Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Biased gene transfer in microbial evolution

Key Points

  • Phylogenies of aminoacyl-tRNA synthetases reveal that horizontal gene transfer (HGT) is biased towards more closely related individuals and species, and occurs more rarely between distant relatives.

  • This bias in HGT frequency towards more similar partners can reinforce patterns of evolution that are generated through shared ancestry.

  • Most HGT events do not introduce noise to phylogenetic reconstruction; HGT between close relatives is difficult to detect using phylogenetic approaches.

  • Homeoalleles encode enzymes that have identical functions but dissimilar characteristics. For example, homeoalleles for aminoacyl-tRNA synthetases are present in the Bacteria and the Archaea. Usually, individual species maintain only a single version of a homeoallele; however, the type of homeoallele can be switched through HGT from a related species.

  • Homeoalleles function like alleles at a higher taxonomic level. Organisms may acquire multiple versions of these alleles, and loss of the ancestral homeoalleles changes the phylogenetic signal.

  • Shared ancestry and biased HGT contribute to maintaining recognizable natural taxonomic groups. However, the correct interpretation of phylogenetic analyses needs to take into consideration the fact that genetic inheritance is not simply vertical.

Abstract

Horizontal gene transfer (HGT) is an important evolutionary process that allows the spread of innovations between distantly related organisms. We present evidence that prokaryotes (bacteria and archaea) are more likely to transfer genetic material with their close relatives than with distantly related lineages. This bias in transfer partners can create phylogenetic signals that are difficult to distinguish from the signal created through shared ancestry. Preferences for transfer partners can be revealed by studying the distribution patterns of divergent genes with identical functions. In many respects, these genes are similar to alleles in a population, except that they coexist only in higher taxonomic groupings and are acquired by a species through HGT. We also discuss the role of biased gene transfer in the formation of taxonomically recognizable natural groups in the tree or net of life.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic analysis of bacterial tyrosyl-tRNA synthetase amino acid sequences and the corresponding concatenated 16S–23S ribosomal RNA phylogeny.
Figure 2: Gene neighbourhood of the two tyrosyl-tRNA synthetases in two members of the Deltaproteobacteria.
Figure 3: Phylogenetic analysis of bacterial tryptophanyl-tRNA synthetase amino acid sequences and the corresponding concatenated 16S–23S ribosomal RNA phylogeny.
Figure 4: Phylogenetic analysis of archaeal seryl-tRNA synthetase amino acid sequences.
Figure 5: Model of the tree or net of life incorporating extinct lineages, shared ancestry and exchange groups.

Similar content being viewed by others

References

  1. Jain, R., Rivera, M. C., Moore, J. E. & Lake, J. A. Horizontal gene transfer accelerates genome innovation and evolution. Mol. Biol. Evol. 20, 1598–1602 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Yap, W. H., Zhang, Z. & Wang, Y. Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J. Bacteriol. 181, 5201–5209 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chan, C. X., Darling, A. E., Beiko, R. G. & Ragan, M. A. Are protein domains modules of lateral genetic transfer? PLoS ONE 4, e4524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, Y. & Zhang, Z. Comparative sequence analyses reveal frequent occurrence of short segments containing an abnormally high number of non-random base variations in bacterial rRNA genes. Microbiology 146, 2845–2854 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Olendzenski, L. et al. Horizontal transfer of archaeal genes into the Deinococcaceae: detection by molecular and computer-based approaches. J. Mol. Evol. 51, 587–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Castillo-Ramirez, S., Vazquez-Castellanos, J. F., Gonzalez, V. & Cevallos, M. A. Horizontal gene transfer and diverse functional constrains within a common replication-partitioning system in Alphaproteobacteria: the repABC operon. BMC Genomics 10, 536 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Omelchenko, M., Makarova, K., Wolf, Y., Rogozin, I. & Koonin, E. Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol. 4, R55 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Igarashi, N. et al. Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J. Mol. Evol. 52, 333–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Akagi, Y., Akamatsu, H., Otani, H. & Kodama, M. Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus. Eukaryot. Cell 8, 1732–1738 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaneko, S. & Itaya, M. Designed horizontal transfer of stable giant DNA released from Escherichia coli. J. Biochem. 147, 819–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Aravind, L., Tatusov, R. L., Wolf, Y. I., Walker, D. R. & Koonin, E. V. Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet. 14, 442–444 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Nelson, K. E. et al. Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Beiko, R. G., Harlow, T. J. & Ragan, M. A. Highways of gene sharing in prokaryotes. Proc. Natl Acad. Sci. USA 102, 14332–14337 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nesbo, C. L. et al. The genome of Thermosipho africanus TCF52B: lateral genetic connections to the Firmicutes and Archaea. J. Bacteriol. 191, 1974–1978 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boussau, B., Gueguen, L. & Gouy, M. Accounting for horizontal gene transfers explains conflicting hypotheses regarding the position of aquificales in the phylogeny of Bacteria. BMC Evol. Biol. 8, 272 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhaxybayeva, O. et al. On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc. Natl Acad. Sci. USA 106, 5865–5870 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nguyen, K. T., Piastro, K., Gray, T. A. & Derbyshire, K. M. Mycobacterial biofilms facilitate horizontal DNA transfer between strains of Mycobacterium smegmatis. J. Bacteriol. 192, 5134–5142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chafee, M. E., Funk, D. J., Harrison, R. G. & Bordenstein, S. R. Lateral phage transfer in obligate intracellular bacteria (Wolbachia): verification from natural populations. Mol. Biol. Evol. 27, 501–505 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Saisongkorh, W., Robert, C., La Scola, B., Raoult, D. & Rolain, J. M. Evidence of transfer by conjugation of Type IV secretion system genes between Bartonella species and Rhizobium radiobacter in amoeba. PLoS ONE 5, e12666 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brochier, C., Philippe, H. & Moreira, D. The evolutionary history of ribosomal protein RpS14: horizontal gene transfer at the heart of the ribosome. Trends Genet. 16, 529–533 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Schouls, L. M., Schot, C. S. & Jacobs, J. A. Horizontal transfer of segments of the 16S rRNA genes between species of the Streptococcus anginosus group. J. Bacteriol. 185, 7241–7246 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iyer, L. M., Koonin, E. V. & Aravind, L. Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer. Gene 335, 73–88 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Makarova, K. S., Ponomarev, V. A. & Koonin, E. V. Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins. Genome Biol. 2, RESEARCH 0033 (2001).

    CAS  PubMed  Google Scholar 

  24. Boucher, Y., Douady, C. J., Sharma, A. K., Kamekura, M. & Doolittle, W. F. Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J. Bacteriol. 186, 3980–3990 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kanhere, A. & Vingron, M. Horizontal gene transfers in prokaryotes show differential preferences for metabolic and translational genes. BMC Evol. Biol. 9, 9 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Danchin, E. G. et al. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc. Natl Acad. Sci. USA 107, 17651–17656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khomyakova, M., Bukmez, O., Thomas, L. K., Erb, T. J. & Berg, I. A. A methylaspartate cycle in haloarchaea. Science 331, 334–337 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Gogarten, J. P., Doolittle, W. F. & Lawrence, J. G. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19, 2226–2238 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Woese, C. R., Olsen, G. J., Ibba, M. & Soll, D. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev. 64, 202–236 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O'Donoghue, P. & Luthey-Schulten, Z. On the evolution of structure in aminoacyl-tRNA synthetases. Microbiol. Mol. Biol. Rev. 67, 550–573 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Coscolla, M., Comas, I. & Gonzalez-Candelas, F. Quantifying nonvertical inheritance in the evolution of Legionella pneumophila. Mol. Biol. Evol. 28, 985–1001 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Hendrickson, H. & Lawrence, J. G. Selection for chromosome architecture in bacteria. J. Mol. Evol. 62, 615–629 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Olendzenski, L., Zhaxybayeva, O. & Gogarten, J. P. in Horizontal Gene Transfer (eds Syvanen, M. & Kado, C. I.) 427–435 (Academic, New York, 2002).

    Book  Google Scholar 

  34. Krupovic, M., Gribaldo, S., Bamford, D. H. & Forterre, P. The evolutionary history of archaeal MCM helicases: a case study of vertical evolution combined with hitchhiking of mobile genetic elements. Mol. Biol. Evol. 27, 2716–2732 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Rev. Microbiol. 3, 711–721 (2005).

    Article  CAS  Google Scholar 

  36. McDaniel, L. D. et al. High frequency of horizontal gene transfer in the oceans. Science 330, 50 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Popa, O., Hazkani-Covo, E., Landan, G., Martin, W. & Dagan, T. Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Res. 21, 599–609 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hooper, S., Mavromatis, K. & Kyrpides, N. Microbial co-habitation and lateral gene transfer: what transposases can tell us. Genome Biol. 10, R45 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. Nature Rev. Microbiol. 3, 722–732 (2005).

    Article  CAS  Google Scholar 

  40. Sobecky, P. A. & Hazen, T. H. Horizontal gene transfer and mobile genetic elements in marine systems. Methods Mol. Biol. 532, 435–453 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Malachowa, N. & DeLeo, F. R. Mobile genetic elements of Staphylococcus aureus. Cell. Mol. Life Sci. 67, 3057–3071 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Siefert, J. L. Defining the mobilome. Methods Mol. Biol. 532, 13–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Wozniak, R. A. & Waldor, M. K. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nature Rev. Microbiol. 8, 552–563 (2010).

    Article  CAS  Google Scholar 

  44. Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc. Natl Acad. Sci. USA 102, 13950–13955 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lapierre, P. & Gogarten, J. P. Estimating the size of the bacterial pan-genome. Trends Genet. 25, 107–110 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Puigbo, P., Wolf, Y. I. & Koonin, E. V. The tree and net components of prokaryote evolution. Genome Biol. Evol. 2, 745–756 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lawrence, J. G. & Retchless, A. C. The interplay of homologous recombination and horizontal gene transfer in bacterial speciation. Methods Mol. Biol. 532, 29–53 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Andam, C. P., Williams, D. & Gogarten, J. P. Biased gene transfer mimics patterns created through shared ancestry. Proc. Natl Acad. Sci. USA 107, 10679–10684 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thomas, V. & Greub, G. Amoeba/amoebal symbiont genetic transfers: lessons from giant virus neighbours. Intervirology 53, 254–267 (2010).

    Article  PubMed  Google Scholar 

  50. Huang, J. & Gogarten, J. P. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol. 8, R99 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martin, W., Brinkmann, H., Savonna, C. & Cerff, R. Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes. Proc. Natl Acad. Sci. USA 90, 8692–8696 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fournier, G. P. & Gogarten, J. P. Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J. Bacteriol. 190, 1124–1127 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Andam, C. P., Williams, D. & Gogarten, J. P. Natural taxonomy in light of horizontal gene transfer. Biol. Philos. 25, 589–602 (2010).

    Article  Google Scholar 

  54. Omelchenko, M. V., Galperin, M. Y., Wolf, Y. I. & Koonin, E. V. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution. Biol. Direct 5, 31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Farahi, K., Pusch, G. D., Overbeek, R. & Whitman, W. B. Detection of lateral gene transfer events in the prokaryotic tRNA synthetases by the ratios of evolutionary distances method. J. Mol. Evol. 58, 615–631 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Stern, A. et al. An evolutionary analysis of lateral gene transfer in thymidylate synthase enzymes. Syst. Biol. 59, 212–225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhaxybayeva, O. Detection and quantitative assessment of horizontal gene transfer. Methods Mol. Biol. 532, 195–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Clark, R. & Neidthardt, F. Roles of the two lysyl-tRNA synthetases of Escherichia coli: analysis of nucleotide sequences and mutant behavior. J. Bacteriol. 172, 3237–3243 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Putzer, H., Brakhage, A. A. & Grunberg-Manago, M. Independent genes for two threonyl-tRNA synthetases in Bacillus subtilis. J. Bacteriol. 172, 4593–4602 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yanagisawa, T. & Kawakami, M. How does Pseudomonas fluorescens avoid suicide from its antibiotic pseudomonic acid? Evidence for two evolutionarily distinct isoleucyl-tRNA synthetases conferring self-defense. J. Biol. Chem. 278, 25887–25894 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Thomas, C. M., Hothersall, J., Willis, C. L. & Simpson, T. J. Resistance to and synthesis of the antibiotic mupirocin. Nature Rev. Microbiol. 8, 281–289 (2010).

    Article  CAS  Google Scholar 

  62. Gentry, D. R. et al. Variable sensitivity to bacterial methionyl-tRNA synthetase inhibitors reveals subpopulations of Streptococcus pneumoniae with two distinct methionyl-tRNA synthetase genes. Antimicrob. Agents Chemother. 47, 1784–1789 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brown, J. R. et al. Horizontal transfer of drug-resistant aminoacyl-transfer-RNA synthetases of anthrax and Gram-positive pathogens. EMBO Rep. 4, 692–698 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vecchione, J. J. & Sello, J. K. A novel tryptophanyl-tRNA synthetase gene confers high-level resistance to indolmycin. Antimicrob. Agents Chemother. 53, 3972–3980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vecchione, J. J. & Sello, J. K. Regulation of an auxiliary, antibiotic-resistant tryptophanyl-tRNA synthetase gene via ribosome-mediated transcriptional attenuation. J. Bacteriol. 192, 3565–3573 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kondrashov, F. A., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V. Selection in the evolution of gene duplications. Genome Biol. 3, RESEARCH0008 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Couturier, E. & Rocha, E. P. Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes. Mol. Microbiol. 59, 1506–1518 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Zeng, Y., Roy, H., Patil, P. B., Ibba, M. & Chen, S. Characterization of two seryl-tRNA synthetases in albomycin-producing Streptomyces sp. strain ATCC 700974. Antimicrob. Agents Chemother. 53, 4619–4627 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Doolittle, W. F. et al. How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Phil. Trans. R. Soc. B 358, 39–58 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gogarten, J. P. & Townsend, J. P. Horizontal gene transfer, genome innovation and evolution. Nature Rev. Microbiol. 3, 679–687 (2005).

    Article  CAS  Google Scholar 

  71. Fitch, W. M. & Upper, K. The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harb. Symp. Quant. Biol. 52, 759–767 (1987).

    Article  CAS  PubMed  Google Scholar 

  72. Kandler, O. in Early Life on Earth, Nobel Symposium 84 (ed. Bengston, S.) 152–160 (Columbia Univ. Press, New York,1994).

    Google Scholar 

  73. Woese, C. The universal ancestor. Proc. Natl Acad. Sci. USA 95, 6854–6859 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhaxybayeva, O. & Gogarten, J. P. Cladogenesis, coalescence and the evolution of the three domains of life. Trends Genet. 20, 182–187 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Eriani, G., Delarue, M., Poch, O., Gangloff, J. & Moras, D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347, 203–206 (1990).

    Article  CAS  PubMed  Google Scholar 

  76. Fournier, G. P., Huang, J. & Gogarten, J. P. Horizontal gene transfer from extinct and extant lineages: biological innovation and the coral of life. Phil. Trans. R. Soc. B 364, 2229–2239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim, H. S., Vothknecht, U. C., Hedderich, R., Celic, I. & Soll, D. Sequence divergence of seryl-tRNA synthetases in archaea. J. Bacteriol. 180, 6446–6449 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Korencic, D., Polycarpo, C., Weygand-Durasevic, I. & Soll, D. Differential modes of transfer RNASer recognition in Methanosarcina barkeri. J. Biol. Chem. 279, 48780–48786 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Bilokapic, S., Korencic, D., Soll, D. & Weygand-Durasevic, I. The unusual methanogenic seryl-tRNA synthetase recognizes tRNASer species from all three kingdoms of life. Eur. J. Biochem. 271, 694–702 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Jaric, J. et al. Identification of amino acids in the N-terminal domain of atypical methanogenic-type seryl-tRNA synthetase critical for tRNA recognition. J. Biol. Chem. 284, 30643–30651 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ibba, M., Curnow, A. W. & Soll, D. Aminoacyl-tRNA synthesis: divergent routes to a common goal. Trends Biochem. Sci. 22, 39–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Gogarten, J., Fournier, G. & Zhaxybayeva, O. Gene transfer and the reconstruction of life's early history from genomic data. Space Sci. Rev. 135, 115–131 (2008).

    Article  CAS  Google Scholar 

  83. Gevers, D. et al. Stepping stones towards a new prokaryotic taxonomy. Phil. Trans. R. Soc. B 361, 1911–1916 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bapteste, E. et al. Prokaryotic evolution and the tree of life are two different things. Biol. Direct 4, 34 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang, J. & Gogarten, J. P. Ancient horizontal gene transfer can benefit phylogenetic reconstruction. Trends Genet. 22, 361–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Huang, J., Xu, Y. & Gogarten, J. P. The presence of a haloarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic. Mol. Biol. Evol. 22, 2142–2146 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Wolf, Y. I., Rogozin, I. B., Grishin, N. V. & Koonin, E. V. Genome trees and the tree of life. Trends Genet. 18, 472–479 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Korbel, J. O., Snel, B., Huynen, M. A. & Bork, P. SHOT: a web server for the construction of genome phylogenies. Trends Genet. 18, 158–162 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Brochier, C., Forterre, P. & Gribaldo, S. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol. 5, R17 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mongodin, E. F. et al. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl Acad. Sci. USA 102, 18147–18152 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Degnan, J. H. & Rosenberg, N. A. Discordance of species trees with their most likely gene trees. PLoS Genet. 2, e68 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Herbeck, J. T., Degnan, P. H. & Wernegreen, J. J. Nonhomogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the Enterobacteriales (γ-Proteobacteria). Mol. Biol. Evol. 22, 520–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Zhaxybayeva, O., Lapierre, P. & Gogarten, J. P. Genome mosaicism and organismal lineages. Trends Genet. 20, 254–260 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Zhaxybayeva, O., Gogarten, J. P., Charlebois, R. L., Doolittle, W. F. & Papke, R. T. Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res. 16, 1099–1108 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hilario, E. & Gogarten, J. P. Horizontal transfer of ATPase genes — the tree of life becomes a net of life. Biosystems 31, 111–119 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Horn, M. et al. Illuminating the evolutionary history of chlamydiae. Science 304, 728–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Becker, B., Hoef-Emden, K. & Melkonian, M. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol. Biol. 8, 203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Moustafa, A., Reyes-Prieto, A. & Bhattacharya, D. Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functions. PLoS ONE 3, e2205 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. de Koning, A. P., Brinkman, F. S., Jones, S. J. & Keeling, P. J. Lateral gene transfer and metabolic adaptation in the human parasite Trichomonas vaginalis. Mol. Biol. Evol. 17, 1769–1773 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).

    Article  PubMed  Google Scholar 

  102. Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Lanave, C., Preparata, G., Saccone, C. & Serio, G. A new method for calculating evolutionary substitution rates. J. Mol. Evol. 20, 86–93 (1984).

    Article  CAS  PubMed  Google Scholar 

  104. Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Abascal, F., Zardoya, R. & Posada, D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104–2105 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Posada, D. & Crandall, K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Corvaglia, A. R. et al. A type III-like restriction endonuclease functions as a major barrier to horizontal gene transfer in clinical Staphylococcus aureus strains. Proc Natl Acad. Sci. USA 107, 11954–11958 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pearson, T. et al. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer. BMC Biol. 7, 78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. Lapierre, D. Williams, T. Harlow, V. Kask and the Biotechnology Bioservices Center of the University of Connecticut, Storrs, USA, for technical support. This work was supported by a US National Science Foundation Grant (DEB 0830024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Peter Gogarten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1

Detailed version of the phylogenetic analysis of bacterial (a) TyrRS amino acid sequences and (b) their corresponding concatenated 16S.23S rRNA phylogeny as shown in Figure 1. (PDF 509 kb)

Supplementary information S2

Scatterplots of pairwise evolutionary distances between the combined 16S.23S rRNA (x-axis) and (a) TyrRS and (b.d) TrpRS sequences in a diverse sampling of Bacteria. (PDF 676 kb)

Supplementary information S3

Figure legend overleaf. (PDF 2344 kb)

Supplementary information S4

Statistical analysis using non-parametric bootstrap to assess the probability that the gene loss only model could have given rise to the observed distribution of the rare and common form of SerRS. (PDF 290 kb)

Related links

Related links

FURTHER INFORMATION

J. Peter Gogarten's homepage

Glossary

Phylogenetics

The study of the evolutionary (or natural) relationships of organisms as they change through time. Phylogenies can be strictly furcating (often bifurcating) or can include reticulations.

Biased gene transfer

Horizontal gene transfer between preferred partners (usually close relatives) rather than random transfer between any species. Other factors, such as shared ecological niches or symbiotic relationships, can also create a bias in transfer partners.

Aminoacyl-tRNA synthetases

(aaRSs). A family of enzymes that are responsible for the specific attachment of each amino acid to its cognate tRNA during the translation process.

Homeoallele

One of several divergent but functionally identical genes that are swapped within an exchange group (a group of organisms that has a higher rate for within-group gene transfers than for between-group transfers) which contains organisms belonging to different higher-level taxa.

Last universal common ancestor

(LUCA). The most recent organism (or organisms) from which all organisms that are now living on Earth descend. It is necessary to distinguish between the organismal LUCA and the most recent common ancestors of molecules and genes.

Monophyly

A phylogenetic characteristic of a group of organisms, such that the group contains all the descendants of the recent common ancestor of the group members.

Cladistics

A method of classifying organisms into clades based on shared derived characteristics that arise from a common ancestor.

Phenetics

A method of classifying organisms based on their overall similarity.

Tree of life

The tree-like representation of the history of all extant and extinct organisms.

Net of life

The depiction of evolutionary history that integrates both vertical ancestry and horizontal gene transfer events.

Bifurcating scheme

A phylogenetic tree in which all internal nodes have exactly two descendants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andam, C., Gogarten, J. Biased gene transfer in microbial evolution. Nat Rev Microbiol 9, 543–555 (2011). https://doi.org/10.1038/nrmicro2593

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2593

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing