Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards environmental systems biology of Shewanella

Key Points

  • Shewanella species couple the decomposition of organic matter to the reduction of various terminal electron acceptors that are present in the diverse environments that they can inhabit.

  • The metabolic versatility of Shewanella species makes them important mediators of carbon cycling, and allows for their potential use in the remediation of environments that are contaminated with radionuclides and other toxic metals, as well as potential sources of alternative energy through microbial fuel cells.

  • Systems-biology is being used to better understand the environmental sensing, signal-transduction and metabolic- and energy-generating pathways of the model organism Shewanella oneidensis MR-1.

  • Among other insights, this analysis has revealed the presence of novel metabolic pathways, the reorganization of regulatory pathways compared with Escherichia coli and other model organisms, and a novel mechanism for dealing with oxidative stress through autoaggregation.

  • Comparative genomic analysis, based on the availability of genome sequences for 23 Shewanella species, has facilitated the transfer of information gained from the study of S. oneidensis MR-1 across members of the genus.

  • Many of the proteins that are important for respiratory diversity in S. oneidensis MR-1 are conserved in many members of the genus.

Abstract

Bacteria of the genus Shewanella are known for their versatile electron-accepting capacities, which allow them to couple the decomposition of organic matter to the reduction of the various terminal electron acceptors that they encounter in their stratified environments. Owing to their diverse metabolic capabilities, shewanellae are important for carbon cycling and have considerable potential for the remediation of contaminated environments and use in microbial fuel cells. Systems-level analysis of the model species Shewanella oneidensis MR-1 and other members of this genus has provided new insights into the signal-transduction proteins, regulators, and metabolic and respiratory subsystems that govern the remarkable versatility of the shewanellae.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rewiring of transcriptional regulatory networks in the central carbon metabolism of Shewanella oneidensis MR-1.
Figure 2: Comparison of the metal-reductase-containing locus in Shewanella spp.
Figure 3: Five dimethyl sulphoxide (DMSO) family subsystems.

Similar content being viewed by others

References

  1. Myers, C. & Nealson, K. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319–1321 (1988). First report of the isolation of Alteromonas putrefaciens (later renamed Shewanella oneidensis MR-1), a bacterium that can grow by dissimilatory Mn(IV) reduction.

    Article  CAS  PubMed  Google Scholar 

  2. Nealson, K. H., Myers, C. R. & Wimpee, B. B. Isolation and identification of manganese-reducing bacteria and estimates of microbial Mn(IV)-reducing potential in the Black Sea. Deep Sea Res. A 38, S907–S920 (1991).

    Article  Google Scholar 

  3. Caccavo, F. Jr, Blakemore, R. P. & Lovley, D. R. A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay Estuary, New Hampshire. Appl. Environ. Microbiol. 58, 3211–3216 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Perry, K. A., Kostka, J. E., Luther, G. W. & Nealson, K. H. Mediation of sulfur speciation by a Black Sea facultative anaerobe. Science 259, 801–803 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Fredrickson, J. K. et al. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta 62, 3239–3257 (1998).

    Article  CAS  Google Scholar 

  6. Obuekwe, C. O. & Westlake, D. W. S. Effects of medium composition on cell pigmentation, cytochrome content, and ferric iron reduction in a Pseudomonas sp. isolated from crude-oil. Can. J. Microbiol. 28, 989–992 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Venkateswaran, K. et al. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int. J. Syst. Bacteriol. 49, 705–724 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Arnold, R. G., DiChristina, T. J. & Hoffman, M. R. Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200. Biotechnol. Bioeng. 32, 1081–1096 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Arnold, R. G., DiChristina, T. J. & Hoffmann, M. R. Inhibitor studies of dissimilative Fe(III) reduction by Pseudomonas sp. strain 200 (“Pseudomonas ferrireductans”). Appl. Environ. Microbiol. 52, 281–289 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Balashova, V. V. & Zavarin, G. A. Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology 48, 773–778 (1979).

    CAS  PubMed  Google Scholar 

  11. Obuekwe, C. O., Westlake, D. W. & Cook, F. D. Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil. Can. J. Microbiol. 27, 692–697 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Wielinga, B., Mizuba, M. M., Hansel, C. M. & Fendorf, S. Iron promoted reduction of chromate by dissimilatory iron reducing bacteria. Environ. Sci. Technol. 35, 522–527 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Farrenkopf, A. M., Dollhopf, M. E., Chadhain, S. N., Luther, G. W. & Nealson, K. H. Reduction of iodate in seawater during Arabian Sea shipboard incubations and in laboratory cultures of the marine bacterium Shewanella putrefaciens strain MR-4. Mar. Chem. 57, 347–354 (1997).

    Article  CAS  Google Scholar 

  14. Wildung, R. E. et al. Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by Shewanella putrefaciens. Appl. Environ. Microbiol. 66, 2451–2460 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lloyd, J. R., Yong, P. & Macaskie, L. E. Biological reduction and removal of Np(V) by two microorganisms. Environ. Sci. Technol. 34, 1297–1301 (2000).

    Article  CAS  Google Scholar 

  16. Boukhalfa, H., Icopini, G. A., Reilly, S. D. & Neu, M. P. Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1. Appl. Environ. Microbiol. 73, 5897–5903 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klonowska, A., Heulin, T. & Vermeglio, A. Selenite and tellurite reduction by Shewanella oneidensis. Appl. Environ. Microbiol. 71, 5607–5609 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carpentier, W. et al. Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl. Environ. Microbiol. 69, 3636–3639 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao, J. S., Manno, D., Beaulieu, C., Paquet, L. & Hawari, J. Shewanella sediminis sp. nov., a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading bacterium from marine sediment. Int. J. Syst. Evol. Microbiol. 55, 1511–1520 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, J. S., Manno, D., Thiboutot, S., Ampleman, G. & Hawari, J. Shewanella canadensis sp. nov. and Shewanella atlantica sp. nov., manganese dioxide- and hexahydro-1,3,5-trinitro-1,3,5-triazine-reducing, psychrophilic marine bacteria. Int. J. Syst. Evol. Microbiol. 57, 2155–2162 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Hau, H. H. & Gralnick, J. A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 61, 237–258 (2007). A recent review that described the ecological and potential biotechnological applications of Shewanella species.

    Article  CAS  PubMed  Google Scholar 

  22. Höfle, M. G. & Brettar, I. Genotyping of heterotrophic bacteria from the central Baltic Sea by use of low-molecular-weight RNA profiles. Appl. Environ. Microbiol. 62, 1383–1390 (1996).

    PubMed  PubMed Central  Google Scholar 

  23. Heidelberg, J. F. et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nature Biotechnol. 20, 1118–1123 (2002). Report on the complete genome sequencing of S. oneidensis MR-1.

    Article  CAS  Google Scholar 

  24. Ulrich, L. E. & Zhulin, I. B. MiST: a microbial signal transduction database. Nucleic Acids Res. 35, D386–D390 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Taylor, B. L. & Zhulin, I. B. PAS domains: internal sensors of oxygen, redox potential and light. United States Department of Energy Microbiol. Mol. Biol. Rev. 63, 479–506 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wuichet, K. & Zhulin, I. B. Molecular evolution of sensory domains in cyanobacterial chemoreceptors. Trends Microbiol. 11, 200–203 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Alexandre, G., Greer-Phillips, S. & Zhulin, I. B. Ecological role of energy taxis in microorganisms. FEMS Microbiol. Rev. 28, 113–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Li, J., Romine, M. F. & Ward, M. J. Identification and analysis of a highly conserved chemotaxis gene cluster in Shewanella species. FEMS Microbiol. Lett. 273, 180–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Romine, M. F., Carlson, T. S., Norbeck, A. D., McCue, L. & Lipton, M. S. Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome. Appl. Environ. Microbiol. 74, 3257–3265 (2008). Used comparative genomics of multiple S. oneidensis MR-1 strains to more accurately map and identify pseudogenes and mobile elements.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nealson, K. H., Moser, D. P. & Saffarini, D. A. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens. Appl. Environ. Microbiol. 61, 1551–1554 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Camilli, A. & Bassler, B. L. Bacterial small-molecule signaling pathways. Science 311, 1113–1116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beavo, J. A. & Brunton, L. L. Cyclic nucleotide research — still expanding after half a century. Nature Rev. Mol. Cell Biol. 3, 710–718 (2002).

    Article  CAS  Google Scholar 

  33. Tamayo, R., Pratt, J. T. & Camilli, A. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu. Rev. Microbiol. 61, 131–148 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jenal, U. & Malone, J. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet. 40, 385–407 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Zhulin, I. B., Nikolskaya, A. N. & Galperin, M. Y. Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea. J. Bacteriol. 185, 285–294 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Botsford, J. L. & Harman, J. G. Cyclic AMP in prokaryotes. Microbiol. Rev. 56, 100–122 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Saffarini, D. A., Schultz, R. & Beliaev, A. Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis. J. Bacteriol. 185, 3668–3671 (2003). First report of the unusual role of CRP in the regulation of anaerobic respiration in Shewanella spp.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kiley, P. J. & Beinert, H. Oxygen sensing by the global regulator, FNR: the role of the iron–sulfur cluster. FEMS Microbiol. Rev. 22, 341–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Saffarini, D. A. & Nealson, K. H. Sequence and genetic characterization of etrA, an fnr analog that regulates anaerobic respiration in Shewanella putrefaciens MR-1. J. Bacteriol. 175, 7938–7944 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Beliaev, A. S. et al. Microarray transcription profiling of a Shewanella oneidensis etrA mutant. J. Bacteriol. 184, 4612–4616 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maier, T. M. & Myers, C. R. Isolation and characterization of a Shewanella putrefaciens MR-1 electron transport regulator etrA mutant: reassessment of the role of EtrA. J. Bacteriol. 183, 4918–4926 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Beliaev, A. S. et al. in Joint Genomics: GTL Contractor Workshop IV. 94 (United States Department of Energy, North Bethesda, 2006).

    Google Scholar 

  43. McLean, J. S. et al. Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1. Environ. Microbiol. 10, 1861–1876 (2008). A systems-biology approach was used to investigate oxygen-induced aggregation in S. oneidensis MR-1.

    Article  CAS  PubMed  Google Scholar 

  44. Faith, J. J. et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, e8 (2007). Described the CLR algorithm and its application to the inference of transcriptional regulatory interactions in E. coli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Beliaev, A. & Saffarini, D. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J. Bacteriol. 180, 6292–6297 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Myers, J. M. & Myers, C. R. Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol. 67, 260–269 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Beliaev, A., Saffarini, D., McLaughlin, J. & Hunnicut, D. MtrC, an outer membrane decaheme c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol. Microbiol. 39, 722–730 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Carpentier, W., De Smet, L., Van Beeumen, J. & Brige, A. Respiration and growth of Shewanella oneidensis MR-1 using vanadate as the sole electron acceptor. J. Bacteriol. 187, 3293–3301 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beliaev, A. S. et al. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J. Bacteriol. 187, 7138–7145 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rodionov, D. A. Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem. Rev. 107, 3467–3497 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rodionov, D. A. et al. Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators. Nucleic Acids Res. 36, 2047–2059 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, C. et al. Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. J. Biol. Chem. 281, 29872–29885 (2006). Used comparative genomics in SEED and experiments to reconstruct the chitin and GlcNAc metabolic subsystem and regulatory network.

    Article  CAS  PubMed  Google Scholar 

  53. Meyer, T. et al. Identification of 42 possible cytochrome c genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. OMICS 8, 57–77 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Bouhenni, R., Gehrke, A. & Saffarini, D. Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon. Appl. Environ. Microbiol. 71, 4935–4937 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dale, J. R., Wade, R. & DiChristina, T. J. A conserved histidine in cytochrome c maturation permease CcmB of Shewanella putrefaciens is required for anaerobic growth below a threshold standard redox potential. J. Bacteriol. 189, 1036–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Myers, C. R. & Myers, J. M. Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J. Bacteriol. 179, 1143–1152 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Myers, J. M. & Myers, C. R. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone. J. Bacteriol. 182, 67–75 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gralnick, J. A., Vali, H., Lies, D. P. & Newman, D. K. Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc. Natl Acad. Sci. USA 103, 4669–4674 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Myers, C. R. & Myers, J. M. Fumarate reductase is a soluble enzyme in anaerobically grown Shewanella putrefaciens MR-1. FEMS Microbiol. Lett. 98, 13–19 (1992).

    Article  CAS  Google Scholar 

  60. Myers, C. R. & Myers, J. M. Isolation and characterization of a transposon mutant of Shewanella putrefaciens MR-1 deficient in fumarate reductase. Lett. Appl. Microbiol. 25, 162–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Cruz-Garcia, C., Murray, A. E., Klappenbach, J. A., Stewart, V. & Tiedje, J. M. Respiratory nitrate ammonification by Shewanella oneidensis MR-1. J. Bacteriol. 189, 656–662 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Bordi, C., Lobbi-Nivol, C., Mejean, V. & Patte, J. C. Effects of ISSo2 insertions in structural and regulatory genes of the trimethylamine oxide reductase of Shewanella oneidensis. J. Bacteriol. 185, 2042–2045 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nealson, K. H. & Scott, J. in The Prokaryotes 3rd edn Vol.6 (eds Dworkin, M. et al.) 1133–1151 (Springer, New York, 2006).

    Book  Google Scholar 

  64. Serres, M. H. & Riley, M. Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1: predictions versus experiments. J. Bacteriol. 188, 4601–4609 (2006). Used a biochemically oriented genome-sequence analysis to define carbon metabolism in S. oneidensis MR-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pinchuk, G. E. et al. Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and physiological implications for dissimilatory metal reduction. Appl. Environ. Microbiol. 74, 1198–1208 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Driscoll, M. E. et al. Identification of diverse carbon utilization pathways in Shewanella oneidensis MR-1 via expression profiling. Genome Inform. 18, 287–298 (2007).

    CAS  PubMed  Google Scholar 

  67. Overbeek, R. et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33, 5691–5702 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mahadevan, R. et al. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl. Environ. Microbiol. 72, 1558–1568 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Price, N. D., Reed, J. L. & Palsson, B. O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Rev. Microbiol. 2, 886–897 (2004).

    Article  CAS  Google Scholar 

  70. Scott, J. H. & Nealson, K. H. A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens. J. Bacteriol. 176, 3408–3411 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kostka, J. E. & Nealson, K. H. Dissolution and reduction of magnetite by bacteria. Environ. Sci. Technol. 29, 2535–2540 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Pinchuk, G. et al. in Joint Genomics: GTL Awardee Workshop VI and Metabolic Engineering 2008. 66 (United States Department of Energy, North Bethesda, 2008).

    Google Scholar 

  73. Reed, J. L. et al. Systems approach to refining genome annotation. Proc. Natl Acad. Sci. USA 103, 17480–17484 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Lipton, M. S. et al. AMT tag approach to proteomic characterization of Deinococcus radiodurans and Shewanella oneidensis. Methods Biochem. Anal. 49, 113–134 (2006).

    CAS  PubMed  Google Scholar 

  76. Elias, D. A. et al. Global detection and characterization of hypothetical proteins in Shewanella oneidensis MR-1 using LC-MS based proteomics. Proteomics 5, 3120–3230 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Romine, M. F. et al. Validation of Shewanella oneidensis MR-1 small proteins by AMT tag-based proteome analysis. OMICS 8, 239–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Gupta, N. et al. Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation. Genome Res. 17, 1362–1377 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gupta, N. et al. Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes. Genome Res. 21 Apr 2008 (doi: 10.1101/gr.074344.107).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Serres, M. H. & Riley, M. Structural domains, protein modules, and sequence similarities enrich our understanding of the Shewanella oneidensis MR-1 proteome. OMICS 8, 306–321 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Karp, P. D., Paley, S. & Romero, P. The Pathway Tools Software. Bioinformatics 18, S225–S232 (2002).

    Article  PubMed  Google Scholar 

  82. Brettar, I., Christen, R. & Höfle, M. G. Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic–anoxic interface of the Gotland Deep in the central Baltic Sea. Int. J. Syst. Evol. Microbiol. 52, 2211–2217 (2002).

    CAS  PubMed  Google Scholar 

  83. Lubitz, S. P. & Weiner, J. H. The Escherichia coli ynfEFGHI operon encodes polypeptides which are paralogues of dimethyl sulfoxide reductase (DmsABC). Arch. Biochem. Biophys. 418, 205–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Jiao, Y. & Newman, D. K. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 189, 1765–1773 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Dubnau, D. & Losick, R. Bistability in bacteria. Mol. Microbiol. 61, 564–572 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Ziemke, F., Brettar, I. & Höfle, M. G. Stability and diversity of the genetic structure of a Shewanella putrefaciens population in the water column of the central Baltic. Aquat. Microb. Ecol. 13, 63–74 (1997).

    Article  Google Scholar 

  87. Thompson, J. R. et al. Genotypic diversity within a natural coastal bacterioplankton population. Science 307, 1311–1313 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Coleman, M. L. & Chisholm, S. W. Code and context: Prochlorococcus as a model for cross-scale biology. Trends Microbiol. 15, 398–407 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Tringe, S. G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Committee on Metagenomics: Challenges and Functional Applications, National Research Council of the National Academies. The New Science of Metagenomics: Revealing the Secrets of our Microbial Planet (The National Academies, Washington DC, 2007).

  91. Ram, R. J. et al. Community proteomics of a natural microbial biofilm. Science 308, 1915–1920 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Parro, V., Moreno-Paz, M. & Gonzalez-Toril, E. Analysis of environmental transcriptomes by DNA microarrays. Environ. Microbiol. 9, 453–464 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Frias-Lopez, J. et al. Microbial community gene expression in ocean surface waters. Proc. Natl Acad. Sci. USA 105, 3805–3810 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kim, B. H. et al. Electro–chemical activity of an Fe(III)-reducing bacterium Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol. Tech. 13, 475–478 (1999).

    Article  CAS  Google Scholar 

  95. Pham, T. H., Jang, J. K., Chang, I. S. & Kim, B. H. Improvement of the cathode reaction of a mediator-less microbial fuel cell. J. Microbiol. Biotech. 14, 324–329 (2004).

    CAS  Google Scholar 

  96. Rabaey, K. et al. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J. 1, 9–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Bretschger, O. et al. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol. 73, 7003–7012 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Myers, C. R. & Myers, J. M. The outer membrane cytochromes of Shewanella oneidensis MR-1 are lipoproteins. Lett. Appl. Microbiol. 39, 466–470 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. DiChristina, T. J., Moore, C. M. & Haller, C. A. Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE (gspE) type II proteins secretion gene. J. Bacteriol. 184, 142–151 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Donald, J. W., Hicks, M. G., Richardson, D. J. & Palmer, T. The c-type cytochrome OmcA localizes to the outer membrane upon heterologous expression in Escherichia coli. J. Bacteriol. 16 May 2008 (doi:10.1128/jb.00395–08).

  101. Shi, L. et al. Direct Involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J. Bacteriol. 23 May 2008 (doi:10.1128/jb.00514–08).

  102. Myers, C. R. & Myers, J. M. Cell surface exposure of the outer membrane cytochromes of Shewanella oneidensis MR-1. Lett. Appl. Microbiol. 37, 254–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Shi, L. et al. Isolation of a high-affinity functional protein complex between OmcA and MtrC: two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J. Bacteriol. 188, 4705–4714 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xiong, Y. et al. High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 outer membrane c-type cytochrome OmcA. J. Am. Chem. Soc. 128, 13978–13979 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Hartshorne, R. S. et al. Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors. J. Biol. Inorg. Chem. 12, 1083–1094 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci. USA 105, 3968–3973 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. von Canstein, H., Ogawa, J., Shimuzu, S. & Lloyd, J. R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74, 615–623 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Markowitz, V. M. & Kyrpides, N. C. Comparative genome analysis in the integrated microbial genomes (IMG) system. Methods Mol. Biol. 395, 35–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Venkateswaran, K., Dollhopf, M. E., Aller, R., Stackebrandt, E. & Nealson, K. H. Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int. J. Syst. Bacteriol. 48, 965–972 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Brettar, I., Moore, E. R. B. & Höfle, M. G. Phylogeny and abundance of novel denitrifying bacteria isolated from the water column of the central Baltic Sea. Microb. Ecol. 42, 295–305 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Delong, E. F., Franks, D. G. & Yayanos, A. A. Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl. Environ. Microbiol. 63, 2105–2108 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Bowman, J. P. et al. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int. J. Syst. Bacteriol. 47, 1040–1047 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Zhao, J. S., Manno, D., Leggiadro, C., O'Neil, D. & Hawari, J. Shewanella halifaxensis sp. nov., a novel obligately respiratory and denitrifying psychrophile. Int. J. Syst. Evol. Microbiol. 56, 205–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Kulakova, L., Galkin, A., Kurihara, T., Yoshimura, T. & Esaki, N. Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain Ac10: gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 65, 611–617 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Gao, H. et al. Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. Int. J. Syst. Evol. Microbiol. 56, 1911–1916 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Leonardo, M. R. et al. Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei. Int. J. Syst. Bacteriol. 49, 1341–1351 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Wang, F., Wang, P., Chen, M. & Xiao, X. Isolation of extremophiles with the detection and retrieval of Shewanella strains in deep-sea sediments from the west Pacific. Extremophiles 8, 165–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Saltikov, C. W., Cifuentes, A., Venkateswaran, K. & Newman, D. K. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl. Environ. Microbiol. 69, 2800–2809 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Murray, A. E. et al. DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes. Proc. Natl Acad. Sci. USA 98, 9853–9358 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nogi, Y., Kato, C. & Horikoshi, K. Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch. Microbiol. 170, 331–338 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Makemson, J. C. et al. Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int. J. Syst. Bacteriol. 47, 1034–1039 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the numerous members of the Shewanella Federation for useful discussions and concepts during the course of their systems biology investigations of Shewanella, including E.J. Crane, H. Gao, C. Giometti, K. Kostantinidis, M. Lipton, M. Marshall, L.-A. McCue, A. Obraztsova, N. Samatova, H. Scholten, E. Uberbacher, L. Ulrich, M. Ward and J. Zhou. The authors have been supported by the US Department of Energy (DOE) through the Shewanella Federation consortium and by the National Science Foundation (grant number NSFMCB0543501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James K. Fredrickson or James M. Tiedje.

Related links

Related links

DATABASES

Entrez Genome Project

Dechloromonas aromatica

Escherichia coli

Geobacter uraniumreducens

Halorhodospira halophila

Magnetospirillum magneticum

Rhodopseudomonas palustris

Shewanella baltica

Shewanella denitrificans

Shewanella oneidensis MR-1

Shewanella woodyi

Vibrio splendidus

Entrez Protein

CymA

EtrA

FruR

MtrA

MtrB

MtrC

MtrF

NagC

OmcA

FURTHER INFORMATION

List of Prokaryotic names with Standing in Nomenclature

Glossary

Dissimilatory

An enzymatic reaction in which a compound is oxidized or reduced but is not assimilated or incorporated into cells for the purposes of biosynthesis during, for example, respiration.

Electron acceptor

An oxidant used during cellular respiration.

One-component system

A regulatory protein that combines both sensory and regulatory capabilities that usually reside in two distinct domains. The repressor of the lactose operons (LacI) and the catabolite activator protein of Escherichia coli are classical examples.

Two-component system

A regulatory system that is typically composed of two proteins, a sensor histidine kinase and a cognate response regulator. EnvZ and OmpR of Escherichia coli are classical examples.

PAS domain

A ubiquitous sensory domain that is found in many one-component and two-component regulatory systems in prokaryotes, as well as in regulatory proteins in eukaryotes. The PAS domain was named after three proteins that it was found in: Per (period circadian protein), Arnt (receptor nuclear translocator protein) and Sim (single-minded protein).

Diguanylate cyclase

An enzyme that synthesizes cyclic diguanylic acid and typically contains the canonical amino acid motif GGDEF.

Regulon

A set of genes that is controlled by a common transcription factor or regulatory RNA. A regulon usually includes genes that are implicated in a common cellular subsystem or pathway.

AMT-tag proteome database

An accurate mass and time (AMT)-tag proteome database that contains identifications for tryptic peptides based on analysis by capillary liquid chromatography followed by tandem mass spectrometry of various cellular lysates of a single organism.

Core genome

In the context of this Review, the core genome refers to the set of proteins that have been found in each Shewanella genome analysed to date and are of high sequence similarity and are therefore predicted to encode the same function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fredrickson, J., Romine, M., Beliaev, A. et al. Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6, 592–603 (2008). https://doi.org/10.1038/nrmicro1947

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1947

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing