Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cognitive neuroscience

Cognitive neuroscience of human social behaviour

Key Points

  • Regions of extrastriate cortex, including the fusiform and superior temporal gyri, are activated by biologically salient stimuli, such as faces and biological motion stimuli.

  • A set of structures serves to modulate cognition and behaviour on the basis of the motivational properties of stimuli. This set includes the amygdala, the ventral striatum and the orbitofrontal cortex.

  • Reasoning about, volitional guidance of, and self-regulation of social behaviour draws on regions of the brain that represent emotional response and actions, and that integrate goals with behaviour. These include right somatosensory cortices, the left frontal operculum and anterior cingulate cortices.

  • Pathological social behaviour is seen in diseases ranging from autism to psychopathy. Although most such disorders are heterogeneous in etiology, the amygdala and prefrontal cortex have been implicated in their development.

Abstract

We are an intensely social species — it has been argued that our social nature defines what makes us human, what makes us conscious or what gave us our large brains. As a new field, the social brain sciences are probing the neural underpinnings of social behaviour and have produced a banquet of data that are both tantalizing and deeply puzzling. We are finding new links between emotion and reason, between action and perception, and between representations of other people and ourselves. No less important are the links that are also being established across disciplines to understand social behaviour, as neuroscientists, social psychologists, anthropologists, ethologists and philosophers forge new collaborations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Processes and brain structures that are involved in social cognition.
Figure 2: Visual stimuli for investigating social cognition.
Figure 3: Activation in visual cortices to viewing faces.
Figure 4: Investigating social judgement with two different methods.
Figure 5: Investigating theory of mind.
Figure 6: Brain regions that might support simulation.
Figure 7: Hypersocial function in subjects with Williams syndrome.

Similar content being viewed by others

References

  1. Adolphs, R. (ed.) Special issue on cognitive neuroscience of social behavior. Neuropsychologia 41, 117 (2003).

    Google Scholar 

  2. Harmon-Jones, E. & Devine, T. (eds) Special issue on social neuroscience. J. Pers. Soc. Psychol. (in the press).

  3. Cacioppo, J. T. et al. (eds) Foundations in Social Neuroscience (MIT Press, Cambridge, Massachusetts, 2001).

    Google Scholar 

  4. Heatherton, T. F. & Macrae, C. N. Social Cognitive Neuroscience: A Reader (Blackwell, Cambridge, Massachusetts, 2003).

    Google Scholar 

  5. Trivers, R. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).

    Google Scholar 

  6. Fehr, E. & Gaechter, S. Altruistic punishment in humans. Nature 415, 137–140 (2002).

    CAS  PubMed  Google Scholar 

  7. Edwards, K. The face of time: temporal cues in facial expressions of emotion. Psychol. Sci. 9, 270–277 (1998).

    Google Scholar 

  8. Ambady, N. & Rosenthal, R. Thin slices of expressive behavior as predictors of interpersonal consequences: a meta-analysis. Psychol. Bull. 111, 256–274 (1992).

    Google Scholar 

  9. McCarthy, G. in The New Cognitive Neurosciences (ed. Gazzaniga, M. S.) 393–410 (MIT Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  10. Haxby, J. V., Hoffman, E. A. & Gobbini, M. I. The distributed human neural system for face perception. Trends Cogn. Sci. 4, 223–233 (2000).

    CAS  PubMed  Google Scholar 

  11. Wicker, B., Michel, F., Henaff, A. & Decety, J. Brain regions involved in the perception of gaze: a PET study. Neuroimage 8, 221–227 (1998).

    CAS  PubMed  Google Scholar 

  12. Hoffman, E. A. & Haxby, J. V. Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nature Neurosci. 3, 80–84 (2000). This paper shows that the superior temporal and fusiform cortices are differentially activated by eye gaze and static face stimuli, respectively.

    CAS  PubMed  Google Scholar 

  13. Puce, A., Allison, T., Bentin, S., Gore, J. C. & McCarthy, G. Temporal cortex activation in humans viewing eye and mouth movements. J. Neurosci. 18, 2188–2199 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vaina, L. M., Solomon, J., Chowdhury, S., Sinha, P. & Belliveau, J. W. Functional neuroanatomy of biological motion perception in humans. Proc. Natl Acad. Sci. USA 98, 11656–11661 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Iacoboni, M. et al. Reafferent copies of imitated actions in the right superior temporal cortex. Proc. Natl Acad. Sci. USA 98, 13995–13999 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Vuilleumier, P., Armony, J. L., Driver, J. & Dolan, R. J. Effects of attention and emotion on face processing in the human brain. An event-related fMRI study. Neuron 30, 829–841 (2001).

    CAS  PubMed  Google Scholar 

  17. Pelphrey, K. A., Singerman, J. D., Allison, T. & McCarthy, G. Brain activation evoked by the perception of gaze shifts: the influence of timing and context. Neuropsychologia 41, 156–170 (2003).

    PubMed  Google Scholar 

  18. Wicker, B., Perrett, D. I., Baron-Cohen, S. & Decety, J. Being the target of another's emotion: a PET study. Neuropsychologia 41, 139–146 (2003).

    PubMed  Google Scholar 

  19. Mouchetant-Rostaing, Y., Giard, M. -H., Bentin, S., Aguera, P. -E. & Pernier, J. Neurophysiological correlates of face gender processing in humans. Eur. J. Neurosci. 12, 303–310 (2000).

    CAS  PubMed  Google Scholar 

  20. Pizzagalli, D., Regard, M. & Lehmann, D. Rapid emotional face processing in the human right and left brain hemispheres: an ERP study. Neuroreport 10, 2691–2698 (1999).

    CAS  PubMed  Google Scholar 

  21. Halgren, E., Raij, T., Marinkovic, K., Jousmaki, V. & Hari, R. Cognitive response profile of the human fusiform face area as determined by MEG. Cereb. Cortex 10, 69–81 (2000).

    CAS  PubMed  Google Scholar 

  22. Smith, N. K., Cacioppo, J. T., Larsen, J. T. & Chartrand, T. L. May I have your attention, please: electrocortical responses to positive and negative stimuli. Neuropsychologia 41, 171–183 (2003).

    PubMed  Google Scholar 

  23. Allison, T. et al. Face recognition in human extrastriate cortex. J. Neurophysiol. 71, 821–825 (1994).

    CAS  PubMed  Google Scholar 

  24. Liu, J., Harris, A. & Kanwisher, N. Stages of processing in face perception: an MEG study. Nature Neurosci. 5, 910–916 (2002). Demonstrates that superordinate categorization of a face as distinct from other objects at 100 ms is followed by subordinate categorization of individual people's faces around 170 ms.

    CAS  PubMed  Google Scholar 

  25. Sugase, Y., Yamane, S., Ueno, S. & Kawano, K. Global and fine information coded by single neurons in the temporal visual cortex. Nature 400, 869–872 (1999).

    CAS  PubMed  Google Scholar 

  26. Heider, F. & Simmel, M. An experimental study of apparent behavior. Am. J. Psychol. 57, 243–259 (1944). A classic study showing that people make social attributions to moving geometric shapes.

    Google Scholar 

  27. Michotte, A. La Perception de la Causalite (Institut Superieur de Philosophie, Louvain, France, 1946).

    Google Scholar 

  28. Scholl, B. J. & Tremoulet, P. D. Perceptual causality and animacy. Trends Cogn. Sci. 4, 299–308 (2000).

    CAS  PubMed  Google Scholar 

  29. Dittrich, W. H. & Lea, S. E. G. Visual perception of intentional motion. Perception 23, 253–268 (1994).

    CAS  PubMed  Google Scholar 

  30. Johansson, G. Visual perception of biological motion and a model of its analysis. Percept. Psychophys. 14, 202–211 (1973). Classic study showing that we perceive people's bodies from point light displays.

    Google Scholar 

  31. Cutting, J. E. & Kozlowski, L. T. Recognizing friends by their walk: gait perception without familiarity cues. Bull. Psychon. Soc. 9, 353–356 (1977).

    Google Scholar 

  32. Kozlowski, L. T. & Cutting, J. E. Recognizing the sex of a walker from a dynamic point-light display. Percept. Psychophys. 21, 575–580 (1977).

    Google Scholar 

  33. Dittrich, W. H., Troscianko, T., Lea, S. E. & Morgan, D. Perception of emotion from point-light displays represented in dance. Perception 25, 727–738 (1996).

    CAS  PubMed  Google Scholar 

  34. Runeson, S. & Frykholm, G. Kinematic specification of dynamics as an informational basis for person-and-action perception: expectation, gender recognition, and deceptive intention. J. Exp. Psychol. Gen. 112, 585–615 (1983).

    Google Scholar 

  35. Grezes, J. et al. Does perception of biological motion rely on specific brain regions? Neuroimage 13, 775–785 (2001).

    CAS  PubMed  Google Scholar 

  36. Bonda, E., Petrides, M., Ostry, D. & Evans, A. Specific involvement of human parietal systems and the amygdala in the perception of biological motion. J. Neurosci. 16, 3737–3744 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Grossman, E. & Blake, R. Brain areas active during visual perception of biological stimuli. Neuron 35, 1167–1175 (2002).

    CAS  PubMed  Google Scholar 

  38. Castelli, F., Happe, F., Frith, U. & Frith, C. Movement and mind: a functional imaging study of perceptions and interpretation of complex intentional movement patterns. Neuroimage 12, 314–325 (2000).

    CAS  PubMed  Google Scholar 

  39. Blakemore, S. -J. et al. How the brain perceives causality: an event-related fMRI study. Neuroreport 12, 3741–3746 (2001).

    CAS  PubMed  Google Scholar 

  40. Adolphs, R., Tranel, D., Damasio, H. & Damasio, A. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372, 669–672 (1994). The first study showing impaired recognition of fear from facial expressions in a patient with bilateral amygdala damage.

    Article  CAS  PubMed  Google Scholar 

  41. Calder, A. J. et al. Facial emotion recognition after bilateral amygdala damage: differentially severe impairment of fear. Cogn. Neuropsychol. 13, 699–745 (1996).

    Google Scholar 

  42. Morris, J. S. et al. A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383, 812–815 (1996). The first functional imaging study showing amygdala activation to facial expressions of fear.

    CAS  PubMed  Google Scholar 

  43. Hamann, S. B., Ely, T. D., Hoffman, J. M. & Kilts, C. D. Ecstasy and agony: activation of the human amygdala in positive and negative emotion. Psycholog. Sci. 13, 135–141 (2002).

    Google Scholar 

  44. Yang, T. T. et al. Amygdalar activation associated with positive and negative facial expressions. Neuroreport 13, 1737–1741 (2002).

    PubMed  Google Scholar 

  45. Anderson, A. K. & Phelps, E. A. Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411, 305–309 (2001). Shows that the ability of emotional stimuli to override the attentional blink depends on the amygdala.

    CAS  PubMed  Google Scholar 

  46. Ochsner, K., Bunge, S. A., Gross, J. J. & Gabrieli, J. D. E. Rethinking feelings: an fMRI study of the cognitive regulation of emotion. J. Cogn. Neurosci. 14, 1215–1229 (2002). Shows modulation of amygdala activation during reappraisal.

    PubMed  Google Scholar 

  47. Schaefer, S. M. et al. Modulation of amygdalar activity by the conscious regulation of negative emotion. J. Cogn. Neurosci. 14, 913–921 (2002). Shows modulation of amygdala activation during self-regulation.

    PubMed  Google Scholar 

  48. Oya, H., Kawasaki, H., Howard, M. A. & Adolphs, R. Electrophysiological responses in the human amygdala discriminate emotion categories of complex visual stimuli. J. Neurosci. 22, 9502–9512 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Morris, J. S., Oehman, A. & Dolan, R. J. Conscious and unconscious emotional learning in the human amygdala. Nature 393, 467–470 (1998).

    CAS  PubMed  Google Scholar 

  50. Whalen, P. J. et al. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J. Neurosci. 18, 411–418 (1998). Shows that subliminal facial expressions of fear activate the amygdala.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Morris, J. S., deGelder, B., Weiskrantz, L. & Dolan, R. J. Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain 124, 1241–1252 (2001).

    CAS  PubMed  Google Scholar 

  52. Vuilleumier, P. et al. Neural responses to emotional faces with and without awareness: event-related fMRI in a parietal patient with visual extinction and spatial neglect. Neuropsychologia 40, 2156–2166 (2002).

    CAS  PubMed  Google Scholar 

  53. Pessoa, L., McKenna, M., Gutierrez, E. & Ungerleider, L. G. Neural processing of emotional faces requires attention. Proc. Natl Acad. Sci. USA 99, 11458–11463 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hart, A. J. et al. Differential response in the human amygdala to racial outgroup vs ingroup face stimuli. Neuroreport 11, 2351–2355 (2000).

    CAS  PubMed  Google Scholar 

  55. Phelps, E. A. et al. Performance on indirect measures of race evaluation predicts amygdala activation. J. Cogn. Neurosci. 12, 729–738 (2000).

    CAS  PubMed  Google Scholar 

  56. Golby, A. J., Gabrieli, J. D. E., Chiao, J. Y. & Eberhardt, J. L. Differential responses in the fusiform region to same-race and other-race faces. Nature Neurosci. 4, 845–850 (2001).

    CAS  PubMed  Google Scholar 

  57. Phelps, E. A., Cannistraci, C. J. & Cunningham, W. A. Intact performance on an indirect measure of race bias following amygdala damage. Neuropsychologia 41, 203–209 (2003).

    PubMed  Google Scholar 

  58. Adolphs, R., Tranel, D. & Damasio, A. R. The human amygdala in social judgment. Nature 393, 470–474 (1998). Shows that bilateral amygdala damage impairs the ability to judge trustworthiness in faces.

    CAS  PubMed  Google Scholar 

  59. Winston, J. S., Strange, B. A., O'Doherty, J. & Dolan, R. J. Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nature Neurosci. 5, 277–283 (2002). Shows that viewing untrustworthy faces activates the amygdala in normal people, and that this is partly independent of other factors such as emotional expression, gender or direction of gaze.

    CAS  PubMed  Google Scholar 

  60. Canli, T., Sivers, H., Whitfield, S. L., Gotlib, I. H. & Gabrieli, J. D. E. Amygdala resposes to happy faces as a function of extraversion. Science 296, 2191 (2002).

    CAS  PubMed  Google Scholar 

  61. Hariri, A. R. et al. Serotonin transporter genetic variation and the response of the human amygdala. Science 297, 400–403 (2002).

    CAS  PubMed  Google Scholar 

  62. Penton-Voak, I. S. et al. Menstrual cycle alters face preference. Nature 399, 741–742 (1999).

    CAS  PubMed  Google Scholar 

  63. Macrae, C. N., Alnwick, K. A., Milne, A. B. & Schloerscheidt, A. M. Person perception across the menstrual cycle: hormonal influences on social-cognitive functioning. Psychol. Sci. 13, 532–537 (2002).

    PubMed  Google Scholar 

  64. Aharon, I. et al. Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron 32, 537–551 (2001). Shows a dissociation between the aesthetic and motivational aspects of stimuli, and that ventral striatal activation correlates only with the latter.

    CAS  PubMed  Google Scholar 

  65. Kampe, K. K. W., Frith, C. D., Dolan, R. J. & Frith, U. Reward value of attractiveness and gaze. Nature 413, 589 (2001).

    CAS  PubMed  Google Scholar 

  66. O'Doherty, J. et al. Beauty in a smile: the role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia 41, 147–155 (2003).

    CAS  PubMed  Google Scholar 

  67. Erk, S., Spitzer, M., Wunderlich, A. P., Galley, L. & Walter, H. Cultural objects modulate reward circuitry. Neuroreport 13, 2499–2503 (2002).

    PubMed  Google Scholar 

  68. Premack, D. & Woodruff, G. Does the chimpanzee have a theory of mind? Behav. Brain Sci. 1, 515–526 (1978).

    Google Scholar 

  69. Siegal, M. & Varley, R. Neural systems involved in 'theory of mind'. Nature Rev. Neurosci. 3, 463–471 (2002).

    CAS  Google Scholar 

  70. Blakemore, S. -J. & Decety, J. From the perception of action to the understanding of intention. Nature Rev. Neurosci. 2, 561–568 (2001).

    CAS  Google Scholar 

  71. Gallagher, H. L. et al. Reading the mind in cartoons and stories: an fMRI study of 'theory of mind' in verbal and nonverbal tasks. Neuropsychologia 38, 11–21 (2000).

    CAS  PubMed  Google Scholar 

  72. Brunet, E., Sarfati, Y., Hardy-Bayle, M. C. & Decety, J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage 11, 157–166 (2000).

    CAS  PubMed  Google Scholar 

  73. Calder, A. J. et al. Reading the mind from eye gaze. Neuropsychologia 40, 1129–1138 (2002).

    PubMed  Google Scholar 

  74. Fine, C., Lumsden, J. & Blair, R. J. R. Dissociation between 'theory of mind' and executive functions in a patient with early left amygdala damage. Brain 124, 287–298 (2001).

    CAS  PubMed  Google Scholar 

  75. Stone, V. E., Baron-Cohen, S., Young, A. W., Calder, A. J. & Keane, J. Acquired theory of mind impairments in patients with bilateral amygdala lesions. Neuropsychologia 41, 209–220 (2003).

    PubMed  Google Scholar 

  76. Baron-Cohen, S. et al. Social intelligence in the normal and autistic brain: an fMRI study. Eur. J. Neurosci. 11, 1891–1898 (1999). Shows that normal people activate the amygdala when making social judgements from viewing people's eyes, and that people with autism fail both to activate the amygdala and to perform normally on this task.

    CAS  PubMed  Google Scholar 

  77. Adolphs, R., Tranel, D. & Baron-Cohen, S. Amygdala damage impairs recognition of social emotions from facial expressions. J. Cogn. Neurosci. 14, 1264–1274 (2002).

    PubMed  Google Scholar 

  78. Fletcher, P. C. et al. Other minds in the brain: a functional imaging study of 'theory of mind' in story comprehension. Cognition 57, 109–128 (1995).

    CAS  PubMed  Google Scholar 

  79. Goel, V., Grafman, J., Sadato, N. & Hallett, M. Modeling other minds. Neuroreport 6, 1741–1746 (1995).

    CAS  PubMed  Google Scholar 

  80. Stuss, D. T., Gallup, G. G. & Alexander, M. P. The frontal lobes are necessary for 'theory of mind'. Brain 124, 279–286 (2001).

    CAS  PubMed  Google Scholar 

  81. Rowe, A. D., Bullock, P. R., Polkey, C. E. & Morris, R. G. 'Theory of mind' impairments and their relationship to executive functioning following frontal lobe excisions. Brain 124, 600–616 (2001).

    CAS  PubMed  Google Scholar 

  82. Blair, R. J. R. & Cipolotti, L. Impaired social response reversal. A case of 'acquired sociopathy'. Brain 123, 1122–1141 (2000).

    PubMed  Google Scholar 

  83. Stone, V. E., Baron-Cohen, S. & Knight, R. T. Frontal lobe contributions to theory of mind. J. Cogn. Neurosci. 10, 640–656 (1998).

    CAS  PubMed  Google Scholar 

  84. Goel, V. & Dolan, R. J. The functional anatomy of humor: segregating cognitive and affective components. Nature Neurosci. 4, 237–238 (2001).

    CAS  PubMed  Google Scholar 

  85. Berthoz, S., Armony, J. L., Blair, R. J. R. & Dolan, R. J. An fMRI study of intentional and unintentional (embarrassing) violations of social norms. Brain 125, 1696–1708 (2002).

    CAS  PubMed  Google Scholar 

  86. Karama, S. et al. Areas of brain activation in males and females during viewing of erotic film excerpts. Hum. Brain Mapp. 16, 1–13 (2002).

    PubMed  PubMed Central  Google Scholar 

  87. Moll, J. et al. The neural correlates of moral sensitivity: a functional magnetic resonance imaging investigation of basic and moral emotions. J. Neurosci. 22, 2730–2736 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lane, R. D. et al. Neural correlates of levels of emotional awareness: evidence of an interaction between emotion and attention in the anterior cingulate cortex. J. Cogn. Neurosci. 10, 525–535 (1998).

    CAS  PubMed  Google Scholar 

  89. Berthoz, S. et al. Effect of impaired recognition and expression of emotions on frontocingulate cortices: an fMRI study of men with alexithymia. Am. J. Psychiatry 159, 961–967 (2002).

    PubMed  Google Scholar 

  90. Yamasaki, H., LaBar, K. S. & McCarthy, G. Dissociable prefrontal brain systems for attention and emotion. Proc. Natl Acad. Sci. USA 99, 11447–11451 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gray, J. R., Braver, T. S. & Raichle, M. E. Integration of emotion and cognition in the lateral prefrontal cortex. Proc. Natl Acad. Sci. USA 99, 4115–4120 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Davidson, R. J. Anxiety and affective style: role of prefrontal cortex and amygdala. Biol. Psychiatry 51, 68–80 (2002).

    PubMed  Google Scholar 

  93. Davidson, R. J., Putnam, K. M. & Larson, C. L. Dysfunction in the neural circuitry of emotion regulation — a possible prelude to violence. Science 289, 591–594 (2000).

    CAS  PubMed  Google Scholar 

  94. Schore, A. N. Affect Regulation and the Origin of the Self: the Neurobiology of Emotional Development (Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1994).

    Google Scholar 

  95. Damasio, A. R. Descartes' Error: Emotion, Reason, and the Human Brain (Grosset/Putnam, New York, 1994). Theory and evidence that the orbitofrontal cortex implements the triggering of somatic markers that guide decision making.

    Google Scholar 

  96. Greene, J. D. & Haidt, J. How (and where) does moral judgment work? Trends Cogn. Sci. 6, 517–523 (2002).

    PubMed  Google Scholar 

  97. Kelley, W. M. et al. Finding the self? An event-related fMRI study. J. Cogn. Neurosci. 14, 785–794 (2002).

    CAS  PubMed  Google Scholar 

  98. Heberlein, A. S. Neural Substrates for Social Cognition from Motion Cues: Lesion Studies in Humans. Ph.D. Thesis, University of Iowa (2002).

    Google Scholar 

  99. Rizzolatti, G., Fogassi, L. & Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Rev. Neurosci. 2, 661–670 (2001).

    CAS  Google Scholar 

  100. Hari, R. et al. Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc. Natl Acad. Sci. USA 95, 15061–15065 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Iacoboni, M. et al. Cortical mechanisms of human imitation. Science 286, 2526–2528 (1999).

    CAS  PubMed  Google Scholar 

  102. Buccino, G. et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur. J. Neurosci. 13, 400–404 (2001).

    CAS  PubMed  Google Scholar 

  103. Hutchison, W. D., Davis, K. D., Lozano, A. M., Tasker, R. R. & Dostrovsky, J. O. Pain-related neurons in the human cingulate cortex. Nature Neurosci. 2, 403–405 (1999).

    CAS  PubMed  Google Scholar 

  104. Gallese, V. & Goldman, A. Mirror neurons and the simulation theory of mind-reading. Trends Cogn. Sci. 2, 493–500 (1999).

    Google Scholar 

  105. Adolphs, R., Damasio, H., Tranel, D., Cooper, G. & Damasio, A. R. A role for somatosensory cortices in the visual recognition of emotions as revealed by three-dimensional lesion mapping. J. Neurosci. 20, 2683–2690 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ruby, P. & Decety, J. Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nature Neurosci. 4, 546–550 (2001).

    CAS  PubMed  Google Scholar 

  107. Stone, V. E., Cosmides, L., Tooby, J., Kroll, N. & Knight, R. T. Selective impairment of reasoning about social exchance in a patient with bilateral limbic system damage. Proc. Natl Acad. Sci. USA 99, 11531–11536 (2002). A patient with orbitofrontal cortex damage was impaired in reasoning about social exchange, specifically detecting cheating, on the Wason selection task.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Adolphs, R., Bechara, A., Tranel, D., Damasio, H. & Damasio, A. in Neurobiology of Decision Making (eds Christen, Y., Damasio, A. & Damasio, H.) 158–179 (Springer, New York, 1995).

    Google Scholar 

  109. Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M. & Damasio, A. R. The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science 264, 1102–1104 (1994). A revisit to this classic case, demonstrating that damage to his medial prefrontal cortex resulted in his impaired decision making in real life.

    CAS  PubMed  Google Scholar 

  110. Bechara, A., Tranel, D., Damasio, H. & Damasio, A. R. Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex. Cereb. Cortex 6, 215–225 (1996).

    CAS  PubMed  Google Scholar 

  111. Bechara, A., Damasio, H., Tranel, D. & Damasio, A. Deciding advantageously before knowing the advantageous strategy. Science 275, 1293–1295 (1997). Shows that we have non-conscious emotional hunches that guide our decision making, which depend on the integrity of orbitofrontal cortex.

    CAS  PubMed  Google Scholar 

  112. Gehring, W. J. & Willoughby, A. R. The medial frontal cortex and the rapid processing of monetary gains and losses. Science 295, 2279–2281 (2002).

    CAS  PubMed  Google Scholar 

  113. O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J. & Andrews, C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neurosci. 4, 95–102 (2001).

    CAS  PubMed  Google Scholar 

  114. Kahn, I. et al. The role of the amygdala in signaling prospective outcome of choice. Neuron 33, 983–994 (2002).

    CAS  PubMed  Google Scholar 

  115. Saver, J. L. & Damasio, A. R. Preserved access and processing of social knowledge in a patient with acquired sociopathy due to ventromedial frontal damage. Neuropsychologia 29, 1241–1249 (1991).

    CAS  PubMed  Google Scholar 

  116. Anderson, S. W., Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature Neurosci. 2, 1032–1037 (1999). Developmental frontal lobe damage results in impairments similar to those seen in psychopaths, notably an inability to know right from wrong in moral action.

    CAS  PubMed  Google Scholar 

  117. Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M. & Cohen, J. D. An fMRI investigation of emotional engagement in moral judgment. Science 293, 2105–2107 (2001).

    CAS  PubMed  Google Scholar 

  118. Rilling, J. K. et al. A neural basis for social cooperation. Neuron 35, 395–405 (2002).

    CAS  PubMed  Google Scholar 

  119. Mitchell, J. P., Heatherton, T. F. & Macrae, C. N. Distinct neural systems subserve person and object knowledge. Proc. Natl Acad. Sci. USA 99, 15238–15243 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Price, C. J. & Friston, K. J. Degeneracy and cognitive anatomy. Trends Cogn. Sci. 6, 416–420 (2002).

    PubMed  Google Scholar 

  121. Bowlby, J. Attachment and Loss (Basic Books, New York, 1972).

    Google Scholar 

  122. Harlow, H. F. & Harlow, M. K. Social deprivation in monkeys. Sci. Am. 207, 136–146 (1962).

    CAS  PubMed  Google Scholar 

  123. Schore, A. N. Affect Dysregulation and Disorders of the Self (Norton, New York, 2003).

    Google Scholar 

  124. Leslie, A. Pretense and representation: the origins of 'theory of mind'. Psychol. Rev. 94, 412–426 (1987).

    Google Scholar 

  125. Baron-Cohen, S. Mindblindness: an Essay on Autism and Theory of Mind (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  126. Frith, U. Mind blindness and the brain in autism. Neuron 32, 969–979 (2001).

    CAS  PubMed  Google Scholar 

  127. St. George, M. & Bellugi, U. (eds) Linking cognitive neuroscience and molecular genetics: new perspectives from Williams syndrome. J. Cogn. Neurosci. 12, Suppl. S1–S6 (2000).

    Google Scholar 

  128. Chung, W. C. J., De Vries, G. J. & Swaab, D. F. Sexual differentiation of the bed nucleus of the stria terminalis in humans may extend into adulthood. J. Neurosci. 22, 1027–1033 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Giedd, J. N. et al. Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4–18 years. J. Comp. Neurol. 366, 223–230 (1996).

    CAS  PubMed  Google Scholar 

  130. Abbott, A. Into the mind of a killer. Nature 410, 296–298 (2001).

    CAS  PubMed  Google Scholar 

  131. Caspi, A. et al. Role of genotype in the cycle of violence in maltreated children. Science 297, 851–854 (2002).

    CAS  PubMed  Google Scholar 

  132. Raine, A., Lencz, T., Bihrle, S., LaCasse, L. & Colletti, P. Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch. Gen. Psychiatry 57, 119–127 (2000).

    CAS  PubMed  Google Scholar 

  133. Kiehl, K. A. et al. Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biol. Psychiatry 50, 677–684 (2001).

    CAS  PubMed  Google Scholar 

  134. Mitchell, D., Colledge, E., Leonard, A. & Blair, R. Risky decisions and response reversal: is there evidence of orbitofrontal dysfunction in psychopathic individuals? Neuropsychologia 40, 2013–2022 (2002).

    CAS  PubMed  Google Scholar 

  135. Baumeister, R. F. & Leary, M. R. The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychol. Bull. 117, 497–529 (1995).

    CAS  PubMed  Google Scholar 

  136. Birbaumer, N. et al. fMRI reveals amygdala activation to human faces in social phobics. Neuroreport 9, 1223–1226 (1998).

    CAS  PubMed  Google Scholar 

  137. Stein, M. B., Goldin, P. R., Sareen, J., Zorilla, L. T. & Brown, G. G. Increased amygdala activation to angry and contemptuous faces in generalized social phobia. Arch. Gen. Psychiatry 59, 1027–1034 (2002).

    PubMed  Google Scholar 

  138. Tillfors, M. et al. Cerebral blood flow in subjects with social phobia during stressful speaking tasks: a PET study. Am. J. Psychiatry 158, 1220–1226 (2001).

    CAS  PubMed  Google Scholar 

  139. Veit, R. et al. Brain circuits involved in emotional learning in antisocial behavior and social phobia in humans. Neurosci. Lett. 328, 233–236 (2002).

    CAS  PubMed  Google Scholar 

  140. Skuse, D. H. et al. Evidence from Turner's syndrome of an imprinted X-linked locus affecting cognitive function. Nature 387, 705–708 (1997).

    CAS  PubMed  Google Scholar 

  141. Tarr, M. J. & Warren, W. H. Virtual reality in behavioral neuroscience and beyond. Nature Neurosci. 5, 1089–1093 (2002).

    CAS  PubMed  Google Scholar 

  142. Montague, P. R. et al. Hyperscanning: simultaneous fMRI during linked social interactions. Neuroimage 16, 1159–1164 (2002).

    PubMed  Google Scholar 

  143. Lechner, H. A., Lein, E. S. & Callaway, E. M. A genetic method for selective and quickly reversible silencing of mammalian neurons. J. Neurosci. 22, 5287–5290 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Adolphs, R. Investigating the cognitive neuroscience of social behavior. Neuropsychologia 41, 119–126 (2003).

    PubMed  Google Scholar 

  145. Moll, J., de Oliveira-Souza, R., Bramati, I. E. & Grafman, J. Functional networks in emotional moral and nonmoral social judgments. Neuroimage 16, 696–703 (2002).

    PubMed  Google Scholar 

  146. Amaral, D. G. et al. The amygdala: is it an essential component of the neural network for social cognition? Neuropsychologia 41, 235–240 (2003).

    PubMed  Google Scholar 

  147. Rolls, E. T. The Brain and Emotion (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  148. Panskepp, J. Affective Neuroscience. (Oxford Univ. Press, New York, 1998).

  149. Dunbar, R. The Social Brain Hypothesis. Evol. Anthropol. 6, 178–190 (1998).

    Google Scholar 

  150. Whiten, A. & Byrne, R. W. (eds) Machiavellian Intelligence II: Extensions and Evaluations (Cambridge Univ., Cambridge, UK, 1997).

    Google Scholar 

  151. Brothers, L. The social brain: a project for integrating primate behavior and neurophysiology in a new domain. Concepts Neurosci. 1, 27–51 (1990).

    Google Scholar 

  152. Olausson, H. et al. Unmyelinated tactile afferents signal touch and project to insular cortex. Nature Neurosci. 5, 900–904 (2002).

    CAS  PubMed  Google Scholar 

  153. Zald, D. H. & Pardo, J. V. Emotion, olfaction, and the human amygdala: amygdala activation during aversive olfactory stimulation. Proc. Natl Acad. Sci. USA 94, 4119–4124 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Royet, J. -P. et al. Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: a positron emission tomography study. J. Neurosci. 20, 7752–7759 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Savic, I., Berglund, H., Gulyas, B. & Roland, P. Smelling of odorous sex hormone-like compounds causes sex differentiated hypothalamic activation in humans. Neuron 31, 661–668 (2001).

    CAS  PubMed  Google Scholar 

  156. Adolphs, R., Tranel, D. & Damasio, H. Neural systems for recognizing emotion from prosody. Emotion 2, 23–51 (2002).

    PubMed  Google Scholar 

  157. Blood, A. J. & Zatorre, R. J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl Acad. Sci. USA 98, 11818–11823 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am greatly indebted to critiques by T. Heatherton, E. Phelps, A. Atkinson and A. Heberlein. To the best of my knowledge, T. Heatherton coined the term 'social brain sciences' that I have used in this article. Supported by grants from the NIH, the Klingenstein Fund and the James S. McDonnell Foundation.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Encyclopedia of Life Sciences

autism

Williams syndrome

MIT Encyclopedia of Cognitive Sciences

decision making

emotions

sexual attraction, evolutionary psychology of

social cognition

social cognition in animals

theory of mind

Ralph Adolphs' laboratory

Glossary

COGNITIVELY IMPENETRABLE

Processes that are not influenced strategically by cognition. They cannot be influenced at will, and their engagement is beyond our control.

SELF-REGULATION

The ability to control one's behaviour effortfully and often in opposition to emotional drive (for example, controlling an anger outburst). Most prominent in adult humans, self-regulation depends on regions in the prefrontal cortex.

MORAL EMOTIONS

Guilt, shame, embarrassment, jealousy, pride and other states that depend on a social context. They arise later in development and evolution than the basic emotions (happiness, fear, anger, disgust, sadness) and require an extended representation of oneself as situated within a society. They function to regulate social behaviours, often in the long-term interests of a social group rather than the short-term interests of the individual person.

MODULES

Functional and/or anatomical components that are relatively specialized to process only certain kinds of information. Modules were originally thought of as cognitively impenetrable and informationally encapsulated (having restricted access to only certain information). Although most people do not view modules in such strict terms, there is evidence of domain-specific processing that is specialized for specific ecological categories (such as faces and social contract violations), although there is debate on this issue.

EVENT-RELATED POTENTIALS

(ERPs). Electrical potentials that are generated in the brain as a consequence of the synchronized activation of neuronal networks by external stimuli. These evoked potentials are recorded at the scalp and consist of precisely timed sequences of waves or 'components'.

MAGNETOENCEPHALOGRAPHY

(MEG). A non-invasive technique that allows the detection of the changing magnetic fields that are associated with brain activity, similar to the detection of changing electric fields measured by ERPs.

CATEGORIZATION

Stimulus categories function to group together stimuli to which a similar behavioural response should be mounted. Coarse, generic categorization (for example, a dog as an animal) is superordinate; subordinate categorization includes basic-level (a dog as a dog) and unique categories (a dog as your own pet).

ANIMACY

The subjective impression that a stimulus is alive.

AGENCY

The subjective impression of a willful, goal-directed action.

POINT-LIGHT DISPLAYS

Visual motion stimuli created by attaching small lights to an actor's body joints and filming the person moving in an otherwise dark room. Although they seem random when static, the biological motion of the lights immediately generates the compelling perception of a person moving about the room.

BLINDSIGHT

The ability of a person with a lesion in the primary visual cortex to reach towards or guess at the orientation of objects projected on the part of the visual field that corresponds to this lesion, even though they report that they can see nothing in that part of their visual field.

NEGLECT

A neurological syndrome (often involving damage to the right parietal cortex) in which patients show a marked difficulty in detecting or responding to information in the contralesional field.

REAPPRAISAL

Reinterpretation of a situation to assign it a different value. Whereas reappraisal changes emotional response by changing one's perception of the stimulus, other strategies of self-regulation directly modulate emotional response despite one's original perception.

POLYMORPHISM

The simultaneous existence in the same population of two or more genotypes in frequencies that cannot be explained by recurrent mutations.

NEOTENY

The retention of juvenile characteristics in the adults of a species.

ALEXITHYMIA

Cognitive disturbance that is characterized by the difficulty in describing one's own emotions.

WASON SELECTION TASK

The most popular experimental design for probing deductive reasoning. It consists of a conditional statement, the truth of which the subject must decide. Typically, conditionals about social rules, threats and promises all show a facilitation in the proportion of logically correct choices, and it has been argued that humans evolved a specialized skill to detect deception in the context of social contracts (for example, cheating).

SOMATIC MARKERS

Emotional states that are triggered during the consideration of potential future outcomes of choices.

WILLIAMS SYNDROME

A genetic condition caused by a deletion on chromosome 7 that is characterized by an unusually social personality, limited spatial skills and motor control, and mental retardation. Patients with the disease also have heart problems, hypercalcaemia, kidney abnormalities, sensitive hearing and musculoskeletal problems.

TURNER SYNDROME

A genetic disease in which females carry only one healthy X chromosome. It is characterized by an inhibition of sexual development and is accompanied by infertility. There is some evidence from patients with Turner syndrome for the existence of an imprinted X-linked locus that affects social cognition.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adolphs, R. Cognitive neuroscience of human social behaviour. Nat Rev Neurosci 4, 165–178 (2003). https://doi.org/10.1038/nrn1056

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1056

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing