Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Persistent bacterial infections: the interface of the pathogen and the host immune system

Key Points

  • Bacterial pathogens capable of persisting in human hosts for long periods of time fall into at least two classes.

  • One class is defined by a group of organisms that, after causing an initial disease state, are kept in check by an adaptive immune response for long periods of time, although sterilizing immunity is not achieved.

  • A second class of well-known bacterial pathogens are carried asymptomatically within most people among the commensal flora, but still possess the ability to cause life-threatening disease in seemingly immunocompetent individuals.

  • We focus on three bacterial pathogens from the first class that can persist in the human for long periods of time and are not considered to be part of the normal human flora. These are Mycobacterium spp., Salmonella spp, and Helicobacter pylori.

  • We discuss some of the strategies of these persistent bacteria. For example, some bacteria persist in a privileged niche, perhaps inside host cells. Mycobacterium spp. and Salmonella spp. persist within macrophages. By contrast, H. pylori persist extracellularly, although we discuss a possible intracellular niche as well.

  • Persistent bacterial pathogens have evolved specific mechanisms to circumvent the host immune response. We discuss some of the host factors involved in controlling bacterial replication and pathology. We also summarize some of the bacterial virulence determinants involved in this interplay with host antimicrobial mechanisms.

Abstract

Persistent bacterial infections involving Mycobacterium tuberculosis, Salmonella enterica serovar Typhi (S. typhi) and Helicobacter pylori pose significant public-health problems. Multidrug-resistant strains of M. tuberculosis and S. typhi are on the increase, and M. tuberculosis and S. typhi infections are often associated with HIV infection. This review discusses the strategies used by these bacteria during persistent infections that allow them to colonize specific sites in the host and evade immune surveillance. The nature of the host immune response to this type of infection and the balance between clearance of the pathogen and avoidance of damage to host tissues are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Persistent mycobacterial infection and the host immune response.
Figure 2: Persistent Salmonella infection.
Figure 3: Persistent Helicobacter pylori infection.
Figure 4: Balancing protective immunity and immunopathology during persistent bacterial infections.

Similar content being viewed by others

References

  1. Young, D., Hussell, T. & Dougan, G. Chronic bacterial infections: living with unwanted guests. Nature Immunol. 3, 1026–1032 (2002).

    Article  CAS  Google Scholar 

  2. Rhen, M., Eriksson, S., Clements, M., Bergstrom, S. & Normark, S. J. The basis of persistent bacterial infections. Trends Microbiol. 11, 80–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Everhart, J. E. Recent developments in the epidemiology of Helicobacter pylori. Gastroenterol. Clin. North Am. 29, 559–578 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Kaufmann, S. H. How can immunology contribute to the control of tuberculosis? Nature Rev. Immunol. 1, 20–30 (2001).

    Article  CAS  Google Scholar 

  5. Stewart, G. R., Robertson, B. D. & Young, D. B. Tuberculosis: a problem with persistence. Nature Rev. Microbiol. 1, 97–105 (2003).

    Article  CAS  Google Scholar 

  6. Peek, R. M. & Blaser, M. J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nature Rev. Cancer 2, 28–37 (2002).

    Article  CAS  Google Scholar 

  7. Shukla, V. K., Singh, H., Pandey, M., Upadhyay, S. K. & Nath, G. Carcinoma of the gallbladder — is it a sequel of typhoid? Dig. Dis. Sci. 45, 900–903 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Dye, C., Scheele, S., Dolin, P., Pathania, V. & Raviglione, M. C. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282, 677–686 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Geijtenbeek, T. B. et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tailleux, L. et al. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med. 197, 121–127 (2003). References 9 and 10 show that DC-SIGN on dendritic cells mediates M. tuberculosis entry in vivo and might have a role in bacterial persistence and immunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Balasubramanian, V., Wiegeshaus, E. H., Taylor, B. T. & Smith, D. W. Pathogenesis of tuberculosis: pathway to apical localization. Tuber. Lung Dis. 75, 168–178 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Gedde-Dahl, T. Tuberculous infection in the light of tuberculin matriculation. Am. J. Hyg. 56, 139–214 (1952).

    CAS  PubMed  Google Scholar 

  13. Park, D. R. et al. The etiology of community-acquired pneumonia at an urban public hospital: influence of human immunodeficiency virus infection and initial severity of illness. J. Infect. Dis. 184, 268–277 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Kulaga, S. et al. Molecular epidemiology of tuberculosis in Montreal. CMAJ 167, 353–354 (2002).

    PubMed  PubMed Central  Google Scholar 

  15. Adams, D. O. The granulomatous inflammatory response. A review. Am. J. Pathol. 84, 164–191 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Flynn, J. L. & Chan, J. Immunology of tuberculosis. Annu. Rev. Immunol. 19, 93–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Peters, W. & Ernst, J. D. Mechanisms of cell recruitment in the immune response to Mycobacterium tuberculosis. Microbes Infect. 5, 151–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Roach, D. R., Briscoe, H., Baumgart, K., Rathjen, D. A. & Britton, W. J. Tumor necrosis factor (TNF) and a TNF-mimetic peptide modulate the granulomatous response to Mycobacterium bovis BCG infection in vivo. Infect. Immun. 67, 5473–5476 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Parrish, N. M., Dick, J. D. & Bishai, W. R. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol. 6, 107–112 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Manabe, Y. C. & Bishai, W. R. Latent Mycobacterium tuberculosis — persistence, patience, and winning by waiting. Nature Med. 6, 1327–1329 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. McKinney, J. D. In vivo veritas: the search for TB drug targets goes live. Nature Med. 6, 1330–1333 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Cosma, C. L., Sherman, D. R. & Ramakrishnan, L. The secret lives of the pathogenic mycobacteria. Annu. Rev. Microbiol. 57, 641–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Russell, D. G. Mycobacterium tuberculosis: here today, and here tomorrow. Nature Rev. Mol. Cell Biol. 2, 569–577 (2001).

    Article  CAS  Google Scholar 

  24. Koul, A., Herget, T., Klebl, B. & Ullrich, A. Interplay between mycobacteria and host signalling pathways. Nature Rev. Microbiol. 2, 189–202 (2004).

    Article  CAS  Google Scholar 

  25. Bouley, D. M., Ghori, N., Mercer, K. L., Falkow, S. & Ramakrishnan, L. Dynamic nature of host–pathogen interactions in Mycobacterium marinum granulomas. Infect. Immun. 69, 7820–7831 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Timm, J. et al. Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc. Natl Acad. Sci. USA 100, 14321–14326 (2003). Levels of selected M. tuberculosis mRNAs were quantified in vitro in axenic culture, in vivo in the lungs of mice and in lung specimens obtained from TB patients with active disease. They showed differential expression of bacterial mRNAs associated with iron limitation, alternative carbon metabolism and cellular hypoxia — conditions that are thought to exist within the granulomatous lesions of TB.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi, L., Jung, Y. J., Tyagi, S., Gennaro, M. L. & North, R. J. Expression of TH1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc. Natl Acad. Sci. USA 100, 241–246 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Schnappinger, D. et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198, 693–704 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Voskuil, M. I. et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J. Exp. Med. 198, 705–713 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Talaat, A. M., Lyons, R., Howard, S. T. & Johnston, S. A. The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc. Natl Acad. Sci. USA 101, 4602–4607 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramakrishnan, L., Federspiel, N. A. & Falkow, S. Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288, 1436–1439 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Verreck, F. A. et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl Acad. Sci. USA 101, 4560–4565 (2004). Evidence that IL-23, rather than IL-12, might be the main macrophage-generated cytokine responsible for eliciting IFN-γ production and host defence against M. tuberculosis . This study also showed differential survival of the bacterium in type 1 versus type 2 macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Casanova, J. L. & Abel, L. Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 20, 581–620 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Chan, J., Xing, Y., Magliozzo, R. S. & Bloom, B. R. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J. Exp. Med. 175, 1111–1122 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. MacMicking, J. D. et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl Acad. Sci. USA 94, 5243–5248 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ehrt, S. et al. Reprogramming of the macrophage transcriptome in response to interferon-γ and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J. Exp. Med. 194, 1123–1140 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. MacMicking, J. D., Taylor, G. A. & McKinney, J. D. Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science 302, 654–659 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Ting, L. M., Kim, A. C., Cattamanchi, A. & Ernst, J. D. Mycobacterium tuberculosis inhibits IFN-γ transcriptional responses without inhibiting activation of STAT1. J. Immunol. 163, 3898–3906 (1999).

    CAS  PubMed  Google Scholar 

  39. Giacomini, E. et al. Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T-cell response. J. Immunol. 166, 7033–7041 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Nau, G. J. et al. Human macrophage activation programs induced by bacterial pathogens. Proc. Natl Acad. Sci. USA 99, 1503–1508 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stanley, S. A., Raghavan, S., Hwang, W. W. & Cox, J. S. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc. Natl Acad. Sci. USA 100, 13001–13006 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao, L. Y. et al. Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol. Microbiol. 49, 1547–1563 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. McMurray, D. N. Disease model: pulmonary tuberculosis. Trends Mol. Med. 7, 135–137 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Walsh, G. P. et al. The Philippine cynomolgus monkey (Macaca fasicularis) provides a new nonhuman primate model of tuberculosis that resembles human disease. Nature Med. 2, 430–436 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Flynn, J. L. et al. Non-human primates: a model for tuberculosis research. Tuberculosis (Edinb.) 83, 116–118 (2003).

    Article  CAS  Google Scholar 

  46. McCune, R. M., Feldmann, F. M., Lambert, H. P. & McDermott, W. Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J. Exp. Med. 123, 445–468 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Scanga, C. A. et al. Reactivation of latent tuberculosis: variations on the Cornell murine model. Infect. Immun. 67, 4531–4538 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Orme, I. M. A mouse model of the recrudescence of latent tuberculosis in the elderly. Am. Rev. Respir. Dis. 137, 716–718 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. Rhoades, E. R., Frank, A. A. & Orme, I. M. Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent Mycobacterium tuberculosis. Tuber. Lung. Dis. 78, 57–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Rees, R. J. & Hart, P. D. Analysis of the host–parasite equilibrium in chronic murine tuberculosis by total and viable bacillary counts. Br. J. Exp. Pathol. 42, 83–88 (1961).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Betts, J. C., Lukey, P. T., Robb, L. C., McAdam, R. A. & Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 43, 717–731 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Wayne, L. G. & Sohaskey, C. D. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 55, 139–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Boon, C. & Dick, T. Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J. Bacteriol. 184, 6760–6767 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dasgupta, N. et al. Characterization of a two-component system, devRdevS, of Mycobacterium tuberculosis. Tuber. Lung Dis. 80, 141–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Sherman, D. R. et al. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding α-crystallin. Proc. Natl Acad. Sci. USA 98, 7534–7539 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dannenberg, A. M., Ando, M. & Shima, K. Macrophage accumulation, division, maturation, and digestive and microbicidal capacities in tuberculous lesions. 3. The turnover of macrophages and its relation to their activation and antimicrobial immunity in primary BCG lesions and those of reinfection. J. Immunol. 109, 1109–1121 (1972).

    PubMed  Google Scholar 

  57. Chan, K. et al. Complex pattern of Mycobacterium marinum gene expression during long-term granulomatous infection. Proc. Natl Acad. Sci. USA 99, 3920–3925 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sassetti, C. M., Boyd, D. H. & Rubin, E. J. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl Acad. Sci. USA 98, 12712–12717 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sassetti, C. M. & Rubin, E. J. Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA 100, 12989–12994 (2003). References 58 and 59 describe a new microarray-based method for identifying conditionally essential genes in mycobacteria. These studies also identify new persistence mutants using this technique.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McKinney, J. D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Zahrt, T. C. & Deretic, V. Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc. Natl Acad. Sci. USA 98, 12706–12711 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Karakousis, P. C., Bishai, W. R. & Dorman, S. E. Mycobacterium tuberculosis cell envelope lipids and the host immune response. Cell. Microbiol. 6, 105–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Glickman, M. S., Cox, J. S. & Jacobs, W. R. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5, 717–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Cosma, C. L., Humbert, O. & Ramakrishnan, L. Superinfecting mycobacteria home to established tuberculous granulomas. Nature Immunol. 27 June 2004 (doi:10.1038/ni1091). Used a zebrafish model to show that trafficking of newly infecting mycobacteria into established tuberculous granulomas is directed by mycobacteria present in macrophages.

  65. Caruso, A. M. et al. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-γ, yet succumb to tuberculosis. J. Immunol. 162, 5407–5416 (1999).

    CAS  PubMed  Google Scholar 

  66. van Pinxteren, L. A., Cassidy, J. P., Smedegaard, B. H., Agger, E. M. & Andersen, P. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J. Immunol. 30, 3689–3698 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Scanga, C. A. et al. Depletion of CD4+ T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon-γ and nitric oxide synthase 2. J. Exp. Med. 192, 347–358 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Serbina, N. V., Liu, C. C., Scanga, C. A. & Flynn, J. L. CD8+ CTL from lungs of Mycobacterium tuberculosis-infected mice express perforin in vivo and lyse infected macrophages. J. Immunol. 165, 353–363 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Stenger, S. et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Turner, J. et al. CD8- and CD95/95L-dependent mechanisms of resistance in mice with chronic pulmonary tuberculosis. Am. J. Respir. Cell Mol. Biol. 24, 203–209 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Barnes, P. F. et al. Cytokine production at the site of disease in human tuberculosis. Infect. Immun. 61, 3482–3489 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Barnes, P. F. et al. Patterns of cytokine production by mycobacterium-reactive human T-cell clones. Infect. Immun. 61, 197–203 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Verbon, A. et al. Serum concentrations of cytokines in patients with active tuberculosis (TB) and after treatment. Clin. Exp. Immunol. 115, 110–113 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Turner, J. et al. In vivo IL-10 production reactivates chronic pulmonary tuberculosis in C57BL/6 mice. J. Immunol. 169, 6343–6351 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Flynn, J. L. et al. Tumor necrosis factor-α is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2, 561–572 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Turner, J., Frank, A. A., Brooks, J. V., Marietta, P. M. & Orme, I. M. Pentoxifylline treatment of mice with chronic pulmonary tuberculosis accelerates the development of destructive pathology. Immunology 102, 248–253 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kindler, V., Sappino, A. P., Grau, G. E., Piguet, P. F. & Vassalli, P. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56, 731–740 (1989).

    Article  CAS  PubMed  Google Scholar 

  78. Mohan, V. P. et al. Effects of tumor necrosis factor-α on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect. Immun. 69, 1847–1855 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Keane, J. et al. Tuberculosis associated with infliximab, a tumor necrosis factor-α-neutralizing agent. N. Engl. J. Med. 345, 1098–1104 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Carter, P. B. & Collins, F. M. Peyer's patch responsiveness to Salmonella in mice. J. Reticuloendothel. Soc. 17, 38–46 (1975).

    CAS  PubMed  Google Scholar 

  81. Vasquez-Torres, A. et al. Extraintestinal dissemination of Salmonella via CD18-expressing phagocytes. Nature 401, 804–808 (1999).

    Article  CAS  Google Scholar 

  82. Sinnott, C. R. & Teall, A. J. Persistent gallbladder carriage of Salmonella typhi. Lancet 1, 976 (1987).

    Article  CAS  PubMed  Google Scholar 

  83. Wain, J. et al. Quantitation of bacteria in bone marrow from patients with typhoid fever: relationship between counts and clinical features. J. Clin. Microbiol. 39, 1571–1576 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. House, D., Bishop, A., Parry, C., Dougan, G. & Wain, J. Typhoid fever: pathogenesis and disease. Curr. Opin. Infect. Dis. 14, 573–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Wain, J. et al. Molecular typing of multiple-antibiotic-resistant Salmonella enterica serovar Typhi from Vietnam: application to acute and relapse cases of typhoid fever. J. Clin. Microbiol. 37, 2466–2472 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ledingham, J. C. G. & Arkwright, J. A. The Carrier Problem in Infectious Disease (Edward Arnold, London, 1912).

    Google Scholar 

  87. Stokes, A. & Clarke, C. A search for typhoid carriers among 800 convalescents. Lancet 1, 566–569 (1912).

    Google Scholar 

  88. Levine, M. M., Black, R. E. & Lanata, C. Precise estimation of the numbers of chronic carriers of Salmonella typhi in Santiago, Chile, an endemic area. J. Infect. Dis. 146, 724–726 (1982).

    Article  CAS  PubMed  Google Scholar 

  89. Vogelsang, T. M. & Boe, J. Temporary and chronic carriers of Salmonella typhi and Salmonella paratyphi. Br. J. Hyg. 46, 252–261 (1948).

    Article  CAS  Google Scholar 

  90. Bao, X., Qiu, J., Yang, N., Mei, L. & Chen, X. Study and preparation of Vi-PHA reagent and its application for detection of Salmonella typhi carriers. Wei Sheng Wu Xue Bao 32, 289–295 (1992) (in Chinese).

    CAS  PubMed  Google Scholar 

  91. Hormaeche, C. E., Harrington, K. A. & Joysey, H. S. Natural resistance to salmonellae in mice: control by genes within the major histocompatibility complex. J. Infect. Dis. 152, 1050–1056 (1985).

    Article  CAS  PubMed  Google Scholar 

  92. Vidal, S. M., Malo, D., Vogan, K., Skamene, E. & Gros, P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73, 469–485 (1993).

    Article  CAS  PubMed  Google Scholar 

  93. Gruenheid, S., Pinner, E., Desjardins, M. & Gros, P. Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J. Exp. Med. 185, 717–730 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vidal, S. et al. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J. Exp. Med. 182, 655–666 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Nauciel, C., Ronco, E., Guenet, J. L. & Pla, M. Role of H-2 and non-H-2 genes in control of bacterial clearance from the spleen in Salmonella typhimurium-infected mice. Infect. Immun. 56, 2407–2411 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dunstan, S. J. et al. Genes of the class II and class III major histocompatibility complex are associated with typhoid fever in Vietnam. J. Infect. Dis. 183, 261–268 (2001). Identifies a genetic association in humans between typhoid fever and MHC class II and III genes. The genes that encode TNF-α and lymphotoxin-α, and alleles of the TNF-α microsatellite, were associated with susceptibility to typhoid fever.

    Article  CAS  PubMed  Google Scholar 

  97. Nauciel, C. Role of CD4+ T cells and T-independent mechanisms in acquired resistance to Salmonella typhimurium infection. J. Immunol. 145, 1265–1269 (1990).

    CAS  PubMed  Google Scholar 

  98. Schweitzer, A. N. & Sharpe, A. H. Studies using antigen-presenting cells lacking expression of both B7-1 (CD80) and B7-2 (CD86) show distinct requirements for B7 molecules during priming versus restimulation of TH2 but not TH1 cytokine production. J. Immunol. 161, 2762–2771 (1998).

    CAS  PubMed  Google Scholar 

  99. Mittrucker, H. W., Kohler, A., Mak, T. W. & Kaufmann, S. H. Critical role of CD28 in protective immunity against Salmonella typhimurium. J. Immunol. 163, 6769–6776 (1999).

    CAS  PubMed  Google Scholar 

  100. Mittrucker, H. W., Raupach, B., Kohler, A. & Kaufmann, S. H. Cutting edge: role of B lymphocytes in protective immunity against Salmonella typhimurium infection. J. Immunol. 164, 1648–1652 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Rawlings, D. J. et al. Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science 261, 358–361 (1993).

    Article  CAS  PubMed  Google Scholar 

  102. Thomas, J. D. et al. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 261, 355–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. Sukupolvi, S., Edelstein, A., Rhen, M., Normark, S. J. & Pfeifer, J. D. Development of a murine model of chronic Salmonella infection. Infect. Immun. 65, 838–842 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Stocker, B. A. Aromatic-dependent Salmonella as anti-bacterial vaccines and as presenters of heterologous antigens or of DNA encoding them. J. Biotechnol. 83, 45–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Yamamoto, T. et al. Disruption of the genes for ClpXP protease in Salmonella enterica serovar Typhimurium results in persistent infection in mice, and development of persistence requires endogenous γ-interferon and tumor necrosis factor-α. Infect. Immun. 69, 3164–3174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Monack, D. M., Bouley, D. M. & Falkow, S. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFN-γ neutralization. J. Exp. Med. 199, 231–241 (2004). Established a mouse model of S. typhimurium persistence and showed that persisting bacteria reside in MOMA2+ macrophages within mesenteric lymph nodes and that IFN-γ has an important role in maintaining persistence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Anderson, G. W., Hamblen, A. D. & Smith, H. M. Typhoid carriers. A study of their disease-producing potentialities over a series of years as indicated by a study of cases. Am. J. Public Health 26, 396–405 (1936).

    Article  CAS  Google Scholar 

  108. Buchwald, D. S. & Blaser, M. J. A review of human salmonellosis: II. Duration of excretion following infection with nontyphi Salmonella. Rev. Infect. Dis. 6, 345–356 (1984).

    Article  CAS  PubMed  Google Scholar 

  109. Edelman, R. & Levine, M. M. Summary of an international workshop on typhoid fever. Rev. Infect. Dis. 8, 329–349 (1986).

    Article  CAS  PubMed  Google Scholar 

  110. Dinbar, A., Altmann, G. & Tulcinsky, D. B. The treatment of chronic biliary salmonella carriers. Am. J. Med. 47, 236–242 (1969).

    Article  CAS  PubMed  Google Scholar 

  111. Gaines, S., Sprinz, H., Tully, J. G. & Tigertt, W. D. Studies on infection and immunity in experimental typhoid fever. VII. The distribution of Salmonella typhi in chimpanzee tissue following oral challenge, and the relationship between the numbers of bacilli and morphologic lesions. J. Infect. Dis. 118, 293–306 (1968).

    Article  CAS  PubMed  Google Scholar 

  112. Wigley, P., Berchieri, A., Page, K. L., Smith, A. L. & Barrow, P. A. Salmonella enterica serovar Pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens. Infect. Immun. 69, 7873–7879 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Holden, D. W. Trafficking of the Salmonella vacuole in macrophages. Traffic 3, 161–169 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. & Hinton, J. C. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol. Microbiol. 47, 103–118 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Richter-Dahlfors, A., Buchan, A. M. J. & Finlay, B. B. Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J. Exp. Med. 186, 569–580 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Monack, D. M. et al. Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model. J. Exp. Med. 192, 249–258 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Monack, D. M., Raupach, B., Hromockyj, A. E. & Falkow, S. Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc. Natl Acad. Sci. USA 93, 9833–9838 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. van Der Velden, A. W., Lindgren, S. W., Worley, M. J. & Heffron, F. Salmonella pathogenicity island 1-independent induction of apoptosis in infected macrophages by Salmonella enterica serotype Typhimurium. Infect. Immun. 68, 5702–5709 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Monack, D. M., Detweiler, C. S. & Falkow, S. Salmonella pathogenicity island 2-dependent macrophage death is mediated in part by the host cysteine protease caspase-1. Cell. Microbiol. (2001).

  120. Clements, M. O. et al. Polynucleotide phosphorylase is a global regulator of virulence and persistency in Salmonella enterica. Proc. Natl Acad. Sci. USA 99, 8784–8789 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vazquez-Torres, A. et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287, 1655–1658 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Hensel, M. Salmonella pathogenicity island 2. Mol. Microbiol. 36, 1015–1023 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Wigley, P., Jones, M. A. & Barrow, P. A. Salmonella enterica serovar Pullorum requires the Salmonella pathogenicity island 2 type III secretion system for virulence and carriage in the chicken. Avian Pathol. 31, 501–506 (2002).

    Article  PubMed  Google Scholar 

  124. Salcedo, S. P., Noursadeghi, M., Cohen, J. & Holden, D. W. Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell. Microbiol. 3, 587–597 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Nauciel, C. & Espinasse-Maes, F. Role of γ-interferon and tumor necrosis factor-α in resistance to Salmonella typhimurium infection. Infect. Immun. 60, 450–454 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Pie, S., Matsiota-Bernard, P., Truffa-Bachi, P. & Nauciel, C. γ-interferon and interleukin-10 gene expression in innately susceptible and resistant mice during the early phase of Salmonella typhimurium infection. Infect. Immun. 64, 849–854 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Mastroeni, P. et al. Interleukin-12 is required for control of the growth of attenuated aromatic-compound-dependent salmonellae in BALB/c mice: role of γ-interferon and macrophage activation. Infect. Immun. 66, 4767–4776 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Jouanguy, E. et al. IL-12 and IFN-γ in host defense against mycobacteria and salmonella in mice and men. Curr. Opin. Immunol. 11, 346–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Netea, M. G. et al. Salmonella septicemia in rheumatoid arthritis patients receiving anti-tumor necrosis factor therapy: association with decreased interferon-γ production and Toll-like receptor 4 expression. Arthritis Rheum. 48, 1853–1857 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Mittrucker, H. W., Kohler, A. & Kaufmann, S. H. Characterization of the murine T-lymphocyte response to Salmonella enterica serovar Typhimurium infection. Infect. Immun. 70, 199–203 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Eisenstein, T. K., Huang, D., Meissler, J. J. & al-Ramadi, B. Macrophage nitric oxide mediates immunosuppression in infectious inflammation. Immunobiology 191, 493–502 (1994).

    Article  CAS  PubMed  Google Scholar 

  132. Pie, S., Truffa-Bachi, P., Pla, M. & Nauciel, C. TH1 response in Salmonella typhimurium-infected mice with a high or low rate of bacterial clearance. Infect. Immun. 65, 4509–4514 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. MacFarlane, A. S., Schwacha, M. G. & Eisenstein, T. K. In vivo blockage of nitric oxide with aminoguanidine inhibits immunosuppression induced by an attenuated strain of Salmonella typhimurium, potentiates Salmonella infection, and inhibits macrophage and polymorphonuclear leukocyte influx into the spleen. Infect. Immun. 67, 891–898 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Valdivia, R. H., Cirillo, D. M., Lee, A. K., Bouley, D. M. & Falkow, S. mig-14 is a horizontally acquired, host-induced gene required for Salmonella enterica lethal infection in the murine model of typhoid fever. Infect. Immun. 68, 7126–7131 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Detweiler, C. S., Monack, D. M., Brodsky, I. E., Mathew, H. & Falkow, S. virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance. Mol. Microbiol. 48, 385–400 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Rosenberger, C. M., Gallo, R. L. & Finlay, B. B. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc. Natl Acad. Sci. USA 101, 2422–2427 (2004). Demonstrates the expression of cationic peptides in macrophages as an antibacterial effector mechanism against intracellular pathogens. Macrophage expression of the murine cathelicidin-related antimicrobial peptide (CRAMP) impaired Salmonella cell division in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nomura, A., Stemmermann, G. N., Chyou, P. H., Perez-Perez, G. I. & Blaser, M. J. Helicobacter pylori infection and the risk for duodenal and gastric ulceration. Ann. Intern. Med. 120, 977–981 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Marshall, B. Helicobacter pylori: 20 years on. Clin. Med. 2, 147–152 (2002).

    Article  Google Scholar 

  139. Montecucco, C. & Rappuoli, R. Living dangerously: how Helicobacter pylori survives in the human stomach. Nature Rev. Mol. Cell Biol. 2, 457–466 (2001).

    Article  CAS  Google Scholar 

  140. Karnes, W. E. et al. Positive serum antibody and negative tissue staining for Helicobacter pylori in subjects with atrophic body gastritis. Gastroenterology 101, 167–174 (1991).

    Article  PubMed  Google Scholar 

  141. O'Rourke, J. L. & Lee, A. Animal models of Helicobacter pylori infection and disease. Microbes Infect. 5, 741–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Hoffman, P. S. et al. Development of an interleukin-12-deficient mouse model that is permissive for colonization by a motile KE26695 strain of Helicobacter pylori. Infect. Immun. 71, 2534–2541 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nathan, C. & Shiloh, M. U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl Acad. Sci. USA 97, 8841–8848 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wilson, K. T. et al. Helicobacter pylori stimulates inducible nitric oxide synthase expression and activity in a murine macrophage cell line. Gastroenterology 111, 1524–1533 (1996).

    Article  CAS  PubMed  Google Scholar 

  145. Fu, S. et al. Increased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase 2 in Helicobacter pylori gastritis. Gastroenterology 116, 1319–1329 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Gobert, A. P. et al. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc. Natl Acad. Sci. USA 98, 13844–13849 (2001). Shows that H. pylori is able to block NOS2-mediated nitric oxide production by expressing the enzyme arginase, which competes for the common substrate L -arginine. Mutation of the corresponding gene results in efficient NO-mediated killing of mutant bacteria by macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. McGee, D. J., Radcliff, F. J., Mendz, G. L., Ferrero, R. L. & Mobley, H. L. Helicobacter pylori rocF is required for arginase activity and acid protection in vitro but is not essential for colonization of mice or for urease activity. J. Bacteriol 181, 7314–7322 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Allen, L. A., Schlesinger, L. S. & Kang, B. Virulent strains of Helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages. J. Exp. Med. 191, 115–128 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ramarao, N., Gray-Owen, S. D., Backert, S. & Meyer, T. F. Helicobacter pylori inhibits phagocytosis by professional phagocytes involving type IV secretion components. Mol. Microbiol. 37, 1389–1404 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Ramarao, N. & Meyer, T. F. Helicobacter pylori resists phagocytosis by macrophages: quantitative assessment by confocal microscopy and fluorescence-activated cell sorting. Infect. Immun. 69, 2604–2611 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Parsonnet, J., Friedman, G. D., Orentreich, N. & Vogelman, H. Risk for gastric cancer in people with CagA-positive or CagA-negative Helicobacter pylori infection. Gut 40, 297–301 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Perez-Perez, G. I., Peek, R. M., Legath, A. J., Heine, P. R. & Graff, L. B. The role of CagA status in gastric and extragastric complications of Helicobacter pylori. J. Physiol. Pharmacol. 50, 833–845 (1999).

    CAS  PubMed  Google Scholar 

  153. Webb, P. M., Crabtree, J. E. & Forman, D. Gastric cancer, cytotoxin-associated gene A-positive Helicobacter pylori, and serum pepsinogens: an international study. The Eurogst Study Group. Gastroenterology 116, 269–276 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Ermak, T. H. et al. Immunization of mice with urease vaccine affords protection against Helicobacter pylori infection in the absence of antibodies and is mediated by MHC class II-restricted responses. J. Exp. Med. 188, 2277–2288 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Knipp, U., Birkholz, S., Kaup, W., Mahnke, K. & Opferkuch, W. Suppression of human mononuclear cell response by Helicobacter pylori: effects on isolated monocytes and lymphocytes. FEMS Immunol. Med. Microbiol. 8, 157–166 (1994).

    Article  CAS  PubMed  Google Scholar 

  156. Gebert, B., Fischer, W., Weiss, E., Hoffmann, R. & Haas, R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 301, 1099–1102 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Boncristiano, M. et al. The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms. J. Exp. Med. 198, 1887–1897 (2003). References 156 and 157 show that the vacuolating cytotoxin VacA can act as an immunomodulator by interfering with the IL-2 signalling pathway in T cells. VacA blocks the antigen-dependent proliferation of T cells by inhibiting Ca2+ mobilization and, subsequently, the activity of the Ca2+-dependent phosphatase calcineurin, which in turn inhibits the activation of the transcription factor NFAT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Cover, T. L. & Blaser, M. J. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J. Biol. Chem. 267, 10570–10575 (1992).

    CAS  PubMed  Google Scholar 

  159. Montecucco, C., De Bernard, M., Papini, E. & Zoratti, M. Helicobacter pylori vacuolating cytotoxin: cell intoxication and anion-specific channel activity. Curr. Top. Microbiol. Immunol. 257, 113–129 (2001).

    CAS  PubMed  Google Scholar 

  160. Molinari, M. et al. Selective inhibition of Ii-dependent antigen presentation by Helicobacter pylori toxin VacA. J. Exp. Med. 187, 135–140 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Molinari, M. et al. Vacuoles induced by Helicobacter pylori toxin contain both late endosomal and lysosomal markers. J. Biol Chem 272, 25339–25344 (1997).

    Article  CAS  PubMed  Google Scholar 

  162. Ricci, V. et al. Helicobacter pylori vacuolating toxin accumulates within the endosomal-vacuolar compartment of cultured gastric cells and potentiates the vacuolating activity of ammonia. J. Pathol. 183, 453–459 (1997).

    Article  CAS  PubMed  Google Scholar 

  163. Salama, N. R., Otto, G., Tompkins, L. & Falkow, S. Vacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection. Infect. Immun. 69, 730–736 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Blaser, M. J. & Parsonnet, J. Parasitism by the “slow” bacterium Helicobacter pylori leads to altered gastric homeostasis and neoplasia. J. Clin. Invest 94, 4–8 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Perez-Perez, G. I., Shepherd, V. L., Morrow, J. D. & Blaser, M. J. Activation of human THP-1 cells and rat bone marrow-derived macrophages by Helicobacter pylori lipopolysaccharide. Infect. Immun. 63, 1183–1187 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Ismail, H. F., Zhang, J., Lynch, R. G., Wang, Y. & Berg, D. J. Role for complement in development of Helicobacter-induced gastritis in interleukin-10-deficient mice. Infect. Immun. 71, 7140–7148 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Blanchard, T. G., Yu, F., Hsieh, C. L. & Redline, R. W. Severe inflammation and reduced bacteria load in murine helicobacter infection caused by lack of phagocyte oxidase activity. J. Infect. Dis. 187, 1609–1615 (2003).

    Article  CAS  PubMed  Google Scholar 

  168. Kawahara, T. et al. Type I Helicobacter pylori lipopolysaccharide stimulates toll-like receptor 4 and activates mitogen oxidase 1 in gastric pit cells. Infect. Immun. 69, 4382–4389 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Smith, M. F. et al. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-κB activation and chemokine expression by epithelial cells. J. Biol. Chem. 278, 32552–32560 (2003).

    Article  CAS  PubMed  Google Scholar 

  170. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  171. Lee, S. K. et al. Helicobacter pylori flagellins have very low intrinsic activity to stimulate human gastric epithelial cells via TLR5. Microbes Infect. 5, 1345–1356 (2003).

    Article  CAS  PubMed  Google Scholar 

  172. Philpott, D. J. et al. Reduced activation of inflammatory responses in host cells by mouse-adapted Helicobacter pylori isolates. Cell. Microbiol. 4, 285–296 (2002). Investigates the link between the Cag-PAI and induction of proinflammatory responses in the mouse model of H. pylori infection. It shows that mouse-adapted variants that lack the Cag-PAI infect mice at higher levels and have a reduced ability to trigger inflammatory responses in vitro.

    Article  CAS  PubMed  Google Scholar 

  173. Yamaoka, Y. et al. Induction of various cytokines and development of severe mucosal inflammation by cagA gene positive Helicobacter pylori strains. Gut 41, 442–451 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Atherton, J. C., Tham, K. T., Peek, R. M., Cover, T. L. & Blaser, M. J. Density of Helicobacter pylori infection in vivo as assessed by quantitative culture and histology. J. Infect. Dis. 174, 552–556 (1996).

    Article  CAS  PubMed  Google Scholar 

  175. Kersulyte, D., Chalkauskas, H. & Berg, D. E. Emergence of recombinant strains of Helicobacter pylori during human infection. Mol. Microbiol. 31, 31–43 (1999).

    Article  CAS  PubMed  Google Scholar 

  176. Akopyanz, N., Bukanov, N. O., Westblom, T. U. & Berg, D. E. PCR-based RFLP analysis of DNA sequence diversity in the gastric pathogen Helicobacter pylori. Nucleic Acids Res. 20, 6221–6225 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Achtman, M. et al. Recombination and clonal groupings within Helicobacter pylori from different geographical regions. Mol. Microbiol. 32, 459–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  178. van Doorn, N. E. et al. Genomic DNA fingerprinting of clinical isolates of Helicobacter pylori by REP-PCR and restriction fragment end-labelling. FEMS Microbiol. Lett. 160, 145–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  179. Suerbaum, S. et al. Free recombination within Helicobacter pylori. Proc. Natl Acad. Sci. USA 95, 12619–12624 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Blaser, M. J. Ecology of Helicobacter pylori in the human stomach. J. Clin. Invest. 100, 759–762 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Blaser, M. J. & Berg, D. E. Helicobacter pylori genetic diversity and risk of human disease. J. Clin. Invest. 107, 767–773 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Covacci, A. & Rappuoli, R. Helicobacter pylori: molecular evolution of a bacterial quasi-species. Curr. Opin. Microbiol. 1, 96–102 (1998).

    Article  CAS  PubMed  Google Scholar 

  183. Israel, D. A. et al. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc. Natl Acad. Sci. USA 98, 14625–14630 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Salama, N. et al. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc. Natl Acad. Sci. USA 97, 14668–14673 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Szpirer, C. Y., Faelen, M. & Couturier, M. Interaction between the RP4 coupling protein TraG and the pBHR1 mobilization protein Mob. Mol. Microbiol. 37, 1283–1292 (2000).

    Article  CAS  PubMed  Google Scholar 

  186. Cabezon, E., Sastre, J. I. & de la Cruz, F. Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol. Gen. Genet. 254, 400–406 (1997).

    Article  CAS  PubMed  Google Scholar 

  187. Solnick, J. V., Hansen, L. M., Salama, N. R., Boonjakuakul, J. K. & Syvanen, M. Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques. Proc. Natl Acad. Sci. USA 101, 2106–2111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Ilver, D. et al. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279, 373–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  189. Wang, G., Ge, Z., Rasko, D. A. & Taylor, D. E. Lewis antigens in Helicobacter pylori: biosynthesis and phase variation. Mol. Microbiol. 36, 1187–1196 (2000).

    Article  CAS  PubMed  Google Scholar 

  190. Appelmelk, B. J., Monteiro, M. A., Martin, S. L., Moran, A. P. & Vandenbroucke-Grauls, C. M. Why Helicobacter pylori has Lewis antigens. Trends Microbiol. 8, 565–570 (2000).

    Article  CAS  PubMed  Google Scholar 

  191. Osaki, T. et al. Establishment and characterisation of a monoclonal antibody to inhibit adhesion of Helicobacter pylori to gastric epithelial cells. J. Med. Microbiol. 47, 505–512 (1998).

    Article  CAS  PubMed  Google Scholar 

  192. Edwards, N. J. et al. Lewis X structures in the O antigen side-chain promote adhesion of Helicobacter pylori to the gastric epithelium. Mol. Microbiol. 35, 1530–1539 (2000).

    Article  CAS  PubMed  Google Scholar 

  193. Hofreuter, D., Odenbreit, S. & Haas, R. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol. Microbiol. 41, 379–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  194. Hofreuter, D., Odenbreit, S., Henke, G. & Haas, R. Natural competence for DNA transformation in Helicobacter pylori: identification and genetic characterization of the comB locus. Mol. Microbiol. 28, 1027–1038 (1998).

    Article  CAS  PubMed  Google Scholar 

  195. Kersulyte, D. et al. Cluster of type IV secretion genes in Helicobacter pylori's plasticity zone. J. Bacteriol. 185, 3764–3772 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Penfold, S. S., Lastovica, A. J. & Elisha, B. G. Demonstration of plasmids in Campylobacter pylori. J. Infect. Dis. 157, 850–851 (1988).

    Article  CAS  PubMed  Google Scholar 

  197. Hofreuter, D. & Haas, R. Characterization of two cryptic Helicobacter pylori plasmids: a putative source for horizontal gene transfer and gene shuffling. J. Bacteriol. 184, 2755–2766 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kwok, T., Backert, S., Schwarz, H., Berger, J. & Meyer, T. F. Specific entry of Helicobacter pylori into cultured gastric epithelial cells via a zipper-like mechanism. Infect. Immun. 70, 2108–2120 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Amieva, M. R., Salama, N. R., Tompkins, L. S. & Falkow, S. Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell. Microbiol. 4, 677–690 (2002). Provides evidence for a partially intracellular lifestyle of H. pylori . The bacterium can be found in cultured epithelial cells residing in multivesicular bodies, where it survives for at least 24 hours and from where it can emerge to repopulate the extracellular space.

    Article  CAS  PubMed  Google Scholar 

  200. Kazi, J. L. et al. Ultrastructural study of Helicobacter pylori-associated gastritis. J. Pathol 161, 65–70 (1990).

    Article  CAS  PubMed  Google Scholar 

  201. Bode, G., Malfertheiner, P. & Ditschuneit, H. Pathogenetic implications of ultrastructural findings in Campylobacter pylori related gastroduodenal disease. Scand. J. Gastroenterol. 142, S25–S39 (1988).

    Article  Google Scholar 

  202. Foliguet, B., Vicari, F., Guedenet, J. C., De Korwin, J. D. & Marchal, L. Scanning electron microscopic study of Campylobacter pylori and associated gastroduodenal lesions. Gastroenterol. Clin. Biol. 13, 65B–70B (1989).

    CAS  PubMed  Google Scholar 

  203. Parsonnet, J. What is the Helicobacter pylori global reinfection rate? Can. J. Gastroenterol. 17, 46B–48B (2003).

    Article  PubMed  Google Scholar 

  204. Hughes, E. A. & Galan, J. E. Immune response to Salmonella: location, location, location? Immunity 16, 325–328 (2002).

    Article  CAS  PubMed  Google Scholar 

  205. O'Callaghan, D. et al. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol. Microbiol. 33, 1210–1220 (1999).

    Article  CAS  PubMed  Google Scholar 

  206. Boschiroli, M. L. et al. The Brucella suis virB operon is induced intracellularly in macrophages. Proc. Natl Acad. Sci. USA 99, 1544–1549 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Byrne, G. I. et al. Chlamydia pneumoniae expresses genes required for DNA replication but not cytokinesis during persistent infection of HEp-2 cells. Infect. Immun. 69, 5423–5429 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Fischer, S. F., Schwarz, C., Vier, J. & Hacker, G. Characterization of antiapoptotic activities of Chlamydia pneumoniae in human cells. Infect. Immun. 69, 7121–7129 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Belkaid, Y., Piccirillo, C. A., Mendez, S., Shevach, E. M. & Sacks, D. L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002). The persistence of Leishmania major in the skin after healing is controlled by an endogenous population of CD4+CD25+ regulatory T cells. The equilibrium established between effector and regulatory T cells in sites of chronic infection might reflect both parasite and host survival strategies.

    Article  CAS  PubMed  Google Scholar 

  210. Prud'homme, G. J. & Piccirillo, C. A. The inhibitory effects of transforming growth factor-β-1 (TGF-β1) in autoimmune diseases. J. Autoimmun. 14, 23–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  211. Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  212. Gerosa, F. et al. CD4+ T cell clones producing both interferon-γ and interleukin-10 predominate in bronchoalveolar lavages of active pulmonary tuberculosis patients. Clin. Immunol. 92, 224–234 (1999).

    Article  CAS  PubMed  Google Scholar 

  213. Nishikawa, F., Yoshikawa, S., Harada, H., Kita, M. & Kita, E. The full expression of the ity phenotype in ityr mice requires C3 activation by Salmonella lipopolysaccharide. Immunology 95, 640–647 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Raghavan, S., Fredriksson, M., Svennerholm, A. M., Holmgren, J. & Suri-Payer, E. Absence of CD4+CD25+ regulatory T cells is associated with a loss of regulation leading to increased pathology in Helicobacter pylori-infected mice. Clin. Exp. Immunol. 132, 393–400 (2003). The influence of CD4+CD25+ cells on H. pylori colonization in a mouse model of infection was analysed. This showed that these cells reduce immunopathology, possibly by reducing the activation of IFN-γ-producing CD4+ T cells, even at the expense of a higher H. pylori load in the gastric mucosa.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Lundgren, A., Suri-Payer, E., Enarsson, K., Svennerholm, A. M. & Lundin, B. S. Helicobacter pylori-specific CD4+ CD25high regulatory T cells suppress memory T-cell responses to H. pylori in infected individuals. Infect. Immun. 71, 1755–1762 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Saez-Llorens, X. & McCracken, G. H. Bacterial meningitis in children. Lancet 361, 2139–2148 (2003).

    Article  PubMed  Google Scholar 

  217. Salyers, A. & Whitt, D. Bacterial Pathogensis — A Molecular Approach (American Society for Microbiology, Washington, DC, 1994).

    Google Scholar 

  218. Park, H. S., Francis, K. P., Yu, J. & Cleary, P. P. Membranous cells in nasal-associated lymphoid tissue: a portal of entry for the respiratory mucosal pathogen group A streptococcus. J. Immunol. 171, 2532–2537 (2003).

    Article  CAS  PubMed  Google Scholar 

  219. Lengeling, A., Pfeffer, K. & Balling, R. The battle of two genomes: genetics of bacterial host/pathogen interactions in mice. Mamm. Genome 12, 261–271 (2001).

    Article  CAS  PubMed  Google Scholar 

  220. Mastroeni, P. et al. Interleukin 18 contributes to host resistance and γ-interferon production in mice infected with virulent Salmonella typhimurium. Infect. Immun. 67, 478–483 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Flynn, J. L. et al. An essential role for interferon-γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254 (1993).

    Article  CAS  PubMed  Google Scholar 

  222. Cooper, A. M. et al. Disseminated tuberculosis in interferon-γ gene-disrupted mice. J. Exp. Med. 178, 2243–2247 (1993).

    Article  CAS  PubMed  Google Scholar 

  223. Cooper, A. M., Magram, J., Ferrante, J. & Orme, I. M. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J. Exp. Med. 186, 39–45 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wakeham, J. et al. Lack of both types 1 and 2 cytokines, tissue inflammatory responses, and immune protection during pulmonary infection by Mycobacterium bovis bacille Calmette–Guerin in IL-12-deficient mice. J. Immunol. 160, 6101–6111 (1998).

    CAS  PubMed  Google Scholar 

  225. Newport, M. J. et al. A mutation in the interferon-γ-receptor gene and susceptibility to mycobacterial infection. N. Engl. J. Med. 335, 1941–1949 (1996).

    Article  CAS  PubMed  Google Scholar 

  226. Jouanguy, E. et al. Interferon-γ-receptor deficiency in an infant with fatal bacille Calmette–Guerin infection. N. Engl. J. Med. 335, 1956–1961 (1996).

    Article  CAS  PubMed  Google Scholar 

  227. Dorman, S. E. & Holland, S. M. Mutation in the signal-transducing chain of the interferon-γ receptor and susceptibility to mycobacterial infection. J. Clin. Invest 101, 2364–2369 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Yamada, H., Mizumo, S., Horai, R., Iwakura, Y. & Sugawara, I. Protective role of interleukin-1 in mycobacterial infection in IL-1α/β double-knockout mice. Lab. Invest. 80, 759–767 (2000).

    Article  CAS  PubMed  Google Scholar 

  229. Sugawara, I. et al. Role of interleukin-18 (IL-18) in mycobacterial infection in IL-18-gene-disrupted mice. Infect. Immun. 67, 2585–2589 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Mitsos, L. M. et al. Susceptibility to tuberculosis: a locus on mouse chromosome 19 (Trl-4) regulates Mycobacterium tuberculosis replication in the lungs. Proc. Natl Acad. Sci. USA 100, 6610–6615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Tanaka, T. et al. Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 80, 353–361 (1995).

    Article  CAS  PubMed  Google Scholar 

  232. Everest, P., Roberts, M. & Dougan, G. Susceptibility to Salmonella typhimurium infection and effectiveness of vaccination in mice deficient in the tumor necrosis factor-α p55 receptor. Infect. Immun. 66, 3355–3364 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Hess, J., Ladel, C., Miko, D. & Kaufmann, S. H. Salmonella typhimurium aroA infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-αβ cells and IFN-γ in bacterial clearance independent of intracellular location. J. Immunol. 156, 3321–3326 (1996).

    CAS  PubMed  Google Scholar 

  234. Jack, R. S. et al. Lipopolysaccharide-binding protein is required to combat a murine Gram-negative bacterial infection. Nature 389, 742–745 (1997).

    Article  CAS  PubMed  Google Scholar 

  235. Vazquez-Torres, A., Jones-Carson, J., Mastroeni, P., Ischiropoulos, H. & Fang, F. C. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J. Exp. Med. 192, 227–236 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Sawai, N. et al. Role of γ-interferon in Helicobacter pylori-induced gastric inflammatory responses in a mouse model. Infect. Immun. 67, 279–285 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. El-Omar, E. M. et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404, 398–402 (2000).

    Article  CAS  PubMed  Google Scholar 

  238. El-Omar, E. M. The importance of interleukin-1β in Helicobacter pylori associated disease. Gut 48, 743–747 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. El-Omar, E. M. et al. Increased risk of noncardia gastric cancer associated with pro-inflammatory cytokine gene polymorphisms. Gastroenterology 124, 1193–1201 (2003).

    Article  CAS  PubMed  Google Scholar 

  240. Galmiche, A. et al. The N-terminal 34-kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J. 19, 6361–6370 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Censini, S. et al. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl Acad. Sci. USA 93, 14648–14653 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Odenbreit, S. et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497–1500 (2000).

    Article  CAS  PubMed  Google Scholar 

  243. Segal, E. D., Cha, J., Lo, J., Falkow, S. & Tompkins, L. S. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl Acad. Sci. USA 96, 14559–14564 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Higashi, H. et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295, 683–686 (2002).

    Article  CAS  PubMed  Google Scholar 

  245. Amieva, M. R. et al. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300, 1430–1434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Guruge, J. L. et al. Epithelial attachment alters the outcome of Helicobacter pylori infection. Proc. Natl Acad. Sci. USA 95, 3925–3930 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Mobley, H. L. in Helicobacter pylori: Molecular and Cellular Biology (eds Achtman, M. & Suerbaum, S.) (Horizon Scientific, Wymondham, 2001).

    Google Scholar 

  248. Josenhans, C. & Suerbaum, S. in Helicobacter pylori: Molecular and Cellular Biology (eds Achtman, M. & Suerbaum, S.) (Horizon Scientific, Wymondham, 2001).

    Google Scholar 

  249. Gerhard, M. et al. in Helicobacter pylori: Molecular and Cellular Biology (eds Achtman, M. & Suerbaum, S.) (Horizon Scientific, Wymondham, 2001).

    Google Scholar 

Download references

Acknowledgements

We are grateful to H. Rachman, S. H. E. Kaufmann, C. Cosma and L. Ramakrishnan for sharing unpublished data. We thank S. H. E. Kaufmann, C. Cosma, L. Ramakrishnan, E. Joyce, I. Brodsky, S. Merrell, R. Haas and M. Amieva for critical reading of the manuscript. Research by the authors is supported by the National Institutes of Health, the Ellison Medical Foundation, the Digestive Disease Center (to S.F.) and Deutsche Forschungsgemeinschaft (to A.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise M. Monack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Helicobacter pylori

IFN-γ

IL-2

IL-2R

IL-10

IL-12

IL-23

LRG-47

Mycobacterium marinum

Mycobacterium tuberculosis

NFAT

NOS2

Nramp1

S. typhi

S. typhimurium

TGF-β

TLR2

TLR4

TNF-α

Infectious Disease Information

HIV

salmonellosis

tuberculosis

typhoid fever

SwissProt

babA

babB

FlaA

FlaB

ICL

mig-14

rocF

TraG

VacA

virK

Glossary

INNATE IMMUNE RESPONSE

A cellular defence reaction that counteracts invading pathogens, such as bacteria and viruses. It uses interferon-dependent signalling and leads to the activation of genes that are responsible for bactericidal or antiviral responses.

ADAPTIVE IMMUNE RESPONSE

This involves specificity and immunological memory. It is mediated by T and B cells through the activation of cytotoxic CD8+ T cells for pathogen killing or by interaction with CD4+ T cells for antibody production.

RETICULOENDOTHELIAL SYSTEM

A diffuse system of cells that helps the body fight infection and eliminate cellular debris through the action of phagocytic cells (such as macrophages), Kupffer cells in the liver and reticular cells of the spleen, bone marrow and lymph nodes.

MACROPHAGES

Cells of the mononuclear-phagocyte system that can phagocytose foreign particulate material. Macrophages are present in many tissues and are important for nonspecific immune reactions.

DENDRITIC CELLS

Professional antigen-presenting cells that take up proteins and present peptide antigens to T cells in conjunction with accessory molecules that stimulate T-cell activation. They are characterized by many long, thin processes extending from the cell body.

PHAGOSOME

A membrane-bound, cytoplasmic vacuole formed around particles that are ingested by phagocytosis.

CYTOKINES

Low-molecular-weight proteins that are important for immunity, inflammation and development, and which contribute to the pathophysiology of acute and chronic infections.

α-CRYSTALLIN

The expression of this chaperonin protein is upregulated in vitro by hypoxia.

HELPER T CELLS

A subpopulation of activated CD4+ T cells that secrete characteristic cytokines and function primarily in cell-mediated responses by promoting the activation of cytotoxic T cells and macrophages.

BACILLE CALMETTE–GUÉRIN

The attenuated Mycobacterium bovis live vaccine.

DIFFERENTIAL FLUORESCENCE INDUCTION

A selection strategy used to identify bacterial genes that are preferentially expressed when a bacterium is in a particular environment. By inserting random pieces of bacterial DNA in front of a promoterless green fluorescent protein (GFP) gene, flow cytometry can be used to screen for genes expressed in specific environments.

GLYOXYLATE-SHUNT PATHWAY

A biochemical pathway that is used by plants and microorganisms to metabolize acetate or long-chain fatty acids as a source of energy.

PEYER'S PATCHES

Lymphoid nodules located in the small intestine that trap antigens from the gastrointestinal tract and provide sites where immune cells — such as B and T lymphocytes, macrophages and dendritic cells — can interact with antigen.

MAJOR HISTOCOMPATIBILITY COMPLEX

A complex of genes encoding cell-surface molecules that are required for antigen presentation to T cells.

BILIARY TRACT

Includes the gall bladder and bile ducts, which make and transport bile. Bile contains salts or detergents that disrupt bacterial membranes; it also activates autolysins that digest peptidoglycan.

MOMA2+ MACROPHAGES

MOMA2 is expressed in the cytoplasm of monocytes and macrophages. MOMA2+ macrophages can be found in the splenic red pulp, in the cortex of the thymus, in the subcapsule and medullary regions of lymph nodes and in sites of acute and chronic inflammation.

PATHOGENICITY ISLANDS

Large (10 –50-kb) insertions in the bacterial chromosome that encode virulence determinants. They are thought to be acquired by horizontal transfer.

PHAGOCYTIC OXIDASE (PHOX)

Production of reactive oxygen intermediates, which can kill bacteria directly or after reacting with chlorine, is mediated by the NADPH oxidase system located in the membrane of the macrophage and includes the PHOX enzyme.

ATROPHIC GASTRITIS

Chronic inflammation of the stomach with degeneration of the mucosa.

PANMIXIS

Mating without regard to the genetic constitution of the mate.

RANDOMLY AMPLIFIED POLYMORPHIC DNA (RAPD) PCR

A molecular technique used for the classification and comparison of different isolates of the same species. This method uses a randomly chosen oligonucleotide to prime DNA synthesis and results in strain-specific patterns of DNA products.

LEWIS BLOOD GROUP

Antigens of red blood cells, saliva and other body fluids that are specified by the Le gene and react with the antibodies designated anti-Lea and anti-Leb.

CRYPTIC PLASMIDS

Small, mobilizable genetic elements that can encode virulence factors.

CHROMOSOMAL-PLASTICITY ZONES

Segments of the chromosome that are characterized by their different G+C content, which is a hallmark of horizontally acquired sequences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monack, D., Mueller, A. & Falkow, S. Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol 2, 747–765 (2004). https://doi.org/10.1038/nrmicro955

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro955

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing