Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Electronic noses and disease diagnostics

Abstract

Rapid developments in sensor technology have facilitated the production of devices — known as electronic noses — that can detect and discriminate the production profiles of volatile compounds from microbial infections in situ. Such qualitative and semi-quantitative approaches could have a significant role in the early diagnosis and detection of microbial diseases. Using artificial intelligence and web-based knowledge systems, electronic noses might also have a valuable role in monitoring disease epidemiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic nose devices mimic the human olfactory system.
Figure 2: Examples of infection discrimination using electronic nose devices.

Similar content being viewed by others

References

  1. Persaud, K. & Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299, 352–355 (1982).

    Article  CAS  Google Scholar 

  2. Pavlou, A., Turner, A. P. F. & Barr, H. Diagnosis of gastric and lung disorders. UK Patent 01155844.3 (1999).

  3. Gibson, T. D., Puttick, P., Hulbert, J. N., Marshall, R. W. & Li, Z. Odor sensor. US Patent 5,928,609 (1999).

  4. Lewis, N. & Freund, M. Sensor arrays for detecting microorganisms. US Patent 6,017,440 (2000).

  5. Rong, L., Ping, W. & Yi, T. Flexible electronic nose for diabetes non-destructive breathing smell diagnosis. Canadian Patent CA2430111U (2001).

  6. Armstrong, W. W., Coleman, R. N., Feddes, J. R., Guo, Q. G. & Leonard, J. J. Method and apparatus for estimating odor concentrations using an electronic nose. Canadian Patent CA2314237 (2002).

  7. Hanson, C. W. Method and system of diagnosing intrapulmonary infection using an electronic nose. US patent US20033078611 (2003).

  8. Gardner, J. W. & Bartlett, P. N. Electronic Noses: Principles and Applications (Oxford Univ. Press, UK, 1999).

    Google Scholar 

  9. Pearce, T. C., Schiffman, S. S., Nagle, H. T. & Gardner, J. W. (eds) Handbook of Machine Olfaction: Electronic Nose Technology (Wiley, 2002).

    Book  Google Scholar 

  10. Turner, A. P. F. Biosensors — sense and sensitivity. Science 290, 1315–1317 (2000).

    Article  CAS  Google Scholar 

  11. Piletsky, S. A. & Turner, A. P. F. in Optical Biosensors: Present and Future (eds Ligler, F. S. & Rowe Taitt, C. A.) 397–425 (Elsevier Science, UK, 2002).

    Book  Google Scholar 

  12. Walt, R. D. et al. Optical sensor arrays for odour recognition. Biosensors and Bioelectronics 13, 697–699 (1998).

    Article  CAS  Google Scholar 

  13. Suslick, K. S., Kosal, M. A., McNamara, W. B. & Sen, A. Smellseeing: a colorimetric electronic nose. Technical Digest, Proceedings of ISOEN'02, 27–28 (Rome, Italy, 2002).

    Google Scholar 

  14. Persaud, K. C., Pisanelli, A. M. & Evans, P. in Handbook of Machine Olfaction: Electronic Nose Technology (eds Pearce, T. C., Schiffman, S. S., Nagle, H. T. & Gardner, J. W.) 445–460 (Wiley, 2002).

    Book  Google Scholar 

  15. Pavlou, A. et al. An in vitro rapid odour detection and recognition model in discrimination of H. pylori and other gastroeosophageal pathogens. Biosensors and Bioelectronics 15, 333–342 (2000).

    Article  CAS  Google Scholar 

  16. Pavlou, A. et al. Use of an electronic nose system for diagnoses of urinary tract infections in vivo. Biosensors and Bioelectronics 17, 893–899 (2002).

    Article  CAS  Google Scholar 

  17. Pavlou, A. et al. Detection of TB in vitro using electronic nose detection. Technical Digest, Proceedings of ISOEN'02, 238–239 (Rome, Italy, 2002).

    Google Scholar 

  18. Dutta, R., Hines, E. L., Gardner, J. W. & Boilot, P. Bacteria classification using Cyranose 320 electronic nose. BioMedical Engineering Online 1, 1–7 (2002).

    Article  Google Scholar 

  19. Di Natale, C. et al. Electronic nose analysis of urine samples containing blood. Physiol. Measurement 20, 377–384 (1999).

    Article  CAS  Google Scholar 

  20. Di Natale, C. et al. Lung cancer identification by analysis of breath by means of an array of non-selective gas sensors. Biosensors and Bioelectronics 18, 1209–1218 (2003).

    Article  CAS  Google Scholar 

  21. Parry, A. D. & Oppenhaim, B. Leg ulcer odour detection identifies β-haemolytic streptococcal infection. J. Wound Care 4, 404–406 (1995).

    Article  CAS  Google Scholar 

  22. Magan, N., Pavlou, A. & Chrysanthakis, I. Milke sense: a volatile sensory system for detection of microbial spoilage by bacteria and yeasts in milk. Sensors and Actuators B, 72, 28–34 (2001).

    Article  CAS  Google Scholar 

  23. Keshri, G. & Magan, N. Detection and differentiation between mycotoxigenic and non-mycotoxigenic strains of Fusarium spp. using volatile production profiles and hydrolytic enzymes. J. Appl. Microbiol. 89, 825–833 (2000).

    Article  CAS  Google Scholar 

  24. Needham, R. & Magan, N. Detection and differentiation of toxigenic and non-toxigenic Penicillium verrucosum strains on bakery products using an electronic nose. Aspects Appl. Biol. 68, 217–222 (2003).

    Google Scholar 

  25. Evans, P. et al. Evaluation of a radial basis function neural network for determination of wheat quality from electronic nose data. Sensors and Actuators B 69, 348–358 (2000).

    Article  CAS  Google Scholar 

  26. Keshri, G., Magan, N. & Voysey, P. Use of an electronic nose for early detection and differentiation between spoilage fungi. Lett. Appl. Microbiol. 27, 261–264 (1998).

    Article  CAS  Google Scholar 

  27. Pavlou, A. Novel intelligent gas-sensing in diagnosis of infectious diseases. PhD Thesis, Cranfield Univ. (2003).

  28. Aathithan, S., Plant, J. C., Chaudry, A. N. & French, G. L. Diagnosis of bacteriuria by detection of volatile organic compounds in urine using an automated headspace analyser with multiple conducting polymer sensors. J. Clin. Microbiol. 39, 2590–2593 (2001).

    Article  CAS  Google Scholar 

  29. Grametbauer, P., Kartusek, S. & Hausuer, O. Diagnosis of aerobic Gram negative bacteria by the detection of volatile metabolites using gas chromatography. Cesk Epidemiology Mikrobiology Immunology 37, 216–223 (1988).

    CAS  Google Scholar 

  30. Vitenberg, A. C., Stolbova, A. V., Loffe, B. V., Kocherovets, V. I. & Tsibul'skaia, I. A. Headspace gas chromatography analysis in the rapid diagnosis of anaerobic infections. Zh Mikribiology Epidemiology Immunobiology 1, 20–24 (1986).

    Google Scholar 

  31. Socolowsky, S, Hohne, C. & Sandow, D. The direct detection of volatile fatty acids by gas chromatography in microbiological diagnosis. Zeitschrift Med. Lab. Diagn. 31, 445–452 (1990).

    CAS  Google Scholar 

  32. Phillips, M. et al. Volatile markers of breast cancer in the breath. Breast J. 9, 184–191 (2003).

    Article  Google Scholar 

  33. Phillips, M. et al. Detection of lung cancer with volatile markers in the breath. Chest 123, 1788–1792 (2003).

    Article  Google Scholar 

  34. Olopade, C. O., Zakkar, M, Swedler, W. I. & Rubinstein, I. Exhaled pentane levels in acute asthma. Chest 111, 862–865 (1997).

    Article  CAS  Google Scholar 

  35. Guernion, N., Ratcliffe, N. M., Spencer-Phillips, P. T. & Howe, R. A. Identifying bacteria in human urine: current practice and the potential for rapid, near-patient diagnosis by sensing volatile organic compounds. Clin. Chem. Lab. Med. 39, 893–906 (2001).

    Article  CAS  Google Scholar 

  36. Kaji, H., Hisamura, M., Saito, N. & Murao, M. Gas chromatographic determination of volatile sulphur compounds in expired alveolar air in hepatopathic patients. J. Chromatogr. 145, 464–468 (1978).

    Article  CAS  Google Scholar 

  37. Humad, S., Zarling, E., Clapper, M. & Skosey, J. L. Breath pentane excretion as a marker of disease activity in rheumatoid arthritis. Free Radicle Res. 5, 101–106 (1988).

    CAS  Google Scholar 

  38. Phillips, M., Sabas, M. & Greenberg, J. Increased pentane and carbon disulphide in the breath of patients with schizophrenia. J. Clin. Pathol. 46, 861–864 (1993).

    Article  CAS  Google Scholar 

  39. Dobbelaar, P. et al. Detection of ketosis in dairy cows by analysis of exhaled breath. Veterinary Quality 18, 151–152 (1996).

    Article  CAS  Google Scholar 

  40. Skrupskii, V. A. Gas chromatographic analysis of ethanol and acetone in the air exhaled by patients. Clin. Lab. Diagn. 4, 35–38 (1995).

    Google Scholar 

  41. Goldberg, E. M., Blendis, L. M. & Sandler, S. A gas chromatographic–mass spectrometric study of profiles of volatile metabolites in hepatic encephalopathy. J. Chromatogr. 226, 291–299 (1981).

    Article  CAS  Google Scholar 

  42. Gibson, T. D., Prosser, O., Hulbert, J., Marshall, R. W. & Li, Z. Detection and simultaneous identification of microorganisms from headspace samples using and electronic nose. Sensors and Actuators B 44, 413–422 (1997).

    Article  CAS  Google Scholar 

  43. Gardner, J. W., Craven, M., Dow, C. & Hines, E. L. The prediction of bacteria type and culture growth phase by an electronic nose with a multi-layer perceptron network. Measurement Sci. Technol. 9, 120–127 (1998).

    Article  CAS  Google Scholar 

  44. Pavlou, A., Turner, A. P. F. & Magan, N. Recognition of anaerobic bacterial isolates in vitro using electronic nose technology. Lett. Appl. Microbiol. 35, 366–369 (2002).

    Article  CAS  Google Scholar 

  45. Lykos, P., Patel, P. H., Morong, C. & Joseph, A. Rapid detection of bacteria from blood culture by an electronic nose. J. Microbiol. 39, 213–218 (2001).

    Google Scholar 

  46. Keshri, G., Vosey, P. & Magan, N. Early detection of spoilage moulds in bread using volatile production patterns and quantitative enzyme assays. J. Appl. Microbiol. 92, 165–172 (2002).

    Article  CAS  Google Scholar 

  47. Needham, R. & Magan, N. Detection and differentiation of microbial spoilage organisms of bakery products in vitro and in situ. Proceedings of the Ninth International Symposium on Olfaction and Electronic Nose (eds D'Amico, A. & Di Natale, C.) 385–388 (Rome, Italy, 2003).

  48. Keshri, G., Challen, M. P., Elliot, T. J. & Magan, N. Differentiation of Agaricus species and other homodasidiomycetes based on volatile production patterns using an electronic nose system. Mycol. Res. 107, 609–613 (2003).

    Article  Google Scholar 

  49. Chandiok, S. et al. Screening for bacterial vaginosis: a novel application of artificial nose technology. J. Clin. Pathol. 50, 790–795 (1997).

    Article  CAS  Google Scholar 

  50. Hanson, C. W. & Steinberger, H. A. The use of a novel 'electronic nose' to diagnose the presence of intrapulmonary infection. Anesthesiology 87, A269 (1997).

    Article  Google Scholar 

  51. Ping, W., Yi, T., Haibao, X. & Farong, S. A novel method for diabetes diagnosis based on electronic nose. Biosensors and Bioelectronics 12, 1031–1036 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Magan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Anthony P. F. Turner's laboratory

Naresh Magan's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, A., Magan, N. Electronic noses and disease diagnostics. Nat Rev Microbiol 2, 161–166 (2004). https://doi.org/10.1038/nrmicro823

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro823

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing