONE 2, e968 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nature Rev. Microbiol. 2, 123–140 (2004).

    Article  CAS  Google Scholar 

  27. Schmidt, H. & Hensel, M. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17, 14–56 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dobrindt, U. & Hacker, J. in The Comprehensive Sourcebook of Bacterial Protein Toxins (eds Alouf, J. E. & Popoff, M. R.) 44–63 (Academic, London, 2006).

    Book  Google Scholar 

  29. Perna, N. T. et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Ohnishi, M., Kurokawa, K. & Hayashi, T. Diversification of Escherichia coli genomes: are bacteriophages the major contributors? Trends Microbiol. 9, 481–485 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Ohnishi, M. et al. Genomic diversity of enterohemorrhagic Escherichia coli O157 revealed by whole genome PCR scanning. Proc. Natl Acad. Sci. USA 99, 17043–17048 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reid, S. D., Herbelin, C. J., Bumbaugh, A. C., Selander, R. K. & Whittam, T. S. Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406, 64–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Maurelli, A. T., Fernandez, R. E., Bloch, C. A., Rode, C. K. & Fasano, A. “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl Acad. Sci. USA 95, 3943–3948 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prosseda, G. et al. The two-faced role of cad genes in the virulence of pathogenic Escherichia coli. Res. Microbiol. 158, 487–493 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Nougayrede, J. P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313, 848–851 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Durant, L. et al. Identification of candidates for a subunit vaccine against extraintestinal pathogenic Escherichia coli. Infect. Immun. 75, 1916–1925 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Hagan, E. C. & Mobley, H. L. Uropathogenic Escherichia coli outer membrane antigens expressed during urinary tract infection. Infect. Immun. 75, 3941–3949 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Herbelin, C. J., Chirillo, S. C., Melnick, K. A. & Whittam, T. S. Gene conservation and loss in the mutSrpoS genomic region of pathogenic Escherichia coli. J. Bacteriol. 182, 5381–5390 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bidet, P. et al. Detection and identification by PCR of a highly virulent phylogenetic subgroup among extraintestinal pathogenic Escherichia coli B2 strains. Appl. Environ. Microbiol. 73, 2373–2377 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brzuszkiewicz, E. et al. How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc. Natl Acad. Sci. USA 103, 12879–12884 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Plainvert, C. et al. A new O-antigen gene cluster has a key role in the virulence of the Escherichia coli meningitis clone O45:K1:H7. J. Bacteriol. 189, 8528–8536 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cegelski, L., Marshall, G. R., Eldridge, G. R. & Hultgren, S. J. The biology and future prospects of antivirulence therapies. Nature Rev. Microbiol. 6, 17–27 (2008).

    Article  CAS  Google Scholar 

  43. Middendorf, B. et al. Instability of pathogenicity islands in uropathogenic Escherichia coli 536. J. Bacteriol. 186, 3086–3096 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hochhut, B. et al. Role of pathogenicity island-associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536. Mol. Microbiol. 61, 584–595 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Wilde, C. et al. Delineation of the recombination sites necessary for integration of pathogenicity islands II and III into the Escherichia coli 536 chromosome. Mol. Microbiol. 68, 139–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Grozdanov, L. et al. A single nucleotide exchange in the wzy gene is responsible for the semirough O6 lipopolysaccharide phenotype and serum sensitivity of Escherichia coli strain Nissle 1917. J. Bacteriol. 184, 5912–5925 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Klemm, P., Roos, V., Ulett, G. C., Svanborg, C. & Schembri, M. A. Molecular characterization of the Escherichia coli asymptomatic bacteriuria strain 83972: the taming of a pathogen. Infect. Immun. 74, 781–785 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zdziarski, J., Svanborg, C., Wullt, B., Hacker, J. & Dobrindt, U. Molecular basis of commensalism in the urinary tract: low virulence or virulence attenuation? Infect. Immun. 76, 695–703 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Altenhoefer, A. et al. The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol. Med. Microbiol. 40, 223–229 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Sartor, R. B. Probiotic therapy of intestinal inflammation and infections. Curr. Opin. Gastroenterol. 21, 44–50 (2005).

    PubMed  Google Scholar 

  51. Sunden, F., Hakansson, L., Ljunggren, E. & Wullt, B. Bacterial interference — is deliberate colonization with Escherichia coli 83972 an alternative treatment for patients with recurrent urinary tract infection? Int. J. Antimicrob. Agents 28 (Suppl. 1), 26–29 (2006).

    Article  CAS  Google Scholar 

  52. Bielaszewska, M. et al. Shiga toxin gene loss and transfer in vitro and in vivo during enterohemorrhagic Escherichia coli O26 infection in humans. Appl. Environ. Microbiol. 73, 3144–3150 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Friedrich, A. W. et al. Prevalence, virulence profiles, and clinical significance of Shiga toxin-negative variants of enterohemorrhagic Escherichia coli O157 infection in humans. Clin. Infect. Dis. 45, 39–45 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Bielaszewska, M. et al. Shiga toxin-mediated hemolytic uremic syndrome: time to change the diagnostic paradigm? PLoS ONE 2, e1024 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ahmed, N. & Sechi, L. A. Helicobacter pylori and gastroduodenal pathology: new threats of the old friend. Ann. Clin. Microbiol. Antimicrob. 4, 1 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alm, R. A. et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Tomb, J. F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Censini, S. et al. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl Acad. Sci. USA 93, 14648–14653 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Devi, S. M. et al. Genomes of Helicobacter pylori from native Peruvians suggest admixture of ancestral and modern lineages and reveal a western type cag-pathogenicity island. BMC Genomics 7, 191 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kersulyte, D. et al. Cluster of type IV secretion genes in Helicobacter pylori's plasticity zone. J. Bacteriol. 185, 3764–3772 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chattopadhyay, S. et al. Virulence genes in Helicobacter pylori strains from West Bengal residents with overt H. pylori-associated disease and healthy volunteers. J. Clin. Microbiol. 40, 2622–2625 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kauser, F. et al. Comparing genomes of Helicobacter pylori strains from the high-altitude desert of Ladakh, India. J. Clin. Microbiol. 43, 1538–1545 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mukhopadhyay, A. K. et al. Distinctiveness of genotypes of Helicobacter pylori in Calcutta, India. J. Bacteriol. 182, 3219–3227 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Saribasak, H., Salih, B. A., Yamaoka, Y. & Sander, E. Analysis of Helicobacter pylori genotypes and correlation with clinical outcome in Turkey. J. Clin. Microbiol. 42, 1648–1651 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Carroll, I. M., Khan, A. A. & Ahmed, N. Revisiting the pestilence of Helicobacter pylori: insights into geographical genomics and pathogen evolution. Infect. Genet. Evol. 4, 81–90 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Devi, S. M. et al. Ancestral European roots of Helicobacter pylori in India. BMC Genomics 8, 184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Argent, R. H. et al. Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology 127, 514–523 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Hatakeyama, M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nature Rev. Cancer 4, 688–694 (2004).

    Article  CAS  Google Scholar 

  69. Saadat, I. et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447, 330–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Argent, R. H., Zhang, Y. & Atherton, J. C. Simple method for determination of the number of Helicobacter pylori CagA variable-region EPIYA tyrosine phosphorylation motifs by PCR. J. Clin. Microbiol. 43, 791–795 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Higashi, H. et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc. Natl Acad. Sci. USA 99, 14428–14433 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, Y., Argent, R. H., Letley, D. P., Thomas, R. J. & Atherton, J. C. Tyrosine phosphorylation of CagA from Chinese Helicobacter pylori isolates in AGS gastric epithelial cells. J. Clin. Microbiol. 43, 786–790 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Owen, R. J., Sharp, S. I., Chisholm, S. A. & Rijpkema, S. Identification of cagA tyrosine phosphorylation DNA motifs in Helicobacter pylori isolates from peptic ulcer patients by novel PCR-restriction fragment length polymorphism and real-time fluorescence PCR assays. J. Clin. Microbiol. 41, 3112–3128 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yamazaki, S. et al. Identification of Helicobacter pylori and the cagA genotype in gastric biopsies using highly sensitive real-time PCR as a new diagnostic tool. FEMS Immunol. Med. Microbiol. 44, 261–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Tsolaki, A. G. et al. Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc. Natl Acad. Sci. USA 101, 4865–4870 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ahmed, N. et al. Genome sequence based, comparative analysis of the fluorescent amplified fragment length polymorphisms (FAFLP) of tubercle bacilli from seals provides molecular evidence for a new species within the Mycobacterium tuberculosis complex. Infect. Genet. Evol. 2, 193–199 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Ahmed, N. et al. Molecular genotyping of a large, multicentric collection of tubercle bacilli indicates geographical partitioning of strain variation and has implications for global epidemiology of Mycobacterium tuberculosis. J. Clin. Microbiol. 42, 3240–3247 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ahmed, N. et al. Distinctiveness of Mycobacterium tuberculosis genotypes from human immunodeficiency virus type 1-seropositive and -seronegative patients in Lima, Peru. J. Clin. Microbiol. 41, 1712–1716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Siddiqi, N. et al. Molecular characterization of multidrug-resistant isolates of Mycobacterium tuberculosis from patients in North India. Antimicrob. Agents Chemother. 46, 443–450 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dagan, T., Blekhman, R. & Graur, D. The “domino theory” of gene death: gradual and mass gene extinction events in three lineages of obligate symbiotic bacterial pathogens. Mol. Biol. Evol. 23, 310–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Cole, S. T. et al. Massive gene decay in the leprosy bacillus. Nature 409, 1007–1011 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Filliol, I. et al. Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J. Bacteriol. 188, 759–772 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huard, R. C. et al. Novel genetic polymorphisms that further delineate the phylogeny of the Mycobacterium tuberculosis complex. J. Bacteriol. 188, 4271–4287 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marmiesse, M. et al. Macro-array and bioinformatic analyses reveal mycobacterial 'core' genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Microbiology 150, 483–496 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Rao, K. R. et al. Analysis of genomic downsizing on the basis of region-of-difference polymorphism profiling of Mycobacterium tuberculosis patient isolates reveals geographic partitioning. J. Clin. Microbiol. 43, 5978–5982 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rao, K. R., Ahmed, N., Srinivas, S., Sechi, L. A. & Hasnain, S. E. Rapid identification of Mycobacterium tuberculosis Beijing genotypes on the basis of the mycobacterial interspersed repetitive unit locus 26 signature. J. Clin. Microbiol. 44, 274–277 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cousins, D. V. et al. Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int. J. Syst. Evol. Microbiol. 53, 1305–1314 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Harboe, M., Oettinger, T., Wiker, H. G., Rosenkrands, I. & Andersen, P. Evidence for occurrence of the ESAT-6 protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG. Infect. Immun. 64, 16–22 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Lewis, K. N. et al. Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette–Guérin attenuation. J. Infect. Dis. 187, 117–123 (2003).

    Article  PubMed  Google Scholar 

  90. Pym, A. S. et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nature Med. 9, 533–539 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Brosch, R. et al. Genome plasticity of BCG and impact on vaccine efficacy. Proc. Natl Acad. Sci. USA 104, 5596–5601 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Marri, P. R., Bannantine, J. P. & Golding, G. B. Comparative genomics of metabolic pathways in Mycobacterium species: gene duplication, gene decay and lateral gene transfer. FEMS Microbiol. Rev. 30, 906–925 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Newton, S. M. et al. A deletion defining a common Asian lineage of Mycobacterium tuberculosis associates with immune subversion. Proc. Natl Acad. Sci. USA 103, 15594–15598 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Banerjee, S. et al. Mycobacterium tuberculosis (Mtb) isocitrate dehydrogenases show strong B cell response and distinguish vaccinated controls from TB patients. Proc. Natl Acad. Sci. USA 101, 12652–12657 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chakhaiyar, P. et al. Regions of high antigenicity within the hypothetical PPE major polymorphic tandem repeat open-reading frame, Rv2608, show a differential humoral response and a low T cell response in various categories of patients with tuberculosis. J. Infect. Dis. 190, 1237–1244 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Choudhary, R. K. et al. PPE antigen Rv2430c of Mycobacterium tuberculosis induces a strong B-cell response. Infect. Immun. 71, 6338–6343 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mazars, E. et al. High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc. Natl Acad. Sci. USA 98, 1901–1906 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sreenu, V. B., Kumar, P., Nagaraju, J. & Nagarajaram, H. A. Microsatellite polymorphism across the M. tuberculosis and M. bovis genomes: implications on genome evolution and plasticity. BMC Genomics 7, 78 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Narayanan, S. et al. Molecular epidemiology of tuberculosis in a rural area of high prevalence in South India: implications for disease control and prevention. J. Clin. Microbiol. 40, 4785–4788 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Singh, U. B. et al. Predominant tuberculosis spoligotypes, Delhi, India. Emerg. Infect. Dis. 10, 1138–1142 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Supply, P. et al. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J. Clin. Microbiol. 39, 3563–3571 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gey van Pittius, N. C. et al. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol. Biol. 6, 95 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Okkels, L. M. et al. PPE protein (Rv3873) from DNA segment RD1 of Mycobacterium tuberculosis: strong recognition of both specific T-cell epitopes and epitopes conserved within the PPE family. Infect. Immun. 71, 6116–6123 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hsu, T. et al. The primary mechanism of attenuation of bacillus Calmette–Guérin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc. Natl Acad. Sci. USA 100, 12420–12425 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pallen, M. J. The ESAT-6/WXG100 superfamily — and a new Gram-positive secretion system? Trends Microbiol. 10, 209–212 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Choudhary, R. K., Pullakhandam, R., Ehtesham, N. Z. & Hasnain, S. E. Expression and characterization of Rv2430c, a novel immunodominant antigen of Mycobacterium tuberculosis. Protein Expr. Purif. 36, 249–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Tundup, S., Akhter, Y., Thiagarajan, D. & Hasnain, S. E. Clusters of PE and PPE genes of Mycobacterium tuberculosis are organized in operons: evidence that PE Rv2431c is co-transcribed with PPE Rv2430c and their gene products interact with each other. FEBS Lett. 580, 1285–1293 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Fleischmann, R. D. et al. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184, 5479–5490 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Berthet, F. X., Rasmussen, P. B., Rosenkrands, I., Andersen, P. & Gicquel, B. A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology 144, 3195–3203 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Nilsson, A. I. et al. Bacterial genome size reduction by experimental evolution. Proc. Natl Acad. Sci. USA 102, 12112–12116 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Knezevic, I. & Corbel, M. J. WHO discussion on the improvement of the quality control of BCG vaccines. Vaccine 24, 3874–3877 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Shin, J., Wood, D., Robertson, J., Minor, P. & Peden, K. WHO informal consultation on the application of molecular methods to assure the quality, safety and efficacy of vaccines, Geneva, Switzerland, 7–8 April 2005. Biologicals 35, 63–71 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the laboratories of N.A. and S.E.H. was supported by several grants from the Department of Biotechnology, Ministry of Science & Technology, Government of India. Research in the laboratories of U.D. and J.H. was supported by grants from the German Research Foundation (SFB479, TP A1), the European Community (European virtual institute for functional genomics of bacterial pathogens; CEE LSHB-CT-2005-512,061) and the Bavarian Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jörg Hacker or Seyed E. Hasnain.

Related links

Related links

DATABASES

Entrez Genome Project

Escherichia coli

Helicobacter pylori

Mycobacterium avium

Mycobacterium bovis

Mycobacterium leprae

Mycobacterium marinum

Mycobacterium smegmatis

Mycobacterium tuberculosis

Mycobacterium ulcerans

Yersinia pestis

Yersinia pseudotuberculosis

FURTHER INFORMATION

Jörg Hacker and Ulrich Dobrindt's homepage

Niyaz Ahmed's homepage

Seyed E. Hasnain's homepage

Institute Pasteur (Colibri database)

Institute Pasteur (PyloriGene database)

J. Craig Venter Institute (comprehensive microbial resource)

MIRU–VNTRplus

Wellcome Trust Sanger Institute (pathogen sequencing unit)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, N., Dobrindt, U., Hacker, J. et al. Genomic fluidity and pathogenic bacteria: applications in diagnostics, epidemiology and intervention. Nat Rev Microbiol 6, 387–394 (2008). https://doi.org/10.1038/nrmicro1889

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1889

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing