Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

De novo generation of prion strains

Abstract

Prions are self-replicating proteins that can cause neurodegenerative disorders such as bovine spongiform encephalopathy (also known as mad cow disease). Aberrant conformations of prion proteins accumulate in the central nervous system, causing spongiform changes in the brain and eventually death. Since the inception of the prion hypothesis — which states that misfolded proteins are the infectious agents that cause these diseases — researchers have sought to generate infectious proteins from defined components in the laboratory with varying degrees of success. Here, we discuss several recent studies that have produced an array of novel prion strains in vitro that exhibit increasingly high titres of infectivity. These advances promise unprecedented insight into the structure of prions and the mechanisms by which they originate and propagate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prion diseases.
Figure 2: Prion protein conformations and disease incubation periods.

Similar content being viewed by others

References

  1. Colby, D. W. & Prusiner, S. B. Prions. Cold Spring Harb. Perspect. Biol. 3, a006833 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Colby, D. W. et al. Protease-sensitive synthetic prions. PLoS Pathog. 6, e1000736 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang, F., Wang, X., Yuan, C.-G. & Ma, J. Generating a prion with bacterially expressed recombinant prion protein. Science 327, 1132–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Colby, D. W. et al. Design and construction of diverse mammalian prion strains. Proc. Natl Acad. Sci. USA 106, 20417–20422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Makarava, N. et al. Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol. 119, 177–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barria, M. A., Mukherjee, A., Gonzalez-Romero, D., Morales, R. & Soto, C. De novo generation of infectious prions in vitro produces a new disease phenotype. PLoS Pathog. 5, e1000421 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Deleault, N. R., Harris, B. T., Rees, J. R. & Supattapone, S. Formation of native prions from minimal components in vitro. Proc. Natl Acad. Sci. USA 104, 9741–9746 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pattison, I. H. & Millson, G. C. Scrapie produced experimentally in goats with special reference to the clinical syndrome. J. Comp. Pathol. 71, 101–108 (1961).

    Article  CAS  PubMed  Google Scholar 

  10. Prusiner, S. B. Molecular biology of prion diseases. Science 252, 1515–1522 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Bessen, R. A. & Marsh, R. F. Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J. Virol. 66, 2096–2101 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Telling, G. C. et al. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274, 2079–2082 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Legname, G. et al. Continuum of prion protein structures enciphers a multitude of prion isolate-specified phenotypes. Proc. Natl Acad. Sci. USA 103, 19105–19110 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Patino, M. M., Liu, J.-J., Glover, J. R. & Lindquist, S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Tanaka, M., Collins, S. R., Toyama, B. H. & Weissman, J. S. The physical basis of how prion conformations determine strain phenotypes. Nature 442, 585–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G. & Liebman, S. W. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Speransky, V. V., Taylor, K. L., Edskes, H. K., Wickner, R. B. & Steven, A. C. Prion filament networks in [URE3] cells of Saccharomyces cerevisiae. J. Cell Biol. 153, 1327–1336 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tessier, P. M. & Lindquist, S. Prion recognition elements govern nucleation, strain specificity and species barriers. Nature 447, 556–561 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wille, H., Baldwin, M. A., Cohen, F. E., DeArmond, S. J. & Prusiner, S. B. in CIBA Foundation Symposium No. 199: the Nature and Origins of Amyloid Fibrils. 181–201 (John Wiley & Sons, Chichester, 1996).

    Google Scholar 

  22. Colby, D. W. et al. Prion detection by an amyloid seeding assay. Proc. Natl Acad. Sci. USA 104, 20914–20919 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kocisko, D. A. et al. Cell-free formation of protease-resistant prion protein. Nature 370, 471–474 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Castilla, J., Saa, P., Hetz, C. & Soto, C. In vitro generation of infectious scrapie prions. Cell 121, 195–206 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Hsiao, K. K. et al. Spontaneous neurodegeneration in transgenic mice with mutant prion protein. Science 250, 1587–1590 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Kaneko, K. et al. A synthetic peptide initiates Gerstmann–Sträussler–Scheinker (GSS) disease in transgenic mice. J. Mol. Biol. 295, 997–1007 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Tremblay, P. et al. Mutant PrPSc conformers induced by a synthetic peptide and several prion strains. J. Virol. 78, 2088–2099 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Legname, G. et al. Strain-specified characteristics of mouse synthetic prions. Proc. Natl Acad. Sci. USA 102, 2168–2173 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gambetti, P. et al. A novel human disease with abnormal prion protein sensitive to protease. Ann. Neurol. 63, 697–708 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ayers, J. I. et al. The strain-encoded relationship between PrP replication, stability and processing in neurons is predictive of the incubation period of disease. PLoS Pathog. 7, e1001317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McKinley, M. P., Bolton, D. C. & Prusiner, S. B. A protease-resistant protein is a structural component of the scrapie prion. Cell 35, 57–62 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. May, B. C. H., Govaerts, C., Prusiner, S. B. & Cohen, F. E. Prions: so many fibers, so little infectivity. Trends Biochem. Sci. 29, 162–165 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Kimberlin, R. & Walker, C. Characteristics of a short incubation model of scrapie in the golden hamster. J. Gen. Virol. 34, 295–304 (1977).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, J. I. et al. Mammalian prions generated from bacterially expressed prion protein in the absence of any mammalian cofactors. J. Biol. Chem. 285, 14083–14087 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Piening, N., Weber, P., Giese, A. & Kretzschmar, H. Breakage of PrP aggregates is essential for efficient autocatalytic propagation of misfolded prion protein. Biochem. Biophys. Res. Commun. 326, 339–343 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Flint, E. B. & Suslick, K. S. The temperature of cavitation. Science 253, 1397–1399 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Mark, G. et al. OH-radical formation by ultrasound in aqueous solution – Part II: Terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrason. Sonochem. 5, 41–52 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Stathopulos, P. B. et al. Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Sci. 13, 3017–3027 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Price, G. J. & Smith, P. F. Ultrasonic degradation of polymer solutions: 2. The effect of temperature, ultrasound intensity and dissolved gases on polystyrene in toluene. Polymer 34, 4111–4117 (1993).

    Article  CAS  Google Scholar 

  41. Meyer-Luehmann, M. et al. Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 313, 1781–1784 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nature Med. 14, 501–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nature Med. 14, 504–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Prusiner, S. B. et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35, 349–358 (1983).

    Article  CAS  PubMed  Google Scholar 

  45. Glenner, G. G. & Wong, C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  PubMed  Google Scholar 

  46. Masters, C. L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl Acad. Sci. USA 82, 4245–4249 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Hardt, F. & Ranlov, P. Transfer amyloidosis. Int. Rev. Exp. Pathol. 16, 273–334 (1976).

    CAS  PubMed  Google Scholar 

  49. Axelrad, M. A., Kisilevsky, R., Willmer, J., Chen, S. J. & Skinner, M. Further characterization of amyloid-enhancing factor. Lab. Invest. 47, 139–146 (1982).

    CAS  PubMed  Google Scholar 

  50. Ganowiak, K., Hultman, P., Engstrom, U., Gustavsson, A. & Westermark, P. Fibrils from synthetic amyloid-related peptides enhance development of experimental AA-amyloidosis in mice. Biochem. Biophys. Res. Commun. 199, 306–312 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Geula, C. et al. Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nature Med. 4, 827–831 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Gotz, J., Chen, F., van Dorpe, J. & Nitsch, R. M. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ 42 fibrils. Science 293, 1491–1495 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Perutz, M. F. & Windle, A. H. Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412, 143–144 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Frost, B., Jacks, R.L. & Diamond, M.I. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. 284, 12845–12852 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, H.-J. et al. Assembly-dependent endocytosis and clearance of extracellular α-synuclein. Int. J. Biochem. Cell Biol. 40, 1835–1849 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Yang, W., Dunlap, J. R., Andrews, R. B. & Wetzel, R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum. Mol. Genet. 11, 2905–2917 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Ren, P. H. et al. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nature Cell Biol. 11, 219–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Sung, J. Y. et al. Induction of neuronal cell death by Rab5A-dependent endocytosis of α-synuclein. J. Biol. Chem. 276, 27441–27448 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl Acad. Sci. USA 106, 13010–13015 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Truant, R., Atwal, R. S., Desmond, C., Munsie, L. & Tran, T. Huntington's disease: revisiting the aggregation hypothesis in polyglutamine neurodegenerative diseases. FEBS J. 275, 4252–4262 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wasmer, C. et al. Amyloid fibrils of the HET-s(218–289) prion form a β solenoid with a triangular hydrophobic core. Science 319, 1523–1526 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Toyama, B. H., Kelly, M. J., Gross, J. D. & Weissman, J. S. The structural basis of yeast prion strain variants. Nature 449, 233–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Wille, H. et al. Natural and synthetic prion structure from X-ray fiber diffraction. Proc. Natl Acad. Sci. USA 106, 16990–16995 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shorter, J. & Lindquist, S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304, 1793–1797 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Telling, G. C. et al. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83, 79–90 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Cello, J., Paul, A. V. & Wimmer, E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297, 1016–1018 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Kornberg, A. & Baker, T. A. DNA Replication (W. H. Freeman, New York, 1992).

  69. Saborio, G. P., Permanne, B. & Soto, C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411, 810–813 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health (AG021601, AG02132, AG010770 and AG031220) as well as by gifts from the G. Harold and Leila Y. Mathers Charitable Foundation, the Sherman Fairchild Foundation and R. Galvin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley B. Prusiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Institute for Neurodegenerative Diseases, University of California, San Francisco

Glossary

A short peptide that is cleaved from amyloid precursor protein and forms the amyloid plaques that are found in Alzheimer's disease.

α-synuclein

A protein expressed primarily in neurons and can aggregate to form Lewy bodies (abnormal protein aggregates inside nerve cells), which are found in Parkinson's disease and dementia with Lewy bodies.

Gerstmann–Sträussler–Scheinker syndrome

A genetic neurodegenerative disease in humans that is caused by mutations in the PRNP gene, which encodes the prion protein (PrP).

Huntingtin

A protein that may have a role in microtubule-mediated transport or vesicle function. The expanded polyglutamine repeats within huntingtin cause Huntington's disease.

Microtubule-associated protein tau

A protein that is expressed primarily in neurons and promotes microtubule assembly and stability.

Prion protein

(PrP). A glycosyl phosphatidylinositol-anchored membrane protein that is expressed in many organs and is required for the development of prion diseases. The normal function of PrP is unknown.

Systemic amyloidosis

A disease in which amyloid is deposited in various organs outside the central nervous system.

Synthetic prions

Infectious proteins that can be created from minimal components in the laboratory and demonstrate infectivity in living organisms.

Tauopathies

Neurodegenerative diseases that are caused by the misprocessing and aggregation of microtubule-associated protein tau, which results in neurofibrillary tangles, paired helical filaments and/or Pick bodies (silver-staining, spherical protein aggregations) in the brain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colby, D., Prusiner, S. De novo generation of prion strains. Nat Rev Microbiol 9, 771–777 (2011). https://doi.org/10.1038/nrmicro2650

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2650

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing