Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacteriophage resistance mechanisms

Key Points

  • Phages (bacterial viruses) are the most numerous microorganisms on Earth. Bacteria have developed an astonishing array of strategies to combat these viruses at each step of the infection process. Here we describe these strategies and how phages have adapted to subvert them.

  • Phage adsorption to cell receptors is the initial step of infection, and some bacterial strains have developed mechanisms to prevent this key process. There are at least three strategies used by adsorption-blocking systems: receptor blocking, extracellular matrix production and competitive inhibitor production.

  • Superinfection exclusion (Sie) systems prevent phage DNA entry into the host cell, thereby conferring bacterial immunity against superinfecting phages. Several mechanisms that inhibit phage DNA injection have been uncovered in Gram-negative and Gram-positive bacteria.

  • The notorious bacterial restriction–modification systems prevent phage infection by cleaving phage genomic DNA. As a response, phages have evolved by specifically modifying their genomes to avoid DNA cleavage. This ongoing battle of co-evolution between bacteria and phages is exemplified by the canonical coliphage T4.

  • Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (cas) genes are new fascinating topics. The bacterial and archeal CRISPR–Cas systems confer immunity against incoming foreign DNA such as phage genomes. A likely mode of action of this mechanism has been proposed, along with phage strategies to circumvent this system.

  • Bacteria have also evolved a plethora of intracellular proteins that cause abortion of the phage infection. These antiphage mechanisms target crucial steps of phage multiplication, such as transcription, protein synthesis, maturation and host cell lysis. Several different abortive infection (Abi) systems have been found, and the mode of action has been studied for a few of these.

Abstract

Phages are now acknowledged as the most abundant microorganisms on the planet and are also possibly the most diversified. This diversity is mostly driven by their dynamic adaptation when facing selective pressure such as phage resistance mechanisms, which are widespread in bacterial hosts. When infecting bacterial cells, phages face a range of antiviral mechanisms, and they have evolved multiple tactics to avoid, circumvent or subvert these mechanisms in order to thrive in most environments. In this Review, we highlight the most important antiviral mechanisms of bacteria as well as the counter-attacks used by phages to evade these systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The phage replication cycle.
Figure 2: Different strategies used by bacteria to block phage adsorption.
Figure 3: Blocking phage DNA entry into the bacterial cell.
Figure 4: The arms race between bacteria and phages.
Figure 5: The CRISPR (clustered regularly interspaced short palindromic repeat) mode of action.
Figure 6: The mode of action of the Rex system.

Similar content being viewed by others

References

  1. Brüssow, H. & Hendrix, R. W. Phage genomics: small is beautiful. Cell 108, 13–16 (2002).

    Article  PubMed  Google Scholar 

  2. Okafor, N. Modern Industrial Microbiology and Biotechnology (Science Publishers, Enfield, New Hampshire, 2007).

    Google Scholar 

  3. Hutkins, R. W. Microbiology and Technology of Fermented Foods (Blackwell Publishing, Chicago, 2006).

    Book  Google Scholar 

  4. Émond, É. & Moineau, S. in Bacteriohpage: Genetics and Molecular Biology (eds McGrath, S. & Van Sinderen, D.) 93–123 (Caister Academic, Norwich, Norfolk, 2007).

    Google Scholar 

  5. Sturino, J. M. & Klaenhammer, T. R. Engineered bacteriophage-defence systems in bioprocessing. Nature Rev. Microbiol. 4, 395–404 (2006).

    Article  CAS  Google Scholar 

  6. O'Flaherty, S., Ross, R. P. & Coffey, A. Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol. Rev. 33, 801–819 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Mattey, M. & Spencer, J. Bacteriophage therapy — cooked goose or Phoenix rising? Curr. Opin. Biotechnol. 19, 608–612 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Hanlon, G. W. Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int. J. Antimicrobi. Agents 30, 118–128 (2007).

    Article  CAS  Google Scholar 

  9. Campbell, A. The future of bacteriophage biology. Nature Rev. Genet. 4, 471–477 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Sulakvelidze, A., Alavidze, Z. & Morris, J. G. Jr. Bacteriophage therapy. Antimicrob. Agents Chemother. 45, 649–659 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Foster, T. J. Immune evasion by staphylococci. Nature Rev. Microbiol. 3, 948–958 (2005).

    Article  CAS  Google Scholar 

  12. Nordström, K. & Forsgren, A. Effect of protein A on adsorption of bacteriophages to Staphylococcus aureus. J. Virol. 14, 198–202 (1974).

    PubMed  PubMed Central  Google Scholar 

  13. Pedruzzi, I., Rosenbusch, J. P. & Locher, K. P. Inactivation in vitro of the Escherichia coli outer membrane protein FhuA by a phage T5-encoded lipoprotein. FEMS Microbiol. Lett. 168, 119–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Riede, I. & Eschbach, M. L. Evidence that TraT interacts with OmpA of Escherichia coli. FEBS Lett. 205, 241–245 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Uhl, M. A. & Miller, J. F. Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BVgAS phosphorelay. EMBO J. 15, 1028–1036 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beier, D. & Gross, R. in Bacterial Signal Transduction: Networks and Drug Targets. (ed. Utsumi, R.) 149–160 (Springer, New York, 2008).

    Book  Google Scholar 

  17. Liu, M. et al. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295, 2091–2094 (2002). This fascinating paper describes how phages infecting Bordetella spp. can adapt to the cell surface variations that occur in their hosts in different environmental conditions.

    Article  CAS  PubMed  Google Scholar 

  18. Doulatov, S. et al. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431, 476–481 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Medhekar, B. & Miller, J. F. Diversity-generating retroelements. Curr. Opin. Microbiol. 10, 388–395 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ventura, M. et al. Prophage-like elements in bifidobacteria: insights from genomics, transcription, integration, distribution, and phylogenetic analysis. Appl. Environ. Microbiol. 71, 8692–8705 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stummeyer, K. et al. Evolution of bacteriophages infecting encapsulated bacteria: lessons from Escherichia coli K1-specific phages. Mol. Microbiol. 60, 1123–1135 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Sutherland, I. W. Polysaccharide lyases. FEMS Microbiol. Rev. 16, 323–347 (1995). This is the most complete review on the topic of the enzymes that degrade polysaccharides.

    Article  CAS  PubMed  Google Scholar 

  23. Sutherland, I. W. Polysaccharases for microbial exopolysaccharides. Carbohydr. Polym. 38, 319–328 (1999).

    Article  CAS  Google Scholar 

  24. Sutherland, I. W., Hughes, K. A., Skillman, L. C. & Tait, K. The interaction of phage and biofilms. FEMS Microbiol. Lett. 232, 1–6 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Linhardt, R. J., Galliher, P. M. & Cooney, C. L. Polyccharide lyases. Appl. Biochem. Biotechnol. 12, 135–176 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Hammad, A. M. M. Evaluation of alginate-encapsulated Azotobacter chroococcum as a phage-resistant and an effective inoculum. J. Basic Microbiol. 38, 9–16 (1998).

    Article  CAS  Google Scholar 

  27. Hanlon, G. W., Denyer, S. P., Olliff, C. J. & Ibrahim, L. J. Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 67, 2746–2753 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Castillo, F. J. & Bartell, P. F. Studies on bacteriophage-2 receptors of Pseudomonas aeruginosa. J. Virol. 14, 904–909 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Castillo, F. J. & Bartell, P. F. Localization and functional role of Pseudomonas bacteriophage 2 depolymerase. J. Virol. 18, 701–708 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Temple, G. S., Ayling, P. D. & Wilkinson, S. G. Isolation and characterization of a lipopolysaccharide-specific bacteriophage of Pseudomonas aeruginosa. Microbios 45, 81–91 (1986).

    CAS  PubMed  Google Scholar 

  31. Hynes, W. L., Hancock, L. & Ferretti, J. J. Analysis of a 2nd bacteriophage hyaluronidase gene from Streptococcus pyogenes: evidence for a 3rd hyaluronidase involved in extracellular enzymatic activity. Infect. Immun. 63, 3015–3020 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Boulnois, G. J. & Roberts, I. S. Genetics of capsular polysaccharide production in bacteria. Curr. Top. Microbiol. Immunol. 150, 1–18 (1990).

    CAS  PubMed  Google Scholar 

  33. Moses, A. E. et al. Relative contributions of hyaluronic acid capsule and M protein to virulence in a mucoid strain of the group A Streptococcus. Infect. Immun. 65, 64–71 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. McClean, D. The capsulation of streptococci and its relation to diffusion factor (hyaluronidase). J. Pathol. Bacteriol. 53, 13–27 (1941).

    Article  CAS  Google Scholar 

  35. Kjems, E. Studies on streptococcal bacteriophages. I. Technique of isolating phage-producing strains. Acta Pathol. Microbiol. Scand. 36, 433–440 (1955).

    Article  CAS  PubMed  Google Scholar 

  36. Benchetrit, L. C., Gray, E. D. & Wannamaker, L. W. Hyaluronidase activity of bacteriophages of group A streptococci. Infect. Immun. 15, 527–532 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stirm, S. Escherichia coli K bacteriophages, I. Isolation and introductory characterization of five Escherichia coli K bacteriophages. J. Virol. 2, 1107–1114 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Steinbacher, S., Miller, S., Baxa, U., Weintraub, A. & Seckler, R. Interaction of Salmonella phage P22 with its O-antigen receptor studied by X-ray crystallography. J. Biol. Chem. 378, 337–343 (1997).

    CAS  Google Scholar 

  39. Perry, L. L. et al. Sequence analysis of Escherichia coli O157:H7 bacteriophage ΦV10 and identification of a phage-encoded immunity protein that modifies the O157 antigen. FEMS Microbiol. Lett. 292, 182–186 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Zaleski, P., Wojciechowski, M. & Piekarowicz, A. The role of Dam methylation in phase variation of Haemophilus influenzae genes involved in defence against phage infection. Microbiology 151, 3361–3369 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Destoumieux-Garzon, D. et al. The iron-siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11-Pro16 β-hairpin region in the recognition mechanism. Biochem. J. 389, 869–876 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu, M. J., Stierhof, Y. D. & Henning, U. Location and unusual membrane topology of the immunity protein of the Escherichia coli phage T4. J. Virol. 67, 4905–4913 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu, M. J. & Henning, U. Superinfection exclusion by T-even-type coliphages. Trends Microbiol. 2, 137–139 (1994). This paper describes the superinfection exclusion mechanisms that are found in phage T4.

    Article  CAS  PubMed  Google Scholar 

  44. Moak, M. & Molineux, I. J. Role of the Gp16 lytic transglycosylase motif in bacteriophage T7 virions at the initiation of infection. Mol. Microbiol. 37, 345–355 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Kliem, M. & Dreiseikelmann, B. The superimmunity gene sim of bacteriophage P1 causes superinfection exclusion. Virology 171, 350–355 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Maillou, J. & Dreiseikelmann, B. The sim gene of Escherichia coli phage P1: nucleotide sequence and purification of the processed protein. Virology 175, 500–507 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Hofer, B., Ruge, M. & Dreiseikelmann, B. The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product. J. Bacteriol. 177, 3080–3086 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garvey, P., Hill, C. & Fitzgerald, G. The lactococcal plasmid pNP40 encodes a third bacteriophage resistance mechanism, one which affects phage DNA penetration. Appl. Environ. Microbiol. 62, 676–679 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Akçelik, M. A phage DNA injection-blocking type resistance mechanism encoded by chromosomal DNA in Lactococcus lactis subsp. lactis PLM-18. Milchwissenschaft 53, 619–622 (1998).

    Google Scholar 

  50. McGrath, S., Fitzgerald, G. F. & van Sinderen, D. Identification and characterization of phage-resistance genes in temperate lactococcal bacteriophages. Mol. Microbiol. 43, 509–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Mahony, J., McGrath, S., Fitzgerald, G. F. & van Sinderen, D. Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes. Appl. Environ. Microbiol. 74, 6206–6215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sun, X., Gohler, A., Heller, K. J. & Neve, H. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis. Virology 350, 146–157 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Pingoud, A., Fuxreiter, M., Pingoud, V. & Wende, W. Type II restriction endonucleases: structure and mechanism. Cell. Mol. Life Sci. 62, 685–707 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Pingoud, A. M. Restriction Endonucleases (Springer, Berlin, 2004).

    Book  Google Scholar 

  55. Kruger, D. H. & Bickle, T. A. Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic-acid restriction systems of their hosts. Microbiol. Rev. 47, 345–360 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kruger, D. H., Barcak, G. J. & Smith, H. O. Abolition of DNA recognition site resistance to the restriction endonuclease EcoRII. Biomed. Biochim. Acta 47, K1–K5 (1988).

    CAS  PubMed  Google Scholar 

  57. Tock, M. R. & Dryden, D. T. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8, 466–472 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Wilson, G. G. & Murray, N. E. Restriction and modification systems. Annu. Rev. Genet. 25, 585–627 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. McGrath, S., Seegers, J. F. M. L., Fitzgerald, G. F. & van Sinderen, D. Molecular characterization of a phage-encoded resistance system in Lactococcus lactis. Appl. Environ. Microbiol. 65, 1891–1899 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bickle, T. A. & Kruger, D. H. Biology of DNA restriction. Microbiol. Rev. 57, 434–450 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Vovis, G. F. & Lacks, S. Complementary action of restriction enzymes endo R-DpnI and endo R-DpnII on bacteriophage-f1 DNA. J. Mol. Biol. 115, 525–538 (1977).

    Article  CAS  PubMed  Google Scholar 

  62. Raleigh, E. A. & Wilson, G. Escherichia coli K-12 restricts DNA containing 5-methylcytosine. Proc. Natl Acad. Sci. USA 83, 9070–9074 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bair, C. L. & Black, L. W. A type IV modification dependent restriction nuclease that targets glucosylated hydroxymethyl cytosine modified DNAs. J. Mol. Biol. 366, 768–778 (2007). This article describes how phage T4 subverts the GmrS–GmrD system (which specifically cleaves glucosyl-hydroxymethylcytosine-modified DNA) using an injected protein inhibitor.

    Article  CAS  PubMed  Google Scholar 

  64. Bair, C. L., Rifat, D. & Black, L. W. Exclusion of glucosyl-hydroxymethylcytosine DNA containing bacteriophages is overcome by the injected protein inhibitor IPI*. J. Mol. Biol. 366, 779–789 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Rifat, D., Wright, N. T., Varney, K. M., Weber, D. J. & Black, L. W. Restriction endonuclease inhibitor IPI* of bacteriophage T4: a novel structure for a dedicated target. J. Mol. Biol. 375, 720–734 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Zabeau, M., Friedman, S., Montagu, M. V. & Schell, J. The ral gene of phage λ.1. Identification of a non-essential gene that modulates restriction and modification in Escherichia coli. Mol. Gen. Genet. 179, 63–73 (1980).

    Article  CAS  PubMed  Google Scholar 

  67. Zissler, J., Singer, E. R. & Schaefer, F. in The Bacteriophage λ (ed. Hershey, A. D.) 455–475 (Cold Spring Harbor Laboratory Press, New York, 1971).

    Google Scholar 

  68. King, G. & Murray, N. E. Restriction alleviation and modification enhancement by the Rac prophage of Escherichia coli K-12. Mol. Microbiol. 16, 769–777 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Toothman, P. Restriction alleviation by bacteriophages lambda and lambda reverse. J. Virol. 38, 621–631 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Walkinshaw, M. D. et al. Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol. Cell 9, 187–194 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Studier, F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J. Mol. Biol. 79, 237–248 (1973).

    Article  CAS  PubMed  Google Scholar 

  72. Atanasiu, C., Su, T. J., Sturrock, S. S. & Dryden, D. T. Interaction of the ocr gene 0.3 protein of bacteriophage T7 with EcoKI restriction/modification enzyme. Nucleic Acids Res. 30, 3936–3944 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bandyopadhyay, P. K., Studier, F. W., Hamilton, D. L. & Yuan, R. Inhibition of the type I restriction-modification enzymes EcoB and EcoK by the gene 0.3 protein of bacteriophage T7. J. Mol. Biol. 182, 567–578 (1985).

    Article  CAS  PubMed  Google Scholar 

  74. Kennaway, C. K. et al. The structure of M.EcoKI type I DNA methyltransferase with a DNA mimic antirestriction protein. Nucleic Acids Res. 37, 762–770 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Studier, F. W. & Movva, N. R. SAMase gene of bacteriophage T3 is responsible for overcoming host restriction. J. Virol. 19, 136–145 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sistla, S. & Rao, D. N. S-Adenosyl-L-methionine-dependent restriction enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 1–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Iida, S., Streiff, M. B., Bickle, T. A. & Arber, W. Two DNA antirestriction systems of bacteriophage P1, darA, and darB: characterization of darA phage. Virology 157, 156–166 (1987).

    Article  CAS  PubMed  Google Scholar 

  78. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007). The first evidence that the CRISPR–Cas system is an immunity system against foreign DNA.

    Article  CAS  PubMed  Google Scholar 

  79. Sorek, R., Kunin, V. & Hugenholtz, P. CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Rev. Microbiol. 6, 181–186 (2008).

    Article  CAS  Google Scholar 

  80. Marraffini, L. A. & Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568–571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Rev. Genet. 11, 181–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Karginov, F. V. & Hannon, G. J. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol. Cell 37, 7–19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. Nucleotide-sequence of the iap gene, responsible for alkaline-phosphatase isozyme conversion in Escherichia coli, and identification of the gene-product. J. Bacteriol. 169, 5429–5433 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Godde, J. S. & Bickerton, A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J. Mol. Evol. 62, 718–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Horvath, P. et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190, 1401–1412 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Jansen, R., van Embden, J. D. A., Gaastra, W. & Schouls, L. M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565–1575 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1, 7 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vestergaard, G. et al. Stygiolobus rod-shaped virus and the interplay of crenarchaeal rudiviruses with the CRISPR antiviral system. J. Bacteriol. 190, 6837–6845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bolotin, A., Ouinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Haft, D. H., Selengut, J., Mongodin, E. F. & Nelson, K. E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 1, 474–483 (2005).

    Article  CAS  Google Scholar 

  92. Mojica, F. J. M., Diez-Villasenor, C., Garcia-Martinez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Pourcel, C., Salvignol, G. & Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653–663 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008). This study shows that the CRISPR–Cas system targets foreign DNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zegans, M. E. et al. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of P. aeruginosa. J. Bacteriol. 191, 210–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Mojica, F. J. M., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Brouns, S. J. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008). A demonstration that one of the cas genes encodes an RNA endonuclease that is required for the CRISPR–Cas system to be active against phages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tang, T. H. et al. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc. Natl Acad. Sci. USA 99, 7536–7541 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Tang, T. H. et al. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Mol. Microbiol. 55, 469–481 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Molineux, I. J. Host-parasite interactions: recent developments in the genetics of abortive phage infections. New Biol. 3, 230–236 (1991). A comprehensive review of the phage exclusion systems in E. coli.

    CAS  PubMed  Google Scholar 

  103. Snyder, L. Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents? Mol. Microbiol. 15, 415–420 (1995). A summary of the progress that has been made in understanding the modes of action of phage exclusion systems in Gram-negative bacteria.

    Article  CAS  PubMed  Google Scholar 

  104. Parma, D. H. et al. The Rex system of bacteriophage lambda: tolerance and altruistic cell death. Genes Dev. 6, 497–510 (1992).

    Article  CAS  PubMed  Google Scholar 

  105. Snyder, L. & McWilliams, K. The rex genes of bacteriophage lambda can inhibit cell function without phage superinfection. Gene 81, 17–24 (1989).

    Article  CAS  PubMed  Google Scholar 

  106. Hinton, D. M. et al. Transcriptional takeover by σ appropriation: remodelling of the σ70 subunit of Escherichia coli RNA polymerase by the bacteriophage T4 activator MotA and co-activator AsiA. Microbiology 151, 1729–1740 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Kaufmann, G. Anticodon nucleases. Trends Biochem. Sci. 25, 70–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Bingham, R., Ekunwe, S. I. N., Falk, S., Snyder, L. & Kleanthous, C. The major head protein of bacteriophage T4 binds specifically to elongation factor Tu. J. Biol. Chem. 275, 23219–23226 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Cheng, X., Wang, W. & Molineux, I. J. F exclusion of bacteriophage T7 occurs at the cell membrane. Virology 326, 340–352 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Garcia, L. R. & Molineux, I. J. Incomplete entry of bacteriophage T7 DNA into F-plasmid containing Escherichia coli. J. Bacteriol. 177, 4077–4083 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schmitt, C. K., Kemp, P. & Molineux, I. J. Genes 1.2 and 10 of bacteriophages T3 and T7 determine the permeability lesions observed in infected cells of Escherichia coli expressing the F plasmid gene pifA. J. Bacteriol. 173, 6507–6514 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chopin, M.-C., Chopin, A. & Bidnenko, E. Phage abortive infection in lactococci: variations on a theme. Curr. Opin. Microbiol. 8, 473–479 (2005). This article is the most complete review on Abi mechanism in L. lactis.

    Article  CAS  PubMed  Google Scholar 

  113. Hill, C., Miller, L. A. & Klaenhammer, T. R. Nucleotide sequence and distribution of the pTR2030 resistance determinant (hsp) which aborts bacteriophage infection in lactococci. Appl. Environ. Microbiol. 56, 2255–2258 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Garvey, P., Fitzgerald, G. F. & Hill, C. Cloning and DNA sequence analysis of two abortive infection phage resistance determinants from the lactococcal plasmid pNP40. Appl. Environ. Microbiol. 61, 4321–4328 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Émond, É. et al. Phenotypic and genetic characterization of the bacteriophage abortive infection mechanism AbiK from Lactococcus lactis. Appl. Environ. Microbiol. 63, 1274–1283 (1997).

    PubMed  PubMed Central  Google Scholar 

  116. Domingues, S., Chopin, A., Ehrlich, S. D. & Chopin, M.-C. The lactococcal abortive phage infection system AbiP prevents both phage DNA replication and temporal transcription switch. J. Bacteriol. 186, 713–721 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bouchard, J. D., Dion, É., Bissonnette, F. & Moineau, Characterization of the two-component abortive phage infection mechanism AbiT from Lactococcus lactis. J. Bacteriol. 184, 6325–6332 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dai, G. et al. Molecular characterization of a new abortive infection system (AbiU) from Lactococcus lactis LL51–51 Appl. Environ. Microbiol. 67, 5225–5232 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cluzel, P. J., Chopin, A., Ehrlich, S. D. & Chopin, M.-C. Phage abortive infection mechanism from Lactococcus lactis subsp. lactis, expression of which is mediated by an Iso-ISS1 element. Appl. Environ. Microbiol. 57, 3547–3551 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. O'Connor, L., Tangney, M. & Fitzgerald, G. F. Expression, regulation, and mode of action of the AbiG abortive infection system of Lactococcus lactis subsp. cremoris UC653. Appl. Environ. Microbiol. 65, 330–335 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Durmaz, E., Higgins, D. L. & Klaenhammer, T. R. Molecular characterization of a second abortive phage resistance gene present in Lactococcus lactis subsp. lactis ME2. J. Bacteriol. 174, 7463–7469 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Émond, É. et al. AbiQ, an abortive infection mechanism from Lactococcus lactis. Appl. Environ. Microbiol. 64, 4748–4756 (1998).

    PubMed  PubMed Central  Google Scholar 

  123. Bidnenko, E., Ehrlich, S. D. & Chopin, M.-C. Lactococcus lactis phage operon coding for an endonuclease homologous to RuvC. Mol. Microbiol. 28, 823–834 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Durmaz, E. & Klaenhammer, T. R. Abortive phage resistance mechanism AbiZ speeds the lysis clock to cause premature lysis of phage-infected Lactococcus lactis. J. Bacteriol. 189, 1417–1425 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Domingues, S., Chopin, A., Ehrlich, S. D. & Chopin, M.-C. A phage protein confers resistance to the lactococcal abortive infection mechanism AbiP. J. Bacteriol. 186, 3278–3281 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Domingues, S. et al. The lactococcal abortive infection protein AbiP is membrane-anchored and binds nucleic acids. Virology 373, 14–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Boucher, I., Émond, É., Dion, É., Montpetit, D. & Moineau, S. Microbiological and molecular impacts of AbiK on the lytic cycle of Lactococcus lactis phages of the 936 and P335 species. Microbiology 146, 445–453 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Bouchard, J. D. & Moineau, S. Lactococcal phage genes involved in sensitivity to AbiK and their relation to single-strand annealing proteins. J. Bacteriol. 186, 3649–3652 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fortier, L.-C., Bouchard, J. D. & Moineau, S. Expression and site-directed mutagenesis of the lactococcal abortive phage infection protein AbiK. J. Bacteriol. 187, 3721–3730 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fineran, P. C. et al. The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proc. Natl Acad. Sci. USA 106, 894–899 (2009). The research described in this paper is the most valuable study on the use of TA systems as antiphage mechanisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Magnuson, R. D. Hypothetical functions of toxin-antitoxin systems. J. Bacteriol. 189, 6089–6092 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Blower, T. R. et al. Mutagenesis and functional characterisation of the RNA and protein components of the toxIN abortive infection and toxin-antitoxin locus of Erwinia. J. Bacteriol. 191, 6029–6039 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pecota, D. C. & Wood, T. K. Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. J. Bacteriol. 178, 2044–2050 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hazan, R. & Engelberg-Kulka, H. Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol. Genet. Genomics 272, 227–234 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Norrby, E. Nobel Prizes and the emerging virus concept. Arch. Virol. 153, 1109–1123 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B.-A. Conway for editorial assistance. S.J.L. was a recipient of a graduate scholarship from the Natural Sciences and Engineering Research Council (NSERC) of Canada. J.E.S. is a recipient of a graduate scholarship from the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT). S.M. would like to acknowledge the funding support of NSERC, FQRNT, the Canadian Institutes of Health Research, Novalait, Agropur and Danisco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Moineau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Phase variation

A genetically programmed biological phenomenon that occurs in bacteria that need to adapt to different environments. These bacteria can modify their cellular components according to environmental conditions through the regulation of a complex gene expression network.

Receptor-binding complex

A phage-encoded structural protein complex that is essential for the adsorption of the phage to the bacterial cell. In tailed phages, this complex is located at the extremity of the tail.

O antigen

The outer-most part of the lipopolysaccharide on the bacterial outer membrane, containing a repetitive glycan polymer. A great diversity is observed in the structure of E. coli O antigens, and they are good targets for serotyping methods and phages.

K antigen

Polysaccharide in the bacterial capsule.

Restriction enzyme

An endonuclease protects the bacterial cell against infection by cleaving foreign DNA at specific sites. These enzymes are generally coupled with a cognate DNA methylase, which modifies and protects the host DNA.

Two-component system

A biological mechanism necessitating the presence of two enzymes to be functional.

Cryptic genetic element

An incomplete or defective prophage that is unable to excise from the host genome and multiply as a result of host genome evolution. Such prophages provide a pool of phage genes that can be tapped into by an incoming virulent phage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labrie, S., Samson, J. & Moineau, S. Bacteriophage resistance mechanisms. Nat Rev Microbiol 8, 317–327 (2010). https://doi.org/10.1038/nrmicro2315

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2315

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology