Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Under pressure: investigating the biology of plant infection by Magnaporthe oryzae

Key Points

  • Rice blast is caused by the ascomycete fungus Magnaporthe oryzae and is the most serious disease of cultivated rice.

  • The fungus is genetically tractable, has a sequenced genome and is experimentally amenable to study using functional genomics and cell biology.

  • The fungus elaborates specialized cells called appressoria to infect plants.

  • Appressorium development is cell cycle regulated and involves autophagic programmed cell death of the fungal spore. The cyclic AMP response pathway and the Pmk1 mitogen-activated protein kinase kinase pathway are necessary for appressorium development.

  • Appressorium turgor generation involves accumulation of compatible solutes, including glycerol, which are derived from storage products in spores. Glycerol accumulation and melanization of the cell wall allow the deployment of sufficient turgor to breach the plant cuticle.

  • The fungus spreads biotrophically in epidermal cells and might use protein effectors and/or secondary metabolites to suppress host defences.

  • Disease symptoms involve necrosis of plant cells, which produces characteristic spreading lesions from which the fungus sporulates.

  • Disease control by deployment of resistance genes, biotechnological approaches and development of new fungicides is an important aim of research on rice blast.

Abstract

The filamentous fungus Magnaporthe oryzae causes rice blast, the most serious disease of cultivated rice. Cellular differentiation of M. oryzae forms an infection structure called the appressorium, which generates enormous cellular turgor that is sufficient to rupture the plant cuticle. Here, we show how functional genomics approaches are providing new insight into the genetic control of plant infection by M. oryzae. We also look ahead to the key questions that need to be addressed to provide a better understanding of the molecular processes that lead to plant disease and the prospects for sustainable control of rice blast.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnaporthe oryzae causes rice blast disease.
Figure 2: Life cycle of the rice blast fungus Magnaporthe oryzae.
Figure 3: Signal transduction pathways required for infection-related development by Magnaporthe oryzae.
Figure 4: The appressorium cell wall.
Figure 5: Schematic of the Mps1 mitogen-activated protein kinase pathway.

Similar content being viewed by others

References

  1. Barker, R., Herdt, R. W. & Rose, B. The Rice Economy of Asia (Resources for the Future, Washington DC, 1985).

    Google Scholar 

  2. Ou, S. H. Rice Diseases (CABI, Wallingford, United Kingdom, 1985).

    Google Scholar 

  3. Couch, B. C. & Kohn, L. M. A multilocus gene genealogy concordant with host preference indicates segregation of a new species Magnaporthe oryzae from M. grisea. Mycologia 94, 683–693 (2002). This important paper provided a rigorous phylogenetic analysis that led to reclassification of the name of the rice blast fungus.

    Article  CAS  PubMed  Google Scholar 

  4. Couch, B. C. et al. Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 170, 613–630 (2005). The best explanation for the origins of rice blast disease and its spread across the rice-growing regions of the world.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Talbot, N. J. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57, 177–202 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Ebbole, D. J. Magnaporthe as a model for understanding host–pathogen interactions. Annu. Rev. Phytopathol. 45, 437–456 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Caracuel-Rios, Z. & Talbot, N. J. Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea. Curr. Opin. Microbiol. 10, 339–345 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Dean, R. A. et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Hamer, J. E., Howard, R. J., Chumley, F. G. & Valent, B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239, 288–290 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Talbot, N. J., Ebbole, D. J. & Hamer, J. E. Identification and characterisation of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5, 1575–1590 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. de Jong, J. C., McCormack, B. J., Smirnoff, N. & Talbot, N. J. Glycerol generates turgor in rice blast. Nature 389, 471–483 (1997).

    Google Scholar 

  12. Chumley, F. G. & Valent, B. Genetic analysis of melanin-deficient, nonpathogenic mutants of Magnaporthe grisea. Mol. Plant Microbe Interact. 3, 135–143 (1990).

    Article  CAS  Google Scholar 

  13. Sesma, A. & Osbourn, A. E. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431, 582–586 (2004). This paper discusses how M. oryzae can infect roots and spread systemically in rice plants, and describes infection structures that are distinct from appressoria when on roots.

    Article  CAS  PubMed  Google Scholar 

  14. Inoue, I., Namiki, F. & Tsuge, T. Plant colonization by the vascular wilt fungus Fusarium oxysporum requires FOW1, a gene encoding a mitochondrial protein. Plant Cell 14, 1869–1883 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kankanala, P., Czymmek, K. & Valent, B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19, 706–724 (2007). Elegant cytological study that shows the biotrophic spread of M. oryzae in rice tissue and the potential of this fungus to use plasmodesmata to traverse from cell to cell in living plants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Soanes, D. M. et al. Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS ONE 3, e2300 (2008). Large-scale genome analysis of 34 fungi and oomycete genomes that investigated gene families, acquisitions and expansions associated with the ability of fungi and oomycetes to be plant pathogens.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cornell, M. et al. Comparative genome analysis across a kingdom of eukaryotic organisms: specialization and diversification of the fungi. Genome Res. 17, 1809–1822 (2007). Systematic study of multiple fungal genomes that emphasizes differences between filamentous fungi and yeasts in the Ascomycota.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Soanes, D. M., Richards, T. A. & Talbot, N. J. Insights from sequencing fungal and oomycete genomes: what can we learn about plant disease and the evolution of pathogenicity? Plant Cell 19, 3318–3326 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Collemare, J., Billard, A., Böhnert, H. U. & Lebrun, M.-H. Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS–NRPS in pathogenicity. Mycol. Res. 112, 207–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, S., Xu, X., Dai, X., Yang, C. & Qiang, S. Identification of tenuazonic acid as a novel type of natural photosystem II inhibitor binding in Q(B)-site of Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1767, 306–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Böhnert, H. U., Fudal, I., Tharreau, D., Notteghem, J.-L. & Lebrun, M.-H. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16, 2499–2513 (2004). The authors discovered an avirulence gene of M. oryzae that encodes an enzyme involved in biosynthesis of a secondary metabolite.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fudal, I., Collemare, J., Böhnert, H. U., Melayah, D. & Lebrun M.-H. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initation of appressorium-mediated penetration. Eukaryot. Cell 6, 546–554 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Kulkarni, R. D., Kelkar, H. S. & Dean, R. A. An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem. Sci. 28, 118–121 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. DeZwaan, T. M., Carroll, A. M., Valent, B. & Sweigard, J. A. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11, 2013–2030 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Veneault-Fourrey, C., Barooah, M., Egan, M., Wakley, G. & Talbot, N. J. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312, 580–583 (2006). This study links cell cycle regulation and programmed cell death to the development of infection-competent appressoria.

    Article  CAS  PubMed  Google Scholar 

  26. Osmani, A. H., O'Donnell, K., Pu, R. T. & Osmani, S. A. Activation of the nimA protein kinase plays a unique role during mitosis that cannot be bypassed by absence of the bimE checkpoint. EMBO J. 10, 2669–2679 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, X. H. et al. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot. Cell 6, 997–1005 (2007). Confirmed a role for autophagy in plant infection by M. oryzae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lang, T. et al. Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. EMBO J. 17, 3597–3607 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choi, W. & Dean, R. A. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9, 1973–1983 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Adachi, K. & Hamer, J. E. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell 10, 1361–1373 (1998). Characterization of an extragenic suppressor mutant of the mac1 adenylate cyclase mutant that revealed the role of the regulatory subunit of PKA in plant infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, J. R. & Hamer, J. E. MAP kinase and cAMP signalling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10, 2696–2706 (1996). Seminal study that identified the Pmk1 MAPK pathway.

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, X., Mehrabi, R. & Xu, J. R. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot. Cell 6, 1701–1714 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao, X., Kim, Y., Park, G. & Xu, J. R. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell 17, 1317–1329 (2005). Detailed analysis of the roles of Mst7 and Mst11 in the Pmk1 MAPK pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park, G. et al. Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell 18, 2822–2835 (2006). This study identified the role of Mst50 as a scaffold protein in the Pmk1 MAPK pathway during appressorium development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao, X. & Xu, J. R. A highly conserved MAPK-docking site in Mst7 is essential for Pmk1 activation in Magnaporthe grisea. Mol. Microbiol. 63, 881–894 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Nishimura, M., Park, G. & Xu, J. R. The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Mol. Microbiol. 50, 231–243 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, H. et al. Rgs1 regulates multiple Gα subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO J. 26, 690–700 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, S. & Dean, R. A. G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol. Plant Microbe Interact. 10, 1075–1086 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Fang, E. G. & Dean, R. A. Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Mol. Plant Microbe Interact. 13, 1214–1227 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Li, L., Xue, C., Bruno, K., Nishimura, M. & Xu, J. R. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea. Mol. Plant Microbe Interact. 17, 547–556 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, J. H., Wieser, J. & Adams, T. H. The Aspergillus flbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J. 15, 5184–5190 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park, G., Xue, C., Zheng, L., Lam, S. & Xu, J. R. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Mol. Plant Microbe Interact. 15, 183–192 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Bourett, T. M. & Howard R. J. In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea. Can. J. Bot. 68, 329–342 (1990).

    Article  Google Scholar 

  44. Egan, M. J., Jones, M. A., Smirnoff, N., Wang, Z. Y. & Talbot, N. J. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc. Natl Acad. Sci. USA 104, 11772–11777 (2007). Showed that ROS generation in the appressorium is essential for plant infection andrice blast disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tucker, S. L. et al. A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell 16, 1575–1588 (2004). This was the first study to suggest that oxidative processes in the appressorium cell wall might be important for plant disease. A novel cell wall-localized metallothionein was found to be essential for rice blast disease.

    Article  CAS  PubMed  Google Scholar 

  46. Zheng, W. et al. A Rho3 homolog is essential for appressorium development and pathogenicity of Magnaporthe grisea. Eukaryot. Cell 6, 2240–2250 (2007). This study suggests a link between Rho GTPase signaling and ROS generation in M. oryzae.

    Article  CAS  PubMed  Google Scholar 

  47. Thines, E., Weber, R. W. S. & Talbot, N. J. MAP kinase and protein kinase A-dependent mobilisation of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12, 1703–1718 (2000). Showed that the contents of the fungal spore are trafficked to the developing appressorium under control of the Pmk1 MAPK pathway.

    CAS  PubMed  Google Scholar 

  48. Wang, Z. Y., Soanes, D. M., Kershaw, M. J. & Talbot, N. J. Functional analysis of lipid metabolism in the rice blast fungus Magnaporthe grisea reveals a role for peroxisomal β-oxidation in appressorium-mediated plant infection. Mol. Plant Microbe Interact. 20, 475–491 (2007).

    Article  PubMed  CAS  Google Scholar 

  49. Wang, Z. Y., Thornton, C. R., Kershaw, M. J., Debao, L. & Talbot, N. J. The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol. Microbiol. 47, 1601–1612 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Ramos-Pamplona, M. & Naqvi, N. I. Host invasion during rice-blast disease requires carnitine-dependent transport of peroxisomal acetyl-CoA. Mol. Microbiol. 61, 61–75 (2006). Together with Reference 51, this study provides evidence that the pool of acetyl CoA is pivotal to the ability of appressoria to cause disease and that peroxisomal or glyoxysomal fatty acid β-oxidation is necessary for pathogenicity.

    Article  CAS  PubMed  Google Scholar 

  51. Bhambra, G. K., Wang, Z. Y., Soanes, D. M., Wakley, G. E. & Talbot, N. J. Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea. Mol. Microbiol. 61, 46–60 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Soundararajan, S. et al. Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 16, 1564–1574 (2004). This study shows that the Woronin body protein Hex1is essential for the function of appressoria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kimura, A., Takano, Y., Furasawa, I. & Okuno, T. Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium. Plant Cell 13, 1945–1957 (2001).

    CAS  PubMed  Google Scholar 

  54. Asakura, M., Okuno, T. & Takano, Y. Multiple contributions of peroxisomal metabolic function to fungal pathogenicity in Colletotrichum lagenarium. Appl. Environ. Microbiol. 72, 6345–6354 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lorenz, M. C. & Fink, G. R. The glyoxylate cycle is required for fungal virulence. Nature 412, 83–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Idnurm, A. & Howlett, B. J. Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola (Brassica napus). Eukaryot. Cell 1, 719–724 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Solomon, P. S., Lee R. C., Wilson, T. J. & Oliver, R. P. Pathogenicity of Stagonospora nodorum requires malate synthase. Mol. Microbiol. 53, 1065–1073 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Foster, A. J., Jenkinson, J. M. & Talbot, N. J. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J. 22, 225–235 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Wilson, R. A. et al. Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J. 26, 3673–3685 (2007). This study links Tps1 to the control of sugar signalling and the use of nitrogen sources.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Paul, M. J., Primavesi, L. F., Jhurreea, D. & Zhang, Y. Trehalose metabolism and signaling. Annu. Rev. Plant Biol. 59, 417–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Xu, J. R., Staiger, C. J. & Hamer, J. E. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc. Natl Acad. Sci. USA 95, 12713–12718 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jeon, J. et al. A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Mol. Plant Microbe Interact. 21, 525–534 (2008). Identified upstream components of the Mps1 MAPK pathway.

    Article  CAS  PubMed  Google Scholar 

  63. Mehrabi, R., Ding, S. & Xu, J.-R. MADS-box transcription factor Mig1 is required for infectious growth in Magnaporthe grisea. Eukaryot. Cell 7, 791–799 (2008). Identification of the Rlm1 counterpart in M. oryzae that began to indicate the targets of the Mps1 MAPK.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sweigard, J. A., Chumley, F. G. & Valent, B. Disruption of a Magnaporthe grisea cutinase gene. Mol. Gen. Genet. 232, 183–190 (1992).

    CAS  PubMed  Google Scholar 

  65. Skamnioti, P. & Gurr, S. J. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. Plant Cell 19, 2674–2689 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jia, Y., McAdams, S. A., Bryan, G. T., Hershey, H. P. & Valent, B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19, 4004–4014 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Win, J. et al. Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell 19, 2349–2369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jiang, R. H., Tripathy, S., Govers, F. & Tyler, B. M. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc. Natl Acad. Sci. USA 105, 4874–4879 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Allen, R. L. et al. Host–parasite co-evolutionary conflict between Arabidopsis and downy mildew. Science 306, 1957–1960 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Whisson, S. C. et al. A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450, 115–118 (2007). This study provided evidence that protein effectors produced by oomycete pathogens are delivered into the cytoplasm of host plant cells. But what happens in rice blast disease?

    Article  CAS  PubMed  Google Scholar 

  71. Talbot, N. J. Deadly special deliveries. Nature 450, 41–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Gilbert, M. J., Thornton, C. R., Wakley, G. E. & Talbot, N. J. A P-type ATPase required for rice blast disease and induction of host resistance. Nature 440, 535–539 (2006). An aminophospholipid translocase involved in Golgi function seemed to be necessary for exocytosis of virulence-associated proteins during plant infection.

    Article  CAS  PubMed  Google Scholar 

  73. Chen, C.-Y., Ingram, M. F., Rosal, P. H. & Graham, T. R. Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase in yeast late Golgi function. J. Cell Biol. 147, 1223–1236 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Balhadère, P. V. & Talbot, N. J. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell 13, 1987–2004 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hua, Z., Fatheddin, P. & Graham, T. R. An essential subfamily of Drs2-related P-type ATPases is required for protein trafficking between Golgi complex and endosomal/vacuolar system. Mol. Biol. Cell 13, 3162–3177 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gall, W. E. et al. Drs2p-dependent formation of exocytic clathrin-coated vesicles in vivo. Curr. Biol. 17, 1623–1627 (2002).

    Article  Google Scholar 

  77. Li, L., Ding, S.-L., Sharon, A., Orbach, M. & Xu, J. R. Mir1 is upregulated and localized to nuclei during infectious growth in the rice blast fungus. Mol. Plant Microbe Interact. 20, 448–458 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5, 621–628 (2008). Described a new method for high-throughput transcriptional profiling by next-generation DNA sequencing that had extraordinary dynamic range and sensitivity.

    Article  CAS  PubMed  Google Scholar 

  79. Oh, Y. et al. Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biol. 9, R85 (2008).

    Article  PubMed  CAS  Google Scholar 

  80. Parker, D. et al. Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nature Protoc. 3, 435–444 (2008).

    Article  CAS  Google Scholar 

  81. Zeigler, R. S., Tohme, J., Nelson, R. J., Levy, M. & Correa, F. J. in Rice Blast Disease (eds Zeigler, R. S., Leong, S. A. & Teng, P. S.) 267–292 (CABI, Wallingford, United Kingdom, 1994).

    Google Scholar 

  82. Fjellstrom, R. G. et al. Development of DNA markers suitable for marker-assisted selection of three pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci. 44, 1790–1798 (2004).

    Article  CAS  Google Scholar 

  83. Ahn, S.-W. in Major Fungal Diseases of Rice (eds Sreenivasaprasad, S. & Johnson, R.) 131–143 (Kluwer Academic, Dordrecht, 2001).

    Book  Google Scholar 

  84. Bajaj, S. & Mohanty, A. Recent advances in rice biotechnology — towards genetically superior transgenic rice. Plant Biotechnol. J. 3, 275–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Kim, S. T. et al. Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation. Proteomics 4, 3579–3587 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Balhadère, P. V., Foster, A. J. & Talbot, N. J. Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Mol. Plant Microbe Interact. 12, 129–142 (1999).

    Article  Google Scholar 

  87. Sweigard, J. A., Carroll, A. M., Farrall, L., Chumley, F. G. & Valent, B. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol. Plant Microbe Interact. 11, 404–412 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Jeon, J. et al. Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nature Genet. 39, 561–565 (2007). The largest-scale gene functional study of the rice blast fungusto date, in which insertional mutagenesis was used to make 20,000 mutants of the fungus.

    Article  CAS  PubMed  Google Scholar 

  89. Villalba, F. et al. Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet. Biol. 45, 68–75 (2008). A new method was used to make high-throughput gene replacements in the rice blast fungus.

    Article  CAS  PubMed  Google Scholar 

  90. Quoc, N. B. et al. Systematic analysis of calcium signalling proteins in the genome of the rice blast fungus Magnaporthe oryzae using a high-throughput RNA silencing system. Mol. Microbiol. 68, 1348–1365 (2008). A clever new vector system was devised that allowed high-throughput gene silencing in M. oryzae and was tested in a systematic functional genomic study of calcium signalling in the fungus.

    Article  CAS  Google Scholar 

  91. Valent, B., Farrall, L. & Chumley, F. G. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics 127, 87–101 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Czymmek, K. J., Bourett, T. M., Sweigard, J. A., Carroll, A. & Howard, R. J. Utility of cytoplasmic fluorescent proteins for live-cell imaging of Magnaporthe grisea in planta. Mycologia 94, 280–289 (2002). This study described vectors and techniques that allow live cell imaging of reporter constructs in M. oryzae.

    Article  PubMed  Google Scholar 

  93. Thornton, C. R. & Talbot, N. J. Immunofluorescence microscopy and immunogold EM for investigating fungal infections of plants. Nature Protoc. 1, 2506–2511 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Rice blast research in the laboratory of N.J.T. is supported by the Biotechnology and Biological Sciences Research Council (BBSRC), the Gatsby Charitable Foundation and the Halpin Scholarship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Talbot.

Related links

Related links

DATABASES

Entrez Genome Project

Aspergillus nidulans

Aspergillus terreus

Brachypodium distachyon

Candida albicans

Fusarium oxysporum

Magnaporthe grisea

Neurospora crassa

Phytophthora infestans

Plasmodium falciparum

Saccharomyces cerevisiae

Stagonospora nodorum

FURTHER INFORMATION

Nicholas J. Talbot's homepage

Glossary

Ascomycete

A fungus that reproduces sexually and produces a structure called an ascus. An ascus is a bag that carries four or eight ascospores, which represent the products of meiosis.

Appressorium

A specialized infection cell that is used by plant pathogenic fungi to penetrate the host plant surface using either mechanical force and/or enzymatic action to breach the cuticle.

Panicle

The branched inflorescence that carries rice grain on a mature rice plant.

Conidium

An asexual spore produced by filamentous fungi.

Map-based cloning

The use of genetic mapping and molecular markers to isolate a gene based on its chromosomal position.

Compatible solute

A solute that can accumulate inside a cell to high concentrations in response to hyperosmotic conditions. Filamentous fungi often use polyols, such as glycerol, mannitol or arabitol, as compatible solutes.

Hypha

A cylindrical cell produced by filamentous fungi that extends by tip growth and forms a branched network called a mycelium.

Biotrophic

Refers to a plant pathogen that proliferates within living plant tissue and derives its nutrition from living plant cells. Biotrophs evade or suppress plant defence mechanisms during infection.

Haustorium

A specialized fungal feeding structure that occupies living plant cells by invagination of the plant plasma membrane. Haustoria are commonly produced by biotrophic fungi.

Necrotrophic

Refers to a plant pathogen that kills plant cells and derives nutrition from dead or dying tissue.

Hemibiotroph

A plant pathogen that grows initially as a biotroph but later causes severe plant disease symptoms, including host cell destruction.

Metallothionein

A small, cysteine-rich protein that binds metals such as copper, zinc or iron.

Fenton reaction

A reaction caused by the presence of metals, such as copper and iron, in the presence of hydrogen peroxide, causing formation of highly reactive hydroxyl radicals.

Woronin body

A peroxisome body that can occlude septal pores, thereby sealing individual fungal cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, R., Talbot, N. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7, 185–195 (2009). https://doi.org/10.1038/nrmicro2032

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2032

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing