Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis

Abstract

Extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis, now known to be present in 50 countries, heighten the threat posed by untreatable and fatal human tuberculosis (TB). To combat epidemics of drug-resistant TB, it is vital to understand why some resistant strains have greater reproductive fitness — a greater propensity to spread — than drug-susceptible strains. If public health malpractice has been a more important determinant of reproductive success than genetic mechanisms, then improved diagnosis and treatment could keep the frequency of resistant strains among TB cases low in any population. Recent data suggest that national TB control programmes that use existing drugs efficiently can postpone and even reverse epidemics of multidrug-resistant TB, although the effect of such programmes on XDR strains remains largely unknown.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Worldwide distribution of multidrug-resistant tuberculosis (MDR TB) in 2006.
Figure 2: Estimated time trends in MDR TB and all TB cases.
Figure 3: Estimated new multidrug-resistant (MDR) cases among new TB cases in 35 countries.
Figure 4: Estimated trends in new MDR TB cases in relation to trends in all new TB cases.

Similar content being viewed by others

References

  1. Raviglione, M. C. & Uplekar, M. W. WHO's new stop TB strategy. Lancet 367, 952–955 (2006).

    Article  Google Scholar 

  2. World Health Organization. Anti-tuberculosis drug resistance in the world: report no. 3 (WHO, Geneva, 2004).

  3. Singh, J. A., Upshur, R. & Padayatchi, N. XDR-TB in South Africa: no time for denial or complacency. PLoS Med. 4, e50 (2007).

    Article  Google Scholar 

  4. Koenig, R. Drug-resistant tuberculosis. In South Africa, XDR TB and HIV prove a deadly combination. Science 319, 894–897 (2008).

    Article  Google Scholar 

  5. Jones, K. D., Hesketh, T. & Yudkin, J. Extensively drug-resistant tuberculosis in sub-Saharan Africa: an emerging public-health concern. Trans. R. Soc. Trop. Med. Hyg. 102, 219–224 (2008).

    Article  Google Scholar 

  6. World Health Organization. Anti-tuberculosis drug resistance in the world: report no. 4 (WHO, Geneva, 2008).

  7. von Gottberg, A. et al. Emergence of levofloxacin-non-susceptible Streptococcus pneumoniae and treatment for multidrug-resistant tuberculosis in children in South Africa: a cohort observational surveillance study. Lancet 371, 1108–1113 (2008).

    Article  Google Scholar 

  8. Hancock, R. E. W. The end of an era? Nature Rev. Drug Discov. 6, 28 (2007).

    Article  CAS  Google Scholar 

  9. Raviglione, M. XDR-TB: entering the post-antibiotic era? Int. J. Tuberc. Lung Dis. 10, 1185–1187 (2006).

    PubMed  Google Scholar 

  10. Norrby, S. R., Nord, C. E. & Finch, R. Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect. Dis. 5, 115–119 (2005).

    Article  Google Scholar 

  11. Levy, S. B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nature Med. 10, S122–S129 (2004).

    Article  CAS  Google Scholar 

  12. Spigelman, M. K. New tuberculosis therapeutics: a growing pipeline. J. Infect. Dis. 196 (Suppl. 1), 28–34 (2007).

    Article  Google Scholar 

  13. Glickman, S. W., Rasiel, E. B., Hamilton, C. D., Kubataev, A. & Schulman, K. A. A portfolio model of drug development for tuberculosis. Science 311, 1246–1247 (2006).

    Article  CAS  Google Scholar 

  14. Dye, C. & Espinal, M. A. Will tuberculosis become resistant to all antibiotics? Proc. R. Soc. Lond. B 268, 45–52 (2001).

    Article  CAS  Google Scholar 

  15. World Health Organization. The global MDR-TB and XDR-TB response plan 2007–2008 (WHO, Geneva, 2007).

  16. Dye, C., Espinal, M. A., Watt, C. J., Mbiaga, C. & Williams, B. G. Worldwide incidence of multidrug-resistant tuberculosis. J. Infect. Dis. 185, 1197–1202 (2002).

    Article  Google Scholar 

  17. Zignol, M. et al. Global incidence of multidrug-resistant tuberculosis. J. Infect. Dis. 194, 479–485 (2006).

    Article  Google Scholar 

  18. Cohen, T. et al. Challenges in estimating the total burden of drug-resistant tuberculosis. Am. J. Respir. Crit. Care Med. 177, 1302–1306 (2008).

    Article  Google Scholar 

  19. Ben Amor, Y., Nemser, B., Singh, A., Sankin, A. & Schluger, N. Underreported threat of multidrug-resistant tuberculosis in Africa. Emerg. Infect. Dis. 14, 1345–1352 (2008).

    Article  Google Scholar 

  20. Shah, N. S. et al. Worldwide emergence of extensively drug-resistant tuberculosis. Emerg. Infect. Dis. 13, 380–387 (2007).

    Article  CAS  Google Scholar 

  21. Pillay, M. & Sturm, A. W. Evolution of the extensively drug-resistant F15/LAM4/KZN strain of Mycobacterium tuberculosis in KwaZulu-Natal, South Africa. Clin. Infect. Dis. 45, 1409–1414 (2007).

    Article  CAS  Google Scholar 

  22. Gandhi, N. R. et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 368, 1575–1580 (2006).

    Article  Google Scholar 

  23. Dye, C. & Espinal, M. A. Will tuberculosis become resistant to all antibiotics? Proc. R. Soc. Lond. B 268, 45–52 (2001).

    Article  CAS  Google Scholar 

  24. Dye, C. & Williams, B. G. Criteria for the control of drug-resistant tuberculosis. Proc. Natl Acad. Sci. USA 97, 8180–8185 (2000).

    Article  CAS  Google Scholar 

  25. Dye, C., Williams, B. G., Espinal, M. A. & Raviglione, M. C. Erasing the world's slow stain: strategies to beat multidrug-resistant tuberculosis. Science 295, 2042–2046 (2002).

    Article  CAS  Google Scholar 

  26. Cohen, T., Sommers, B. & Murray, M. The effect of drug resistance on the fitness of Mycobacterium tuberculosis. Lancet Infect. Dis. 3, 13–21 (2003).

    Article  Google Scholar 

  27. Martinez, J. L., Baquero, F. & Andersson, D. I. Predicting antibiotic resistance. Nature Rev. Microbiol. 5, 958–965 (2007).

    Article  CAS  Google Scholar 

  28. Rosas-Magallanes, V. et al. Horizontal transfer of a virulence operon to the ancestor of Mycobacterium tuberculosis. Mol. Biol. Evol. 23, 1129–1135 (2006).

    Article  CAS  Google Scholar 

  29. Coros, A., DeConno, E. & Derbyshire, K. M. IS6110, a Mycobacterium tuberculosis complex-specific insertion sequence, is also present in the genome of Mycobacterium smegmatis, suggestive of lateral gene transfer among mycobacterial species. J. Bacteriol. 190, 3408–3410 (2008).

    Article  CAS  Google Scholar 

  30. Becq, J. et al. Contribution of horizontally acquired genomic islands to the evolution of the tubercle bacilli. Mol. Biol. Evol. 24, 1861–1871 (2007).

    Article  CAS  Google Scholar 

  31. Hazbon, M. H. et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 50, 2640–2649 (2006).

    Article  CAS  Google Scholar 

  32. Prammananan, T. et al. Distribution of rpoB mutations among multidrug-resistant Mycobacterium tuberculosis (MDRTB) strains from Thailand and development of a rapid method for mutation detection. Clin. Microbiol. Infect. 14, 446–453 (2008).

    Article  CAS  Google Scholar 

  33. Caws, M. et al. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog. 4, e1000034 (2008).

    Article  Google Scholar 

  34. Espinal, M. A. et al. Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries. J. Am. Med. Assoc. 283, 2537–2545 (2000).

    Article  CAS  Google Scholar 

  35. Mak, A. et al. Influence of multidrug resistance on tuberculosis treatment outcomes with standardized regimens. Am. J. Respir. Crit. Care Med. 178, 306–312 (2008).

    Article  Google Scholar 

  36. Cox, H. et al. Tuberculosis recurrence and mortality after successful treatment: impact of drug resistance. PLoS Med. 3, e384 (2006).

    Article  Google Scholar 

  37. Cox, H. S. et al. Risk of acquired drug resistance during short-course directly observed treatment of tuberculosis in an area with high levels of drug resistance. Clin. Infect. Dis. 44, 1421–1427 (2007).

    Article  CAS  Google Scholar 

  38. Nathanson, E. et al. Multidrug-resistant tuberculosis management in resource-limited settings. Emerg. Infect. Dis. 12, 1389–1397 (2006).

    Article  Google Scholar 

  39. Leimane, V. et al. Clinical outcome of individualized treatment of multidrug-resistant tuberculosis in Latvia: a retrospective cohort study. Lancet 365, 318–326 (2005).

    Article  Google Scholar 

  40. Furin, J. The clinical management of drug-resistant tuberculosis. Curr. Opin. Pulm. Med. 13, 212–217 (2007).

    Article  CAS  Google Scholar 

  41. Shin, S. S. et al. Long-term follow-up for multidrug-resistant tuberculosis. Emerg. Infect. Dis. 12, 687–688 (2006).

    Article  Google Scholar 

  42. Keshavjee, S. et al. Treatment of extensively drug-resistant tuberculosis in Tomsk, Russia: a retrospective cohort study. Lancet 372, 1403–1409 (2008).

    Article  Google Scholar 

  43. Mitnick, C. S. et al. Comprehensive treatment of extensively drug-resistant tuberculosis. N. Engl. J. Med. 359, 563–574 (2008).

    Article  CAS  Google Scholar 

  44. World Health Organization. Global tuberculosis control 2008: surveillance, planning, financing (WHO, Geneva, 2008).

  45. World Health Organization. Green Light Committee Initiative. Annual report (WHO, Geneva, 2007).

  46. Kwon, Y. S. et al. Treatment outcomes for HIV-uninfected patients with multidrug-resistant and extensively drug-resistant tuberculosis. Clin. Infect. Dis. 47, 496–502 (2008).

    Article  Google Scholar 

  47. Bonilla, C. A. et al. Management of extensively drug-resistant tuberculosis in Peru: cure is possible. PLoS One 3, e2957 (2008).

    PubMed  PubMed Central  Google Scholar 

  48. Cox, H. S., Morrow, M. & Deutschmann, P. W. Long term efficacy of DOTS regimens for tuberculosis: systematic review. Br. Med. J. 336, 484–487 (2008).

    Article  Google Scholar 

  49. Chan, E. D., Strand, M. J. & Iseman, M. D. Treatment outcomes in extensively resistant tuberculosis. N. Engl. J. Med. 359, 657–659 (2008).

    Article  CAS  Google Scholar 

  50. Mariam, D. H., Mengistu, Y., Hoffner, S. E. & Andersson, D. I. Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 48, 1289–1294 (2004).

    Article  CAS  Google Scholar 

  51. Gagneux, S. et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312, 1944–1946 (2006).

    Article  CAS  Google Scholar 

  52. Strauss, O. J. et al. Spread of a low-fitness drug-resistant Mycobacterium tuberculosis strain in a setting of high human immunodeficiency virus prevalence. J. Clin. Microbiol. 46, 1514–1516 (2008).

    Article  CAS  Google Scholar 

  53. European Concerted Action on New Generation Genetic Markers and Techniques for the Epidemiology and Control of Tuberculosis. Beijing/W genotype Mycobacterium tuberculosis and drug resistance. Emerg. Infect. Dis. 12, 736–743 (2006).

  54. Sun, Y. J. et al. Genotype and phenotype relationships and transmission analysis of drug-resistant tuberculosis in Singapore. Intern. J. Tuberc. Lung Dis. 11, 436–442 (2007).

    Google Scholar 

  55. Cox, H. S. et al. The Beijing genotype and drug resistant tuberculosis in the Aral Sea region of Central Asia. Respir. Res. 6, 134 (2005).

    Article  Google Scholar 

  56. Marais, B. J. et al. Beijing and Haarlem genotypes are overrepresented among children with drug-resistant tuberculosis in the Western Cape Province of South Africa. J. Clin. Microbiol. 44, 3539–3543 (2006).

    Article  CAS  Google Scholar 

  57. Lopez, B. et al. A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin. Exper. Immunol. 133, 30–37 (2003).

    Article  CAS  Google Scholar 

  58. Toungoussova, O. S., Caugant, D. A., Sandven, P., Mariandyshev, A. O. & Bjune, G. Impact of drug resistance on fitness of Mycobacterium tuberculosis strains of the W-Beijing genotype. FEMS Immunol. Med. Microbiol. 42, 281–290 (2004).

    Article  CAS  Google Scholar 

  59. Blower, S. & Supervie, V. Predicting the future of XDR tuberculosis. Lancet Infect. Dis. 7, 443 (2007).

    Article  Google Scholar 

  60. Cohen, T. & Murray, M. Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness. Nature Med. 10, 1117–1121 (2004).

    Article  CAS  Google Scholar 

  61. Blower, S. M. & Chou, T. Modeling the emergence of the 'hot zones': tuberculosis and the amplification dynamics of drug resistance. Nature Med. 10, 1111–1116 (2004).

    Article  CAS  Google Scholar 

  62. DeRiemer, K. et al. Does DOTS work in populations with drug-resistant tuberculosis? Lancet 365, 1239–1245 (2005).

    Article  Google Scholar 

  63. Espinal, M. A. & Dye, C. Can DOTS control multidrug-resistant tuberculosis? Lancet 365, 1206–1209 (2005).

    Article  Google Scholar 

  64. Wu, P. et al. Age-period-cohort analysis of tuberculosis notifications in Hong Kong from 1961 to 2005. Thorax 63, 312–316 (2008).

    Article  CAS  Google Scholar 

  65. Dye, C. in Clinical Tuberculosis 4th edn (eds Davies, P. D. O., Barnes, P. F. & Gordon, S. B.) 21–41 (Hodder Arnold, London, 2008).

    Google Scholar 

  66. Dye, C., Garnett, G. P., Sleeman, K. & Williams, B. G. Prospects for worldwide tuberculosis control under the WHO DOTS strategy. Directly observed short-course therapy. Lancet 352, 1886–1891 (1998).

    Article  CAS  Google Scholar 

  67. Styblo, K. & Bumgarner, J. R. Tuberculosis can be controlled with existing technologies: evidence. Tubercul. Surveill. Res. Unit. Progress Report 2, 60–72 (1991).

    Google Scholar 

  68. Nardell, E. A. Environmental infection control of tuberculosis. Semin. Respir. Infect. 18, 307–319 (2003).

    Article  Google Scholar 

  69. Bock, N. N., Jensen, P. A., Miller, B. & Nardell, E. Tuberculosis infection control in resource-limited settings in the era of expanding HIV care and treatment. J. Infect. Dis. 196 (Suppl. 1), 108–113 (2007).

    Article  Google Scholar 

  70. World Health Organization. Tuberculosis infection control in the era of expanding care and treatment (WHO, Geneva, 2007).

  71. World Health Organization. Guidelines for the programmatic management of drug-resistant tuberculosis (WHO, Geneva, 2006).

  72. Cobelens, F. G. et al. Scaling up programmatic management of drug-resistant tuberculosis: a prioritized research agenda. PLoS Med. 5, e150 (2008).

    Article  Google Scholar 

  73. Mitnick, C. D., Appleton, S. C. & Shin, S. S. Epidemiology and treatment of multidrug resistant tuberculosis. Semin. Respir. Crit. Care Med. 29, 499–524 (2008).

    Article  Google Scholar 

  74. Nunn, A. J., Phillips, P. P. & Gillespie, S. H. Design issues in pivotal drug trials for drug sensitive tuberculosis (TB). Tuberculosis (Edinb.) 88 (Suppl. 1), 85–92 (2008).

    Article  Google Scholar 

  75. Borgdorff, M. W., Floyd, K. & Broekmans, J. F. Interventions to reduce tuberculosis mortality and transmission in low- and middle-income countries. Bull. World Health Organ. 80, 217–227 (2002).

    PubMed  PubMed Central  Google Scholar 

  76. Styblo, K. Epidemiology of Tuberculosis (KNCV Tuberculosis Foundation, The Hague, 1991).

    Google Scholar 

  77. China Tuberculosis Control Collaboration. The effect of tuberculosis control in China. Lancet 364, 417–422 (2004).

  78. Dye, C., Ottmani, S., Laasri, L. & Bencheikh, N. The decline of tuberculosis epidemics under chemotherapy: a case study in Morocco. Int. J. Tuberc. Lung Dis. 11, 1225–1231 (2007).

    CAS  PubMed  Google Scholar 

  79. Suarez, P. G. et al. The dynamics of tuberculosis in response to 10 years of intensive control effort in Peru. J. Infect. Dis. 184, 473–478 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank A. Wright and M. Zignol for providing data from the 2008 WHO/IUATLD report on drug resistance and for helpful discussions about data interpretation. I also thank T. Cohen and M. Raviglione for reviewing drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Genome Project

Mycobacterium tuberculosis

FURTHER INFORMATION

WHO STOP TB department

Global Alliance for TB Drug Development

Stop TB Strategy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dye, C. Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis. Nat Rev Microbiol 7, 81–87 (2009). https://doi.org/10.1038/nrmicro2048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2048

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing