Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial electrosynthesis — revisiting the electrical route for microbial production

Abstract

Microbial electrocatalysis relies on microorganisms as catalysts for reactions occurring at electrodes. Microbial fuel cells and microbial electrolysis cells are well known in this context; both use microorganisms to oxidize organic or inorganic matter at an anode to generate electrical power or H2, respectively. The discovery that electrical current can also drive microbial metabolism has recently lead to a plethora of other applications in bioremediation and in the production of fuels and chemicals. Notably, the microbial production of chemicals, called microbial electrosynthesis, provides a highly attractive, novel route for the generation of valuable products from electricity or even wastewater. This Review addresses the principles, challenges and opportunities of microbial electrosynthesis, an exciting new discipline at the nexus of microbiology and electrochemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A high-level overview of the concepts associated with bioelectrochemical systems.
Figure 2: Mechanisms for electron transfer from electrodes to microorganisms.
Figure 3: Configurations for bioelectrochemical system-based bioproduction.
Figure 4: A 'bioelectrochemical' refinery.

Similar content being viewed by others

References

  1. Campbell, J. E., Lobell, D. B. & Field, C. B. Greater transportation energy and GHG offsets from bioelectricity than ethanol. Science 324, 1055–1057 (2009). A comparison between electricity and fuels in the context of transport and sustainability shows that the low energy yield of combustion makes bioelectricity more favourable.

    Article  CAS  PubMed  Google Scholar 

  2. Berk, R. S. & Canfield, J. H. Bioelectrochemical energy conversion. Appl. Microbiol. 12, 10–12 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hill, H. A. O. & Higgins, I. J. Bioelectrocatalysis. Philos. Trans. R. Soc. Lond. A 302, 267–273 (1981).

    Article  CAS  Google Scholar 

  4. Lowy, D. A., Tender, L. M., Zeikus, J. G., Park, D. H. & Lovley, D. R. Harvesting energy from the marine sediment–water interface II: kinetic activity of anode materials. Biosens. Bioelectron. 21, 2058–2063 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Rabaey, K. et al. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J. 2, 519–527 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M. & Lovley, D. R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1, e00103–10 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davis, J. B. & Yarbrough, H. F. Preliminary experiments on a microbial fuel cell. Science 137, 615–616 (1962). Early work on microbial fuel cells, several aspects of which have particular relevance for some of the studies that have been published recently.

    Article  CAS  PubMed  Google Scholar 

  8. Logan, B. E. et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol. 42, 8630–8640 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Rabaey, K. et al. (eds). Bioelectrochemical systems: from extracellular electron transfer to biotechnological application (International Water Association Publishing, London, 2009). A comprehensive book containing contributions by many key research groups in the field of bioelectrochemical systems, covering methodology, process development and applications.

    Google Scholar 

  10. Bard, A. J. & Faulkner, L. R. Electrochemical methods: fundamentals and applications 2nd edn (Wiley & Sons, New York, 2001). This book provides an excellent background regarding electrochemistry and electrochemical analysis and is an essential read for researchers in this field.

    Google Scholar 

  11. Logan, B. et al. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Rabaey, K., Lissens, G. & Verstraete, W. in Biofuels for fuel cells: biomass fermentation towards usage in fuel cells (eds Lens, P. N. et al.) (International Water Association Publishing, London, 2005).

    Google Scholar 

  13. Rozendal, R. A., Hamelers, H. V. M., Rabaey, K., Keller, J. & Buisman, C. J. N. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 26, 450–459 (2008). A recent opinion article that details the importance of not only the microbial aspects but also the technical aspects of bringing bioelectrochemical systems to applications.

    Article  CAS  PubMed  Google Scholar 

  14. Torres, C. I., Marcus, A. K. & Rittmann, B. E. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng. 100, 872–881 (2008). This work shows that proton production during electrochemical oxidation limits microbial activity in biofilms, highlighting the fact that bulk parameters are not the only factors that are important for effective current generation.

    Article  CAS  PubMed  Google Scholar 

  15. Potter, M. C. On the difference of potential due to the vital activity of microorganisms. Proc. Durham Univ. Phil. Soc. 3, 245–249 (1910).

    Google Scholar 

  16. Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nature Rev. Microbiol. 7, 375–381 (2009).

    Article  CAS  Google Scholar 

  17. Lovley, D. R. Bug juice: harvesting electricity with microorganisms. Nature Rev. Microbiol. 4, 497–508 (2006).

    Article  CAS  Google Scholar 

  18. Milliken, C. E. & May, H. D. Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2. Appl. Microbiol. Biotechnol. 73, 1180–1189 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Rabaey, K., Boon, N., Höfte, M. & Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39, 3401–3408 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Wrighton, K. C. et al. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J. 2, 1146–1156 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M. & Verstraete, W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70, 5373–5382 (2004). A study demonstrating that an increased current generation can be achieved through enrichment and that microorganisms such as Pseudomonas spp. can self-mediate electron transfer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bond, D. R. & Lovley, D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548–1555 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Caccavo, F. et al. Geobacter sulfurreducens sp. nov., a hydrogen-oxidizing and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60, 3752–3759 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Venkateswaran, K. et al. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int. J. Syst. Bacteriol. 49, 705–724 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Bretschger, O., Gorby, Y. & Nealson, K. H. in Bioelectrochemical systems: from extracellular electron transfer to biotechnological application (eds. Rabaey, K. et al.) 81–100 (International Water Association Publishing, London, 2009).

    Google Scholar 

  26. Lovley, D. R. The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotechnol. 19, 564–571 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Torres, C. I. et al. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev. 34, 3–17 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Hartshorne, R. S. et al. Characterization of an electron conduit between bacteria and the extracellular environment. Proc. Natl Acad. Sci. USA 106, 22169–22174 (2009). This study shows that electron transfer through the Shewanella oneidensis outer membrane occurs through the MtrAB complex, the structure and working mechanism of which is described. Similar complexes seem to be ubiquitous in other species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Holmes, D. E. et al. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ. Microbiol. 8, 1805–1815 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Reguera, G. et al. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72, 7345–7348 (2006). This work uses deletion mutants to demonstrate that nanowire production is essential for the formation of effective biofilms on electrodes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nevin, K. P. et al. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE 4, e5628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl Acad. Sci. USA 103, 11358–11363 (2006). A key study on the role of nanowires as possible electron transport media, not only to minerals but also to electrodes and other microorganisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci. USA 105, 3968–3973 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. von Canstein, H., Ogawa, J., Shimizu, S. & Lloyd, J. R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74, 615–623 (2008). The first demonstration that Shewanella spp. may produce flavins as electron shuttles, indicating that Shewanella spp. may use different electron transfer strategies.

    Article  CAS  PubMed  Google Scholar 

  36. Holmes, D. E., Bond, D. R. & Lovley, D. R. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70, 1234–1237 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dutta, P. K., Keller, J., Yuan, Z. G., Rozendal, R. A. & Rabaey, K. Role of sulfur during acetate oxidation in biological anodes. Environ. Sci. Technol. 43, 3839–3845 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Nevin, K. P. & Lovley, D. R. Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments. Environ. Sci. Technol. 34, 2472–2478 (2000).

    Article  CAS  Google Scholar 

  39. Straub, K. L. & Schink, B. Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Appl. Environ. Microbiol. 70, 5744–5749 (2004). This study finds that Sulfurospirillum deleyianum uses reduced sulphur species as electron shuttles to ferric iron minerals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schröder, U., Niessen, J. & Scholz, F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed. Eng. 42, 2880–2883 (2003).

    Article  CAS  Google Scholar 

  41. Haveman, S. A. et al. Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production. Appl. Environ. Microbiol. 74, 4277–4284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rosenbaum, M., Schroder, U. & Scholz, F. Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell. Appl. Microbiol. Biotechnol. 68, 753–756 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Yagishita, T., Sawayama, S., Tsukahara, K. & Ogi, T. Photosynthetic bio-fuel cells using cyanobacteria. Renewable Energy 9, 958–961 (1996).

    Article  CAS  Google Scholar 

  44. Xing, D. F., Zuo, Y., Cheng, S. A., Regan, J. M. & Logan, B. E. Electricity generation by Rhodopseudomonas palustris DX-1. Environ. Sci. Technol. 42, 4146–4151 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Habermann, W. & Pommer, E.-H. Biological fuel cells with sulphide storage capacity. Appl. Microbiol. Biotechnol. 35, 128–133 (1991). An often forgotten manuscript, this is the first to describe microbial fuel cells that use wastewater. The electron transfer is achieved through sulphate reduction and subsequent re-oxidation of the sulphide at the anode.

    Article  CAS  Google Scholar 

  46. Kim, B. H. et al. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63, 672–681 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, H., Ramnarayanan, R. & Logan, B. E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281–2285 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Rismani-Yazdi, H. et al. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng. 97, 1398–1407 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Tender, L. M. et al. Harnessing microbially generated power on the seafloor. Nature Biotech. 20, 821–825 (2002).

    Article  CAS  Google Scholar 

  50. Liu, H., Grot, S. & Logan, B. E. Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 39, 4317–4320 (2005). A study showing that the formation of H 2 at the cathode of a BES allows the production of H 2 from acetate without a requirement for light.

    Article  CAS  PubMed  Google Scholar 

  51. Rozendal, R. A., Hamelers, H. V. M., Euverink, G. J. W., Metz, S. J. & Buisman, C. J. N. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrogen Energy 31, 1632–1640 (2006). A second study to independently develop the same system as that described in reference 50.

    Article  CAS  Google Scholar 

  52. Gil, G. C. et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18, 327–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Rozendal, R. A., Hamelers, H. V. M. & Buisman, C. J. N. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 40, 5206–5211 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Rabaey, K., Bützer, S., Brown, S., Keller, J. & Rozendal, R. A. High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environ. Sci. Technol. 44, 4315–4321 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Rozendal, R. A., Leone, E., Keller, J. & Rabaey, K. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem. Commun. 11, 1752–1755 (2009).

    Article  CAS  Google Scholar 

  56. Zhu, X. P. & Ni, J. R. Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochem. Commun. 11, 274–277 (2009).

    Article  CAS  Google Scholar 

  57. Gregory, K. B., Bond, D. R. & Lovley, D. R. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6, 596–604 (2004). A demonstration that Geobacter spp. can use electrodes as electron donors for nitrate and fumarate reduction. Pure-culture growth was not evaluated in this study.

    Article  CAS  PubMed  Google Scholar 

  58. Wrighton, K. C. et al. Bacterial community structure corresponds to performance during cathodic nitrate reduction. ISME J. 3 Jun 2010 (doi:10.1038/ismej.2010.66). The first manuscript to describe an in-depth investigation of microbial populations that use electricity as an energy source; despite the challenging conditions on the cathode, highly diverse populations can thrive.

    Article  CAS  PubMed  Google Scholar 

  59. Cournet, A., Bergel, M., Roques, C., Bergel, A. & Délia, M.-L. Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa. Electrochim. Acta 55, 4902–4908 (2010).

    Article  CAS  Google Scholar 

  60. Freguia, S., Tsujimura, S. & Kano, K. Electrontransfer pathways in microbial oxygen biocathodes. Electrochim. Acta 55, 813–818 (2010).

    Article  CAS  Google Scholar 

  61. Thrash, J. C. & Coates, J. D. Review: direct and indirect electrical stimulation of microbial metabolism. Environ. Sci. Technol. 42, 3921–3931 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Hongo, M. & Iwahara, M. Application of electro-energizing method to L-glutamic acid fermentation. Agric. Biol. Chem. 43, 2075–2081 (1979).

    CAS  Google Scholar 

  63. Hongo, M. & Iwahara, M. Determination of electro-energizing conditions for L-glutamic acid fermentation. Agric. Biol. Chem. 43, 2083–2086 (1979).

    CAS  Google Scholar 

  64. Kim, T. S. & Kim, B. H. Electron flow shift in Clostridium acetobutylicum by electrochemically introduced reducing equivalent. Biotechnol. Lett. 10, 123–128 (1988).

    Article  CAS  Google Scholar 

  65. Saint-Amans, S., Girbal, L., Andrade, J., Ahrens, K. & Soucaille, P. Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. J. Bacteriol. 183, 1748–1754 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thrash, J. C. et al. Electrochemical stimulation of microbial perchlorate reduction. Environ. Sci. Technol. 41, 1740–1746 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Butler, C. S., Clauwaert, P., Green, S. J., Verstraete, W. & Nerenberg, R. Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ. Sci. Technol. 44, 4685–4691 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Clauwaert, P. et al. Biological denitrification driven by microbial fuel cells. Environ. Sci. Technol. 41, 3354–3360 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Virdis, B., Rabaey, K., Yuan, Z. & Keller, J. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res. 42, 3013–3024 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Aulenta, F. et al. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ. Sci. Technol. 41, 2554–2559 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Aulenta, F. et al. Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene. Biosens. Bioelectron. 25, 1796–1802 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Strycharz, S. M. et al. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl. Environ. Microbiol. 74, 5943–5947 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gregory, K. B. & Lovley, D. R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39, 8943–8947 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Clauwaert, P. et al. Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci. Technol. 57, 575–579 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Sakakibara, Y. & Kuroda, M. Electric prompting and control of denitrification. Biotechnol. Bioeng. 42, 535–537 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Angenent, L. T., Karim, K., Al-Dahhan, M. H. & Domiguez-Espinosa, R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22, 477–485 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Lithgow, A. M., Romero, L., Sanchez, I. C., Souto, F. A. & Vega, C. A. Interception of the electron-transport chain in bacteria with hydrophilic redox mediators.1. Selective improvement of the performance of biofuel cells with 2,6-disulfonated thionine as mediator. J. Chem. Res. 5, 178–179 (1986).

    Google Scholar 

  78. Park, D. H. & Zeikus, J. G. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66, 1292–1297 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ghosh, B. K. & Zeikus, J. G. Electroenergization for control of H2 transformation in acetone butanol fermentations. Abstr. Pap. Am. Chem. Soc. 194, 79 (1987).

    Google Scholar 

  80. Stombaugh, N. A., Sundquist, J. E., Burris, R. H. & Orme-Johnson, W. H. Oxidation–reduction properties of several low potential iron-sulfur proteins and of methyl viologen. Biochemistry 15, 2633–2641 (1976).

    Article  CAS  PubMed  Google Scholar 

  81. Park, D. H., Laivenieks, M., Guettler, M. V., Jain, M. K. & Zeikus, J. G. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65, 2912–2917 (1999). In this pivotal study, microorganisms are shown to grow on electrical current assisted by a mediator, and both fumarate reduction and methanogenesis are achieved.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Park, D. H. & Zeikus, J. G. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181, 2403–2410 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Steinbusch, K. J. J., Hamelers, H. V. M., Schaap, J. D., Kampman, C. & Buisman, C. J. N. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ. Sci. Technol. 44, 513–517 (2010). This article describes the production of alcohols by a microbial population using electrical current and the corresponding fatty acids.

    Article  CAS  PubMed  Google Scholar 

  84. Peguin, S., Goma, G., Delorme, P. & Soucaille, P. Metabolic flexibility of Clostridium acetobutylicum in response to methyl viologen addition. Appl. Microbiol. Biotechnol. 42, 611–616 (1994).

    Article  CAS  Google Scholar 

  85. Ter Heijne, A., Hamelers, H. V. M., deWilde, V., Rozendal, R. A. & Buisman, C. J. N. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ. Sci. Technol. 40, 5200–5205 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Aulenta, F., Reale, P., Catervi, A., Panero, S. & Majone, M. Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system. Electrochim. Acta 53, 5300–5305 (2008).

    Article  CAS  Google Scholar 

  87. Strycharz, S. M. et al. Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor. Environ. Microbiol. Rep. 2, 289–294 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Virdis, B., Rabaey, K., Yuan, Z. G., Rozendal, R. A. & Keller, J. Electron fluxes in a microbial fuel cell performing carbon and nitrogen removal. Environ. Sci. Technol. 43, 5144–5149 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Cheng, S. A., Xing, D. F., Call, D. F. & Logan, B. E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43, 3953–3958 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Flickinger, M. C., Schottel, J. L., Bond, D. R., Aksan, A. & Scriven, L. E. Painting and printing living bacteria: engineering nanoporous biocatalytic coatings to preserve microbial viability and intensify reactivity. Biotechnol. Prog. 23, 2–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Carothers, J. M., Goler, J. A. & Keasling, J. D. Chemical synthesis using synthetic biology. Curr. Opin. Biotechnol. 20, 498–503 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Reda, T., Plugge, C. M., Abram, N. J. & Hirst, J. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc. Natl Acad. Sci. USA 105, 10654–10658 (2008). Using a single enzyme and electrical current, this study finds that formate can be produced from CO 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Peters, V., Janssen, P. H. & Conrad, R. Transient production of formate during chemolithotrophic growth of anaerobic microorganisms on hydrogen. Curr. Microbiol. 38, 285–289 (1999).

    Article  CAS  Google Scholar 

  94. Gottschalk, G. & Braun, M. Revival of the name Clostridium aceticum. Int. J. Syst. Bacteriol. 31, 476–476 (1981).

    Article  Google Scholar 

  95. Rozendal, R. A., Jeremiasse, A. W., Hamelers, H. V. M. & Buisman, C. J. N. Hydrogen production with a microbial biocathode. Environ. Sci. Technol. 42, 629–634 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Villano, M. et al. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 101, 3085–3090 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Ishizaki, A. & Tanaka, K. Production of poly-β-hydroxybutyric acid from carbon-dioxide by Alcaligenes-eutrophus ATCC 17697. J. Ferment. Bioeng. 71, 254–257 (1991).

    Article  CAS  Google Scholar 

  98. Steinbusch, K. J. J., Hamelers, H. V. M. & Buisman, C. J. N. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Res. 42, 4059–4066 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Thauer, R. K., Jungermann, K. & Decker, K. Energy-conservation in chemotropic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Cao, X. X. et al. A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Environ. Sci. 2, 498–501 (2009).

    Article  CAS  Google Scholar 

  101. Peguin, S., Delorme, P., Goma, G. & Soucaille, P. Enhanced alcohol yields in batch cultures of Clostridium acetobutylicum using a 3-electrode potentiometric system with methyl viologen as electron carrier. Biotechnol. Lett. 16, 269–274 (1994).

    Article  CAS  Google Scholar 

  102. Shin et al. Evaluation of an electrochemical bioreactor system in the biotransformation of 6-bromo-2-tetralone to 6-bromo-2-tetralol. Appl. Microbiol. Biotechnol. 57, 506–510 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Emde, R. & Schink, B. Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a 3-electrode amperometric culture system. Appl. Environ. Microbiol. 56, 2771–2776 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Rabaey, K. et al. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J. 1, 9–18 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Freguia, S. et al. Microbial fuel cells operating on mixed fatty acids. Bioresour. Technol. 101, 1233–1238 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Ginley, D., Green, M. A. & Collins, R. Solar energy conversion toward 1 terawatt. MRS Bull. 33, 355–372 (2008).

    Article  CAS  Google Scholar 

  107. De Schamphelaire, L. & Verstraete, W. Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol. Bioeng. 103, 296–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Cheng, S. & Logan, B. E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun. 9, 492–496 (2007).

    Article  CAS  Google Scholar 

  109. Freguia, S., Rabaey, K., Yuan, Z. & Keller, J. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim. Acta 53, 598–603 (2007).

    Article  CAS  Google Scholar 

  110. Logan, B., Cheng, S., Watson, V. & Estadt, G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 41, 3341–3346 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Pant, D., Van Bogaert, G., De Smet, M., Diels, L. & Vanbroekhoven, K. Use of novel permeable membrane and air cathodes in acetate microbial fuel cells. Electrochim. Acta 1 Dec 2009 (doi:10.1016/j.electacta.2009.11.086).

    Article  CAS  Google Scholar 

  112. Logan, B. E. Scaling up microbial fuel cells and other bioelectrochemical systems. App. Microbiol. Biotechnol. 85, 1665–1671 (2010).

    Article  CAS  Google Scholar 

  113. Freguia, S., Rabaey, K., Yuan, Z. G. & Keller, J. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res. 42, 1387–1396 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Torres, C. I., Lee, H. S. & Rittmann, B. E. Carbonate species as OH carriers for decreasing the pH gradient between cathode and anode in biological fuel cells. Environ. Sci. Technol. 42, 8773–8777 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Sprott, G. D. & Patel, G. B. Ammonia toxicity in pure cultures of methanogenic bacteria. Syst. Appl. Microbiol. 7, 358–363 (1986).

    Article  CAS  Google Scholar 

  116. Foley, J. M., Rozendal, R. A., Hertle, C. K., Lant, P. A. & Rabaey, K. Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ. Sci. Technol. 44, 3629–3637 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Heijnen, J. J. in Bioprocess technology: fermentation, biocatalysis and bioseparation (eds Flickinger, M. C. & Drew, S. W.) 267–291 (Wiley & Sons, New York, 1999). A seminal book chapter on the use of thermodynamics for microbial growth calculations concerning yield and energy balance.

    Google Scholar 

  118. Gunther, H. & Simon, H. Artificial electron carriers for preparative biocatalytic redox reactions forming reversibly carbon hydrogen bonds with enzymes present in strict or facultative anaerobes. Biocatal. Biotransformation 12, 1–26 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

K.R. is supported by the Australian Research Council (grants DP0879245 and DP0985000), the Queensland, Australia government (Queensland Sustainable Energy Innovation Fund (QSEIF)) and The University of Queensland (UQ) Foundation (UQ Foundation Research Excellence Award 2009). R.R. is supported by the Queensland government (QSEIF) and UQ (UQ Early Career Researcher 2009; UQ Postdoctoral Research Fellowship 2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korneel Rabaey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

UQ Advanced Water Management Centre's homepage

Glossary

Biocatalyst

A catalyst of biological origin, which can be an enzyme, an organelle or even a whole cell.

Bioelectrosynthesis

The use of biocatalysts to achieve electricity-driven synthesis.

Overpotential

The difference between the thermodynamically determined potential and the experimentally observed potential of a half reaction; in an electrolytic cell, this corresponds to an energy loss, such that more energy is required to carry out the reaction than is expected.

Humic substance

Recalcitrant organic compound that is formed during the decomposition of plant, animal and microbial cells.

Bioremediation

The use of microorganisms or biocatalysts for environmental clean-up.

Microbially assisted electrosynthesis

The use of whole microorganisms as electrode catalysts to drive the chemical synthesis of products at a counter electrode.

Lithoautotrophic

Of a microorganism: using an inorganic electron donor and CO2 as a carbon source.

Lithoheterotrophic

Of a microorganism: using an inorganic electron donor and an organic compound as carbon source.

Electrode potential

The potential of an electrode relative to a reference electrode.

Standard hydrogen electrode

The universal reference electrode, which has a standard electrode potential (that is, at pH 0) of 0 V.

Coulombic efficiency

the efficiency of charge transfer from the electron donor to the anode, or from the cathode to the electron acceptor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabaey, K., Rozendal, R. Microbial electrosynthesis — revisiting the electrical route for microbial production. Nat Rev Microbiol 8, 706–716 (2010). https://doi.org/10.1038/nrmicro2422

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2422

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research