Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

HIV-1 dynamics in vivo: implications for therapy

Key Points

  • Human immunodeficiency virus type 1 (HIV-1) replicates to high levels through all stages of infection, resulting in a progressive depletion of CD4+ T lymphocytes. Highly active antiretroviral therapy (HAART) has led to a significant reduction of HIV-1-related morbidity and mortality.

  • Therapeutic interventions that are aimed at perturbing the equilibrium between HIV-1 production and clearance rates have helped to elucidate the dynamic nature of HIV-1 replication in vivo.

  • Over the past eight years, minimal estimates for the turnover rates of virions and infected cell populations have been refined. The half-life of productively infected CD4+ T lymphocytes is approximately 17 hours; the turnover rate of virions is even faster, with a half-life of less than one hour. In an untreated, chronically infected individual with an average plasma viraemia (for example, 104–105 HIV-1 RNA copies ml−1), more than 10 billion virions are produced and cleared daily.

  • Although most free virions are generated by short-lived productively infected CD4+ T lymphocytes, a small proportion (1–7%) originates from several longer-lived infected cell populations (for example, macrophages, resting T lymphocytes, follicular dendritic cells).

  • HAART suppresses viral replication but fails to completely eliminate HIV-1 from an infected individual. Latently infected memory CD4+ T lymphocytes constitute a stable reservoir from which replication competent HIV-1 can emerge even after prolonged, seemingly suppressive, HAART. The half-life of this reservoir is long (6–44 months).

  • Another important obstacle towards eliminating HIV-1 is the persistence of ongoing, low-level viral replication, even in cases with complete suppression of plasma viraemia during HAART.

Abstract

The advent of potent combination antiretroviral therapy has been an important breakthrough in the treatment of HIV-1 infection, resulting in marked reductions in HIV-1-related morbidity and mortality. Antiretroviral therapy has also provided researchers with a powerful tool to perturb the equilibrium of viral production and viral clearance, allowing them to dissect the underlying dynamics that control the pathogenesis of AIDS. Here, we review our current understanding of the sources of HIV-1 production, the estimates for the virion and the host-cell half-lives, and the pathways of virion trafficking and clearance. We also discuss the obstacles that result from the ability of HIV-1 to remain dormant for a prolonged period of time in a subset of long-lived cells, despite an apparently effective antiretroviral treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the HIV-1 life cycle.
Figure 2: The natural course of HIV-1 infection on the basis of the longitudinal evolution of the two key surrogate markers — plasma viraemia and CD4+ T-lymphocyte count54.
Figure 3: Short-term viral decay kinetics of HIV-1 in vivo in response to chemotherapeutic interventions show that the turnover of virions and productively infected T lymphocytes is extremely rapid.
Figure 4: Schematic summary of the turnover rates of virions and the relative contribution of the different HIV-1-infected cell populations.
Figure 5: Large-volume plasma apheresis provides the possibility of disrupting the balance between virion production and clearance without the need for pharmacological interventions.
Figure 6: Experimental procedures used to assess the differential trafficking of CD4+ T lymphocytes and SIV particles in the SIV-rhesus macaque model.

Similar content being viewed by others

References

  1. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Cowan, S. et al. Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc. Natl Acad. Sci. USA 99, 11914–11919 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bieniasz, P. D. Restriction factors: a defense against retroviral infection. Trends Microbiol. 11, 286–291 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 28, 99–103 (2003).

    Article  CAS  Google Scholar 

  6. Towers, G. J. et al. Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nature Med. 9, 1138–1143 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Mariani, R. et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114, 21–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Harris, R. S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, H. et al. The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424, 94–98 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Freed, E. O. & Martin, M. A. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 1971–2042 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  11. Gao, F. et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397, 436–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Corbet, S. et al. env sequences of simian immunodeficiency viruses from chimpanzees in Cameroon are strongly related to those of human immunodeficiency virus group N from the same geographic area. J. Virol. 74, 529–354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Korber, B. et al. Timing the ancestor of the HIV-1 pandemic strains. Science 288, 1789–1796 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Barre-Sinoussi, F. et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220, 868–871 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Barre-Sinoussi, F. The early years of HIV research: integrating clinical and basic research. Nature Med. 9, 844–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Korber, B. et al. Evolutionary and immunological implications of contemporary HIV-1 variation. Br. Med. Bull. 58, 19–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Joint United Nations Programme on HIV/AIDS (UNAIDS). Report on the global HIV/AIDS epidemic. The Barcelona Report. Geneva 2002. [online], (cited 9 Oct 2003), <http://www.unaids.org/html/pub/Global-Reports/Barcelona/BRChapter1_en_pdf.htm> (2002).

  18. Daar, E. S., Moudgil, T., Meyer, R. D. & Ho, D. D. Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection. N. Engl. J. Med. 324, 961–964 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Koup, R. A. et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68, 4650–4655 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schacker, T. et al. Productive infection of T cells in lymphoid tissues during primary and early human immunodeficiency virus infection. J. Infect. Dis. 183, 555–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Z. et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286, 1353–1357 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Pope, M. & Haase, A. T. Transmission, acute HIV-1 infection and the quest for strategies to prevent infection. Nature Med. 9, 847–852 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Connick, E. et al. Relationship between human immunodeficiency virus type 1 (HIV-1)-specific memory cytotoxic T lymphocytes and virus load after recent HIV-1 seroconversion. J. Infect. Dis. 184, 1465–1469 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Mellors, J. W. et al. Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann. Intern. Med. 126, 946–954 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Mellors, J. W. et al. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272, 1167–1170 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Moonis, M., Lee, B., Bailer, R. T., Luo, Q. & Montaner, L. J. CCR5 and CXCR4 expression correlated with X4 and R5 HIV-1 infection yet not sustained replication in Th1 and Th2 cells. AIDS 15, 1941–1949 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Meng, G. et al. Lamina propria lymphocytes, not macrophages, express CCR5 and CXCR4 and are the likely target cell for human immunodeficiency virus type 1 in the intestinal mucosa. J. Infect. Dis. 182, 785–791 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Zamarchi, R. et al. Expression and functional activity of CXCR-4 and CCR-5 chemokine receptors in human thymocytes. Clin. Exp. Immunol. 127, 321–330 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Valentin, A., Trivedi, H., Lu, W., Kostrikis, L. G. & Pavlakis, G. N. CXCR4 mediates entry and productive infection of syncytia-inducing (X4) HIV-1 strains in primary macrophages. Virology 269, 294–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, B., Sharron, M., Montaner, L. J., Weissman, D. & Doms, R. W. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc. Natl Acad. Sci. USA 96, 5215–5220 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu, T. HIV-1 in peripheral blood monocytes: an underrated viral source. J. Antimicrob. Chemother. 50, 309–311 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Stevenson, M. HIV-1 pathogenesis. Nature Med. 9, 853–860 (2003). This review provides an excellent summary of the present understanding of HIV-1 pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  33. Yarchoan, R. et al. Administration of 3′-azido-3′-deoxythymidine, an inhibitor of HTLV-III/LAV replication, to patients with AIDS or AIDS-related complex. Lancet 1, 575–580 (1986).

    Article  CAS  PubMed  Google Scholar 

  34. Fischl, M. A. et al. The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. A double-blind, placebo-controlled trial. N. Engl. J. Med. 317, 185–191 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Edlin, B. R. et al. In-vitro resistance to zidovudine and α-interferon in HIV-1 isolates from patients: correlations with treatment duration and response. Ann. Intern. Med. 117, 457–460 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Montaner, J. S. et al. Clinical correlates of in vitro HIV-1 resistance ot zidovudine. Results of the Multicentre Canadian AZT Trial. AIDS 7, 189–196 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Gulick, R. M. et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N. Engl. J. Med. 337, 734–739 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Hammer, S. M. et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N. Engl. J. Med. 337, 725–733 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Dybul, M., Fauci, A. S., Bartlett, J. G., Kaplan, J. E. & Pau, A. K. Guidelines for using antiretroviral agents among HIV-infected adults and adolescents. Ann. Intern. Med. 137, 381–433 (2002).

    Article  PubMed  Google Scholar 

  40. Lalezari, J. P. et al. Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N. Engl. J. Med. 348, 2175–2185 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Lazzarin, A. et al. Efficacy of enfuvirtide in patients infected with drug-resistant HIV-1 in Europe and Australia. N. Engl. J. Med. 348, 2186–2195 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Murphy, E. L. et al. Highly active antiretroviral therapy decreases mortality and morbidity in patients with advanced HIV disease. Ann. Intern. Med. 135, 17–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Palella, F. J. Jr et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators. N. Engl. J. Med. 338, 853–860 (1998).

    Article  PubMed  Google Scholar 

  44. Mocroft, A. et al. Decline in the AIDS and death rates in the EuroSIDA study: an observational study. Lancet 362, 22–29 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Chun, T. W. et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–188 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Hance, A. J. et al. Changes in human immunodeficiency virus type 1 populations after treatment interruption in patients failing antiretroviral therapy. J. Virol. 75, 6410–6417 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ho, D. D. & Zhang, L. HIV-1 rebound after anti-retroviral therapy. Nature Med. 6, 736–737 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, L. et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N. Engl. J. Med. 340, 1605–1613 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Coombs, R. W. et al. Plasma viremia in human immunodeficiency virus infection. N. Engl. J. Med. 321, 1626–1631 (1989).

    Article  CAS  PubMed  Google Scholar 

  50. Ho, D. D., Moudgil, T. & Alam, M. Quantitation of human immunodeficiency virus type 1 in the blood of infected persons. N. Engl. J. Med. 321, 1621–1625 (1989).

    Article  CAS  PubMed  Google Scholar 

  51. Piatak, M. Jr et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259, 1749–1754 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Gupta, P. et al. Quantitation of human immunodeficiency virus type 1 DNA and RNA by a novel internally controlled PCR assay. J. Clin. Microbiol. 33, 1670–1673 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Pantaleo, G. et al. Evolutionary pattern of human immunodeficiency virus (HIV) replication and distribution in lymph nodes following primary infection: implications for antiviral therapy. Nature Med. 4, 341–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Pantaleo, G. et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362, 355–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Graziosi, C. et al. Kinetics of human immunodeficiency virus type 1 (HIV-1) DNA and RNA synthesis during primary HIV-1 infection. Proc. Natl Acad. Sci. USA 90, 6405–6409 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Simmonds, P. et al. Human immunodeficiency virus-infected individuals contain provirus in small numbers of peripheral mononuclear cells and at low copy numbers. J. Virol. 64, 864–872 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ho, D. D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995). References 57 and 58 show for the first time the rapid turnover of infected cells using potent antiretroviral drugs to disturb the steady state.

    Article  CAS  PubMed  Google Scholar 

  59. Wodarz, D. & Nowak, M. A. Mathematical models of HIV pathogenesis and treatment. Bioessays 24, 1178–1187 (2002).

    Article  PubMed  Google Scholar 

  60. Perelson, A. S. Modelling viral and immune system dynamics. Nature Rev. Immunol. 2, 28–36 (2002). References 59 and 60 provide in-depth reviews on mathematical models used to analyse viral dynamics in vivo.

    Article  CAS  Google Scholar 

  61. Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M. & Ho, D. D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996). Refined estimates for the half-life of productively infected T lymphocytes and clearance rate of plasma virions.

    Article  CAS  PubMed  Google Scholar 

  62. Perelson, A. S. et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387, 188–191 (1997). Description of the second phase of plasma HIV-1 RNA decay.

    Article  CAS  PubMed  Google Scholar 

  63. Perelson, A. S., Essunger, P. & Ho, D. D. Dynamics of HIV-1 and CD4+ lymphocytes in vivo. AIDS 11, S17–S24 (1997).

    PubMed  Google Scholar 

  64. Hlavacek, W. S., Stilianakis, N. I., Notermans, D. W., Danner, S. A. & Perelson, A. S. Influence of follicular dendritic cells on decay of HIV during antiretroviral therapy. Proc. Natl Acad. Sci. USA 97, 10966–10971 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Louie, M. et al. Determining the relative efficacy of highly active antiretroviral therapy. J. Infect. Dis. 187, 896–900 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Markowitz, M. et al. A novel antiviral intervention results in more accurate assessment of human immunodeficiency virus type 1 replication dynamics and T-cell decay in vivo. J. Virol. 77, 5037–5038 (2003). Refined estimates for the half-life of productively infected T lymphocytes using potent combination therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bonhoeffer, S., May, R. M., Shaw, G. M. & Nowak, M. A. Virus dynamics and drug therapy. Proc. Natl Acad. Sci. USA 94, 6971–6976 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Louie, M. et al. Determining the antiviral activity of tenofovir disoproxil fumarate in treatment-naive chronically HIV-1-infected individuals. AIDS 17, 1151–1156 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, L. et al. Rapid clearance of simian immunodeficiency virus particles from plasma of rhesus macaques. J. Virol. 73, 855–860 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Nowak, M. A. et al. Viral dynamics of primary viremia and antiretroviral therapy in simian immunodeficiency virus infection. J. Virol. 71, 7518–7525 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Schultz, I. & Neva, F. A. Relationship between blood clearance and viruria after intravenous injection of mice and rats with bacteriophage and polioviruses. J. Immunol. 94, 833–841 (1965).

    CAS  PubMed  Google Scholar 

  72. Brunner, K. T., Hures D., McCluskey R. T. & Benacerraf, B. Blood clearance of P32-labeled vesicular stomatitis and New castle disease viruses by the reticuloendothelial system in mice. J. Immunol. 85, 99–105 (1960).

    CAS  PubMed  Google Scholar 

  73. Ramratnam, B. et al. Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet 354, 1782–1785 (1999). Direct assessment of HIV-1 and hepatitis C virion clearance rates in vivo.

    Article  CAS  PubMed  Google Scholar 

  74. Bagnarelli, P. et al. Dynamic features of human immunodeficiency virus type 1 (HIV-1) viremia: kinetics of cell-free HIV-1 RNA after therapeutic plasma exchange. J. Infect. Dis. 176, 801–804 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. McCune, J. M. The dynamics of CD4+ T-cell depletion in HIV disease. Nature 410, 974–979 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Mohri, H. et al. Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J. Exp. Med. 194, 1277–1287 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ribeiro, R. M., Mohri, H., Ho, D. D. & Perelson, A. S. In vivo dynamics of T cell activation, proliferation, and death in HIV-1 infection: why are CD4+ but not CD8+ T cells depleted? Proc. Natl Acad. Sci. USA 99, 15572–15577 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kovacs, J. A. et al. Identification of dynamically distinct subpopulations of T lymphocytes that are differentially affected by HIV. J. Exp. Med. 194, 1731–1741 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Silvestri, G. & Feinberg, M. B. Turnover of lymphocytes and conceptual paradigms in HIV infection. J. Clin. Invest. 112, 821–824 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Douek, D. C. et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature 417, 95–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Badley, A. D., Pilon, A. A., Landay, A. & Lynch, D. H. Mechanisms of HIV-associated lymphocyte apoptosis. Blood 96, 2951–2964 (2000).

    CAS  PubMed  Google Scholar 

  82. Douek, D. C., Picker, L. J. & Koup, R. A. T cell dynamics in HIV-1 infection. Annu. Rev. Immunol. 21, 265–304 (2003). Review summarizing the current knowledge on T cell dynamics.

    Article  CAS  PubMed  Google Scholar 

  83. Hazenberg, M. D. et al. Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS 17, 1881–1888 (2003).

    Article  PubMed  Google Scholar 

  84. Hazenberg, M. D., Hamann, D., Schuitemaker, H. & Miedema, F. T-cell depletion in HIV-1 infection: how CD4+ T cells go out of stock. Nature Immunol. 1, 285–289 (2000).

    Article  CAS  Google Scholar 

  85. Sousa, A. E., Carneiro, J., Meier-Schellersheim, M., Grossman, Z. & Victorino, R. M. CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J. Immunol. 169, 3400–3406 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, L., Dailey, P. J., Gettie, A., Blanchard, J. & Ho, D. D. The liver is a major organ for clearing simian immunodeficiency virus in rhesus monkeys. J. Virol. 76, 5271–5273 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. van Furth, R. et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 46, 845–852 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kimberly, R. P. & Ralph, P. Endocytosis by the mononuclear phagocyte system and autoimmune disease. Am. J. Med. 74, 481–493 (1983).

    Article  CAS  PubMed  Google Scholar 

  89. Hume, D. A. et al. The mononuclear phagocyte system revisited. J. Leukoc. Biol. 72, 621–627 (2002).

    CAS  PubMed  Google Scholar 

  90. Burton, G. F., Keele, B. F., Estes, J. D., Thacker, T. C. & Gartner, S. Follicular dendritic cell contributions to HIV pathogenesis. Semin. Immunol. 14, 275–284 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Estes, J. D. et al. Follicular dendritic cell-mediated up-regulation of CXCR4 expression on CD4 T cells and HIV pathogenesis. J. Immunol. 169, 2313–2322 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Hlavacek, W. S., Stilianakis, N. I. & Perelson, A. S. Influence of follicular dendritic cells on HIV dynamics. Philos. Trans R. Soc. Lond. B Biol. Sci. 355, 1051–1058 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Igarashi, T. et al. Human immunodeficiency virus type 1 neutralizing antibodies accelerate clearance of cell-free virions from blood plasma. Nature Med. 5, 211–216 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Veazey, R. S. et al. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280, 427–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Poles, M. A., Elliott, J., Taing, P., Anton, P. A. & Chen, I. S. A preponderance of CCR5+ CXCR4+ mononuclear cells enhances gastrointestinal mucosal susceptibility to human immunodeficiency virus type 1 infection. J. Virol. 75, 8390–8399 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Malaspina, A. et al. Human immunodeficiency virus type 1 bound to B cells: relationship to virus replicating in CD4+ T cells and circulating in plasma. J. Virol. 76, 8855–8863 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Moir, S. et al. B cells of HIV-1-infected patients bind virions through CD21-complement interactions and transmit infectious virus to activated T cells. J. Exp. Med. 192, 637–646 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997). First report on the persistence of latently infected memory T lymphocytes despite suppressive HAART.

    Article  CAS  PubMed  Google Scholar 

  99. Blankson, J. N., Persaud, D. & Siliciano, R. F. The challenge of viral reservoirs in HIV-1 infection. Annu. Rev. Med. 53, 557–593 (2002). Review summarizing the current knowledge on HIV-1 persistence.

    Article  CAS  PubMed  Google Scholar 

  100. Nabel, G. & Baltimore, D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326, 711–713 (1987).

    Article  CAS  PubMed  Google Scholar 

  101. Kao, S. Y., Calman, A. F., Luciw, P. A. & Peterlin, B. M. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330, 489–493 (1987).

    Article  CAS  PubMed  Google Scholar 

  102. Swingler, S. et al. HIV-1 Nef intersects the macrophage CD40L signalling pathway to promote resting-cell infection. Nature 424, 213–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Gunthard, H. F. et al. Evolution of envelope sequences of human immunodeficiency virus type 1 in cellular reservoirs in the setting of potent antiviral therapy. J. Virol. 73, 9404–9412 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Furtado, M. R. et al. Persistence of HIV-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. N. Engl. J. Med. 340, 1614–1622 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Lewin, S. R. et al. Use of real-time PCR and molecular beacons to detect virus replication in human immunodeficiency virus type 1-infected individuals on prolonged effective antiretroviral therapy. J. Virol. 73, 6099–6103 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Dornadula, G. et al. Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. JAMA 282, 1627–1632 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Havlir, D. V. et al. Prevalence and predictive value of intermittent viremia with combination HIV therapy. JAMA 286, 171–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Di Mascio, M. et al. Viral blip dynamics during highly active antiretroviral therapy. J. Virol. 77, 12165–12172 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Percus, J. K. et al. The distribution of viral blips observed in HIV-1 infected patients treated with combination antiretroviral therapy. Bull. Math. Biol. 65, 263–277 (2003).

    Article  PubMed  Google Scholar 

  110. Cohen Stuart, J. W. et al. Transient relapses ('blips') of plasma HIV RNA levels during HAART are associated with drug resistance. J. Acquir. Immune Defic. Syndr. 28, 105–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Zhang, H. et al. Human immunodeficiency virus type 1 in the semen of men receiving highly active antiretroviral therapy. N. Engl. J. Med. 339, 1803–1809 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Ramratnam, B. et al. The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy. Nature Med. 6, 82–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Siliciano, J. D. et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nature Med. 9, 727–728 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Finzi, D. et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Med. 5, 512–517 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Ramratnan, B. et al. Intensification of antiretroviral therapy accelerates the decay of the HIV-1 latent reservoir and decreases, but does not eliminate, ongoing virus replication. J. Acquir. Immune Defic.Syndr. (in the press).

  116. Strain, M. C. et al. Heterogeneous clearance rates of long-lived lymphocytes infected with HIV: intrinsic stability predicts lifelong persistence. Proc. Natl Acad. Sci. USA 100, 4819–4824 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kulkosky, J. et al. Intensification and stimulation therapy for human immunodeficiency virus type 1 reservoirs in infected persons receiving virally suppressive highly active antiretroviral therapy. J. Infect. Dis. 186, 1403–1411 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. From the Centers for Disease Control and Prevention. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. JAMA 269, 729–730 (1993).

Download references

Acknowledgements

We attempted to give a comprehensive overview of the current understanding of the field but it was impossible to cover every publication in this review, and we wish to apologize for any oversight. We thank L. Chakrabarti, I. Chen, M. Di Mascio, D. Gurner and L. C. F. Mulder for the critical reading of the manuscript and G. Cardué for assistance with the graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Ho.

Ethics declarations

Competing interests

D. Ho sits on the scientific advisor board for ViroLogic, Osel, Achillion and VivoQuest. Products or work from these companies are not discussed in the review. V. Simon has no competing financial interests.

Related links

Related links

DATABASES

Infectious Disease Information

AIDS

LocusLink

CCR5

CD4

CXCR4

FURTHER INFORMATION

Aaron Diamond AIDS Research Center

Los Alamos HIV Sequence Database

UNAIDS

Glossary

PLASMA VIRAEMIA

The quantity of cell-free HIV-1 virions detected in the plasma compartment of an infected individual (expressed as HIV-1 RNA copies or virion equivalents per millilitre of plasma).

RESERVOIR

Any compartment, be it a specific cell population or an anatomical site, that serves as a source of replicating virus and has distinct kinetics of viral replication.

LATENCY

A post-integration state of replicative dormancy, wherein minimal or no HIV gene expression occurs in a cell, despite the replication competence of the integrated virus.

VIRAL SET-POINT

The relatively stable level of plasma viraemia observed after the peak of plasma viraemia associated with acute infection. The viral set-point has been shown to be predictive of long-term prognosis.

CD4+ T LYMPHOCYTES

T-lymphocyte subpopulation that expresses the CD4 receptor. CD4+ helper cells recognize antigens presented by HIV-1 infected cells and are essential for orchestrating specific immune responses. The progressive loss of CD4+ helper cells is the hallmark of AIDS.

HAART

(Highly Active Antiretroviral Treatment). Consists of a minimum of three drugs that inhibit the activity of the viral enzymes reverse transcriptase or protease. The first compound of a third drug class, the fusion inhibitors, has recently been approved for treatment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, V., Ho, D. HIV-1 dynamics in vivo: implications for therapy. Nat Rev Microbiol 1, 181–190 (2003). https://doi.org/10.1038/nrmicro772

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro772

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing