Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular detection of pheromone signals in mammals: from genes to behaviour

Key Points

  • Pheromones are species- and gender-specific chemical cues that provide information about the social and sexual status of an animal. Pheromones are used by most species, from single-cell organisms to mammals, although their use in humans and other higher primates is disputed.

  • In mammals, pheromones are detected by the vomeronasal organ (VNO) — a bilaterally symmetrical, cylindrical organ encased in a bony capsule on the anterior nasal septum. VNO neurons send a single unbranched axon to the accessory olfactory bulb (AOB), which in turn sends projections to the vomeronasal amygdala.

  • Compounds with pheromonal activity have been purified from urine and anogenital gland secretions. Urine contains high levels of major urinary proteins, which seem to deliver small volatile molecules to chemosensory receptor neurons. Analysis of hamster vaginal secretions led to the identification of the protein aphrodisin, which elicits copulatory behaviours in male hamsters.

  • In the mouse and rat, two large families of pheromone receptors — the V1Rs and the V2Rs — have been characterized. These receptor families are expressed in molecularly distinct and topographically segregated regions of the VNO neuroepithelium.

  • It was recently shown that there is a functional association between the V2Rs, the M10 and M1 families of non-classical major histocompatibility complex molecules and β2-microglobulin (β2m). M10 and β2m form a complex with V2R that is localized to the dendritic tips of VNO neurons at the site of pheromone detection, and they are thought to be involved in pheromone-receptor trafficking.

  • The cation channel Trp2 is highly expressed in VNO neurons, and it seems to be involved in the transduction of pheromone signals. G-protein activation by vomeronasal G-protein-coupled receptors triggers a phospholipase C-dependent cascade, which in turn activates Trp2.

  • Electrophysiological recordings showed that subsets of VNO neurons are activated selectively by either male or female urine, whereas the response of others was independent of the sex of the donor animal, and might instead provide information about other characteristics of the donor.

  • Neurons that express a given vomeronasal receptor project to multiple glomeruli that occupy spatially conserved regions within the AOB. In the main olfactory system, glomeruli are composed of fibres from neurons that express the same receptor, but glomeruli in the AOB seem to receive inputs from several receptor types. The divergent pattern of glomerular position in the AOB could be rendered convergent at the level of mitral cells, which might transmit information from a single receptor type to higher brain centres.

  • Genetic ablation of Trp2 markedly impairs the sensory activation of VNO neurons by urine pheromones, and in addition, Trp2−/− male mice seem to be unable to recognize the sexual identity of their conspecifics. These data contradict the established idea that VNO activity is required for the initiation of male–female mating behaviour, and instead they imply a crucial role in ensuring sex discrimination.

Abstract

The instinctive and species-specific behavioural response of animals to pheromones has intrigued biologists for a long time. Recent molecular and electrophysiological approaches have provided new insights into the mechanisms of pheromone detection in rodents and into the sensory coding of pheromone signals that lead to gender discrimination and aggressive behaviour.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional and anatomical segregation of the two mammalian olfactory systems.
Figure 2
Figure 3: Cellular logic of sensory processing in the main and accessory olfactory systems.
Figure 4: Genomic organization, expression and functional role of non-classical major histocompatibility complex (MHC) class I molecules in the vomeronasal organ (VNO).
Figure 5: A model of sensory transduction in vomeronasal neurons.
Figure 6: Responses of vomeronasal neurons to complex mixtures and single pheromones.
Figure 7: Role of the mouse vomeronasal organ (VNO) in gender discrimination.

Similar content being viewed by others

References

  1. Bassler, B. L. Small talk. Cell-to-cell communication in bacteria. Cell 109, 421–424 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Elion, E. A. Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 3, 573–581 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Dohlman, H. G. G proteins and pheromone signaling. Annu. Rev. Physiol. 64, 129–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Wilson, E. O. Pheromones. Sci. Am. 208 100–114 (1963).

    Article  Google Scholar 

  5. Hölldobler, B. & Wilson, E. O. The Ants (Belknap Press of Harvard Univ. Press, Cambridge, Massachusetts, 1990).

    Book  Google Scholar 

  6. Regnier, F. E. & Wilson, E. O. Chemical communication and 'propaganda' in slave-maker ants. Science 172, 267–269 (1971).

    Article  CAS  PubMed  Google Scholar 

  7. Poling, K. R., Fraser, E. J. & Sorensen, P. W. The three steroidal components of the goldfish preovulatory pheromone signal evoke different behaviors in males. Comp. Biochem. Physiol. Biochem. Mol. Biol. 129, 645–651 (2001).

    Article  CAS  Google Scholar 

  8. Sorensen, P. W., Hara, T. J., Stacey, N. E. & Goetz, F. W. F prostaglandins function as potent olfactory stimulants that comprise the postovulatory female sex pheromone in goldfish. Biol. Reprod. 39, 1039–1050 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Sorensen, P. W., Christensen, T. A. & Stacey, N. E. Discrimination of pheromonal cues in fish: emerging parallels with insects. Curr. Opin. Neurobiol. 8, 458–467 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Broman, I. Die Organon vomero-nasale Jacobsoni-ein Wassergeruchsorgan! Anat. Hefte 58, 143–191 (1920).

    Article  Google Scholar 

  11. Eisthen, H. L. Evolution of vertebrate olfactory systems. Brain Behav. Evol. 50, 222–233 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Liman, E. R. & Innan, H. Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proc. Natl Acad. Sci. USA 100, 3328–3332 (2003). This detailed sequence analysis of the Trp2 gene across the evolutionary tree of primates provides a strong molecular argument for a progressive loss of the requirement for VNO function in Old World monkeys.

    Article  CAS  PubMed  Google Scholar 

  13. Kouros-Mehr, H. et al. Identification of non-functional human VNO receptor genes provides evidence for vestigiality of the human VNO. Chem. Senses 26, 1167–1174 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Halpern, M. The organization and function of the vomeronasal system. Annu. Rev. Neurosci. 10, 325–362 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Keverne, E. B. & de la Riva, C. Pheromones in mice: reciprocal interaction between the nose and brain. Nature 296, 148–150 (1982).

    Article  CAS  PubMed  Google Scholar 

  16. Fernandez-Fewell, G. D. & Meredith, M. Facilitation of mating behavior in male hamsters by LHRH and AcLHRH5–10: interaction with the vomeronasal system. Physiol. Behav. 57, 213–221 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Mackay-Sim, A. & Rose, J. D. Removal of the vomeronasal organ impairs lordosis in female hamsters: effect is reversed by luteinising hormone-releasing hormone. Neuroendocrinology 42, 489–493 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Licht, G. & Meredith, M. Convergence of main and accessory olfactory pathways onto single neurons in the hamster amygdala. Exp. Brain Res. 69, 7–18 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Meredith, M. Vomeronasal, olfactory, hormonal convergence in the brain. Cooperation or coincidence? Ann. NY Acad. Sci. 855, 349–361 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Vandenbergh, J. G., Whitsett, J. M. & Lombardi, J. R. Partial isolation of a pheromone accelerating puberty in female mice. J. Reprod. Fertil. 43, 515–523 (1975).

    Article  CAS  PubMed  Google Scholar 

  21. Singer, A. G., Macrides, F., Clancy, A. N. & Agosta, W. C. Purification and analysis of a proteinaceous aphrodisiac pheromone from hamster vaginal discharge. J. Biol. Chem. 261, 13323–13326 (1986).

    CAS  PubMed  Google Scholar 

  22. Cavaggioni, A. & Mucignat-Caretta, C. Major urinary proteins, α2U-globulins and aphrodisin. Biochim. Biophys. Acta 1482, 218–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Bocskei, Z. et al. Crystallization of and preliminary X-ray data for the mouse major urinary protein and rat α-2u globulin. J. Mol. Biol. 218, 699–701 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Bocskei, Z. et al. Pheromone binding to two rodent urinary proteins revealed by X-ray crystallography. Nature 360, 186–188 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Bacchini, A., Gaetani, E. & Cavaggioni, A. Pheromone binding proteins of the mouse, Mus musculus. Experientia 48, 419–421 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Novotny, M. V., Ma, W., Wiesler, D. & Zidek, L. Positive identification of the puberty-accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein. Proc. R. Soc. Lond. B. 266, 2017–2022 (1999).

    Article  CAS  Google Scholar 

  27. Ma, W., Miao, Z. & Novotny, M. V. Induction of estrus in grouped female mice (Mus domesticus) by synthetic analogues of preputial gland constituents. Chem. Senses 24, 289–293 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Clissold, P. M. & Bishop, J. O. Variation in mouse major urinary protein (MUP) genes and the MUP gene products within and between inbred lines. Gene 18, 211–220 (1982).

    Article  CAS  PubMed  Google Scholar 

  29. Robertson, D. H., Cox, K. A., Gaskell, S. J., Evershed, R. P. & Beynon, R. J. Molecular heterogeneity in the Major Urinary Proteins of the house mouse Mus musculus. Biochem. J. 316, 265–272 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robertson, D. H., Hurst, J. L., Bolgar, M. S., Gaskell, S. J. & Beynon, R. J. Molecular heterogeneity of urinary proteins in wild house mouse populations. Rapid Commun. Mass Spectrom. 11, 786–790 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Beynon, R. J. et al. Polymorphism in major urinary proteins: molecular heterogeneity in a wild mouse population. J. Chem. Ecol. 28, 1429–1446 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Darwish Marie, A. et al. Effect of polymorphisms on ligand binding by mouse major urinary proteins. Protein Sci. 10, 411–417 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kelly, D. R. When is a butterfly like an elephant? Chem. Biol. 3, 595–602 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Leinders-Zufall, T. et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405, 792–796 (2000). This study, using optical imaging of VNO slices, demonstrates the remarkable sensitivity and specificity of the response of VNO neurons to purified pheromones and indicates that the characteristics of the VNO sensory response are different to those of the MOE.

    Article  CAS  PubMed  Google Scholar 

  35. Sam, M. et al. Neuropharmacology. Odorants may arouse instinctive behaviours. Nature 412, 142 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Trinh, K. & Storm, D. R. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat. Neurosci. 6, 519–525 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Imamura, K., Mori, K., Fujita, S. C. & Obata, K. Immunochemical identification of subgroups of vomeronasal nerve fibers and their segregated terminations in the accessory olfactory bulb. Brain Res. 328, 362–366 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. Taniguchi, K., Nii, Y. & Ogawa, K. Subdivisions of the accessory olfactory bulb, as demonstrated by lectin-histochemistry in the golden hamster. Neurosci. Lett. 158, 185–188 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Shapiro, L. S., Ee, P. L. & Halpern, M. Lectin histochemical identification of carbohydrate moieties in opossum chemosensory systems during development, with special emphasis on VVA-identified subdivisions in the accessory olfactory bulb. J. Morphol. 224, 331–349 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Shinohara, H., Asano, T. & Kato, K. Differential localization of G-proteins Gi and Go in the accessory olfactory bulb of the rat. J. Neurosci. 12, 1275–1279 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Jia, C., Goldman, G. & Halpern, M. Development of vomeronasal receptor neuron subclasses and establishment of topographic projections to the accessory olfactory bulb. Brain Res. Dev. Brain Res. 102, 209–216 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Berghard, A. & Buck, L. B. Sensory transduction in vomeronasal neurons: evidence for Gαo, Gα12, and adenylyl cyclase II as major components of a pheromone signaling cascade. J. Neurosci. 16, 909–918 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Dulac, C. & Axel, R. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206 (1995). This article reports the initial discovery of the first set of pheromone receptors, the V1Rs. The cloning technology described here, the differential screening of single cell cDNA libraries, was widely used to identify the other pheromone receptor gene family.

    Article  CAS  PubMed  Google Scholar 

  44. Chandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100, 703–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Del Punta, K. et al. Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419, 70–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Boschat, C. et al. Pheromone detection mediated by a V1r vomeronasal receptor. Nature Neurosci. 5, 1261–1262 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Pantages, E. & Dulac, C. A novel family of candidate pheromone receptors in mammals. Neuron 28, 835–845 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Rodriguez, I., Del Punta, K., Rothman, A., Ishii, T. & Mombaerts, P. Multiple new and isolated families within the mouse superfamily of V1r vomeronasal receptors. Nature Neurosci. 5, 134–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, X. & Firestein, S. The olfactory receptor gene superfamily of the mouse. Nature Neurosci. 5, 124–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Herrada, G. & Dulac, C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90, 763–773 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Matsunami, H. & Buck, L. B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775–784 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Ryba, N. J. & Tirindelli, R. A new multigene family of putative pheromone receptors. Neuron 19, 371–379 (1997). References 50–52 report the molecular and cellular characterization of the V2R family of putative pheromone receptors in mammals.

    Article  CAS  PubMed  Google Scholar 

  53. Loconto, J. et al. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112, 607–618 (2003). This article describes the molecular and functional characterization of two families of non-classical MHC molecules — the M10s and M1s — in the VNO. The authors show that M10s serve as escort molecules for the V2R pheromone receptors, and that the V2R-population of VNO neurons might have an exclusive role in triggering pheromone-induced aggression.

    Article  CAS  PubMed  Google Scholar 

  54. Maenaka, K. & Jones, E. Y. MHC superfamily structure and the immune system. Curr. Opin. Struct. Biol. 9, 745–753 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Shawar, S. M., Vyas, J. M., Rodgers, J. R. & Rich, R. R. Antigen presentation by major histocompatibility complex class I-B molecules. Annu. Rev. Immunol. 12, 839–880 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Ishii, T., Hirota, J. & Mombaerts, P. Combinatorial coexpression of neural and immune multigene families in mouse vomeronasal sensory neurons. Curr. Biol. 13, 394–400 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Bennett, M. J., Lebron, J. A. & Bjorkman, P. J. Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature 403, 46–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Baker, E. K., Colley, N. J. & Zuker, C. S. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. Embo. J. 13, 4886–4895 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Colley, N. J., Baker, E. K., Stamnes, M. A. & Zuker, C. S. The cyclophilin homolog ninaA is required in the secretory pathway. Cell 67, 255–263 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Dwyer, N. D., Adler, C. E., Crump, J. G., L'Etoile, N. D. & Bargmann, C. I. Polarized dendritic transport and the AP-1 mu1 clathrin adaptor UNC-101 localize odorant receptors to olfactory cilia. Neuron 31, 277–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Dwyer, N. D., Troemel, E. R., Sengupta, P. & Bargmann, C. I. Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein. Cell 93, 455–466 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Nelson, G. et al. An amino-acid taste receptor. Nature 416, 199–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. McLatchie, L. M. et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339 (1998).

    Article  CAS  Google Scholar 

  65. Berghard, A., Buck, L. B. & Liman, E. R. Evidence for distinct signaling mechanisms in two mammalian olfactory sense organs. Proc. Natl Acad. Sci. USA 93, 2365–2369 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Liman, E. R., Corey, D. P. & Dulac, C. TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc. Natl Acad. Sci. USA 96, 5791–5796 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Holy, T. E., Dulac, C. & Meister, M. Responses of vomeronasal neurons to natural stimuli. Science 289, 1569–1572 (2000). The recording of action potentials from VNO neurons with a flat electrode array permitted a systematic analysis of the response of large populations of VNO neurons to pheromonal stimuli, indicating striking differences in mechanisms of odorant detection by MOE neurons.

    Article  CAS  PubMed  Google Scholar 

  68. Stowers, L., Holy, T. E., Meister, M., Dulac, C. & Koentges, G. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295, 1493–1500 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Leypold, B. G. et al. Altered sexual and social behaviors in trp2 mutant mice. Proc. Natl Acad. Sci. USA 99, 6376–6381 (2002). References 68 and 69 describe the analysis of mutant mouse lines that are deficient in the Trp2 channel. They demonstrate a requirement for Trp2 function in the pheromone-evoked response and point to an exclusive role for the VNO in controlling aggressive behaviour, territorial marking and gender discrimination.

    Article  CAS  PubMed  Google Scholar 

  70. Harteneck, C., Plant, T. D. & Schultz, G. From worm to man: three subfamilies of TRP channels. Trends Neurosci. 23, 159–166 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Spehr, M., Hatt, H. & Wetzel, C. H. Arachidonic acid plays a role in rat vomeronasal signal transduction. J. Neurosci. 22, 8429–8437 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Liman, E. R. Regulation by voltage and adenine nucleotides of a Ca2+-activated cation channel from hamster vomeronasal sensory neurons. J. Physiol. (Lond.) 548, 777–787 (2003).

    Article  CAS  Google Scholar 

  73. Belluscio, L., Koentges, G., Axel, R. & Dulac, C. A map of pheromone receptor activation in the mammalian brain. Cell 97, 209–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Rodriguez, I., Feinstein, P. & Mombaerts, P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97, 199–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Del Punta, K., Puche, A., Adams, N. C., Rodriguez, I. & Mombaerts, P. A divergent pattern of sensory axonal projections is rendered convergent by second-order neurons in the accessory olfactory bulb. Neuron 35, 1057–1066 (2002). References 73–75 present the genetic analysis of neuronal projections from neurons that express a given V1R or V2R pheromone receptor, showing that there is a complex map of pheromone receptor activation in the brain that differs from that in the MOS.

    Article  CAS  PubMed  Google Scholar 

  76. Luo, M., Fee, M. S. & Katz, L. C. Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science 299, 1196–1201 (2003). Recording of AOB mitral cells in the living mouse provided a unique description of the specificity of mitral cell activation in response to male and female conspecifics mice of various strains.

    Article  CAS  PubMed  Google Scholar 

  77. Vickers, N. J., Christensen, T. A. & Hildebrand, J. G. Combinatorial odor discrimination in the brain: attractive and antagonist odor blends are represented in distinct combinations of uniquely identifiable glomeruli. J. Comp. Neurol. 400, 35–56 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Wysocki, C. J. in Neural Control of Reproductive Function (eds Lakoski, J., Perez-Polo, J. & Rassin, D. K.) 545–566 (Alan R. Liss Inc., New York, 1989).

    Google Scholar 

  79. Meredith, M. Human vomeronasal organ function: a critical review of best and worst cases. Chem. Senses 26, 433–445 (2001). An exhaustive critical review of the literature on the question of a potentially functional human VNO.

    Article  CAS  PubMed  Google Scholar 

  80. McClintock, M. K. Menstrual synchrony and suppression. Nature 229, 244–245 (1971).

    Article  CAS  PubMed  Google Scholar 

  81. Stern, K. & McClintock, M. K. Regulation of ovulation by human pheromones. Nature 392, 177–179 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Jacob, S. & McClintock, M. K. Psychological state and mood effects of steroidal chemosignals in women and men. Horm. Behav. 37, 57–78 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Grosser, B. I., Monti-Bloch, L., Jennings-White, C. & Berliner, D. L. Behavioral and electrophysiological effects of androstadienone, a human pheromone. Psychoneuroendocrinology 25, 289–299 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Boehm, N. & Gasser, B. Sensory receptor-like cells in the human foetal vomeronasal organ. Neuroreport 4, 867–870 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Won, J., Mair, E. A., Bolger, W. E. & Conran, R. M. The vomeronasal organ: an objective anatomic analysis of its prevalence. Ear Nose Throat J. 79, 600–605 (2000).

    CAS  PubMed  Google Scholar 

  86. Trotier, D. et al. The vomeronasal cavity in adult humans. Chem. Senses 25, 369–380 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Zbar, R. I. et al. A classification schema for the vomeronasal organ in humans. Plast. Reconstr. Surg. 105, 1284–1288 (2000).

    CAS  PubMed  Google Scholar 

  88. Gaafar, H. A., Tantawy, A. A., Melis, A. A., Hennawy, D. M. & Shehata, H. M. The vomeronasal (Jacobson's) organ in adult humans: frequency of occurrence and enzymatic study. Acta Otolaryngol. 118, 409–412 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Moran, D. T., Jafek, B. W. & Rowley, J. C. 3rd. The vomeronasal (Jacobson's) organ in man: ultrastructure and frequency of occurrence. J. Steroid Biochem. Mol. Biol. 39, 545–552 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. Smith, T. D. et al. Searching for the vomeronasal organ of adult humans: preliminary findings on location, structure, and size. Microsc. Res. Tech. 41, 483–491 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Stensaas, L. J., Lavker, R. M., Monti-Bloch, L., Grosser, B. I. & Berliner, D. L. Ultrastructure of the human vomeronasal organ. . J. Steroid Biochem. Mol. Biol. 39, 553–560 (1991).

    Article  CAS  PubMed  Google Scholar 

  92. Meisami, E. & Bhatnagar, K. P. Structure and diversity in mammalian accessory olfactory bulb. Microsc. Res. Tech. 43, 476–499 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Monti-Bloch, L. & Grosser, B. I. Effect of putative pheromones on the electrical activity of the human vomeronasal organ and olfactory epithelium. J. Steroid Biochem. Mol. Biol. 39, 573–582 (1991).

    Article  CAS  PubMed  Google Scholar 

  94. Monti-Bloch, L., Jennings-White, C., Dolberg, D. S. & Berliner, D. L. The human vomeronasal system. Psychoneuroendocrinology 19, 673–686 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Berliner, D. L., Monti-Bloch, L., Jennings-White, C. & Diaz-Sanchez, V. The functionality of the human vomeronasal organ (VNO): evidence for steroid receptors. J. Steroid Biochem. Mol. Biol. 58, 259–265 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Monti-Bloch, L., Diaz-Sanchez, V., Jennings-White, C. & Berliner, D. L. Modulation of serum testosterone and autonomic function through stimulation of the male human vomeronasal organ (VNO) with pregna-4,20-diene-3,6-dione. J.Steroid Biochem. Mol. Biol. 65, 237–242 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Rodriguez, I. & Mombaerts, P. Novel human vomeronasal receptor-like genes reveal species-specific families. Curr. Biol. 12, R409–411 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Rodriguez, I., Greer, C. A., Mok, M. Y. & Mombaerts, P. A putative pheromone receptor gene expressed in human olfactory mucosa. Nature Genet. 26, 18–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Novotny, M., Schwende, F. J., Wiesler, D., Jorgenson, J. W. & Carmack, M. Identification of a testosterone-dependent unique volatile constituent of male mouse urine: 7-exo-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]-3-octene. Experientia 40, 217–219 (1984).

    Article  CAS  PubMed  Google Scholar 

  100. Jemiolo, B., Harvey, S. & Novotny, M. Promotion of the Whitten effect in female mice by synthetic analogs of male urinary constituents. Proc. Natl Acad. Sci. USA 83, 4576–4579 (1986).

    Article  CAS  PubMed  Google Scholar 

  101. Novotny, M., Harvey, S., Jemiolo, B. & Alberts, J. Synthetic pheromones that promote inter-male aggression in mice. Proc. Natl Acad. Sci. USA 82, 2059–2061 (1985).

    Article  CAS  PubMed  Google Scholar 

  102. Novotny, M., Harvey, S. & Jemiolo, B. Chemistry of male dominance in the house mouse, Mus domesticus. Experientia 46, 109–113 (1990).

    Article  CAS  PubMed  Google Scholar 

  103. Novotny, M., Jemiolo, B., Harvey, S., Wiesler, D. & Marchlewska-Koj, A. Adrenal-mediated endogenous metabolites inhibit puberty in female mice. Science 231, 722–725 (1986).

    Article  CAS  PubMed  Google Scholar 

  104. Brouette-Lahlou, I., Godinot, F. & Vernet-Maury, E. The mother rat's vomeronasal organ is involved in detection of dodecyl propionate, the pup's preputial gland pheromone. Physiol. Behav. 66, 427–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Rasmussen, L. E., Lee, T. D., Zhang, A., Roelofs, W. L. & Daves, G. D. Jr. Purification, identification, concentration and bioactivity of (Z)-7-dodecen-1-yl acetate: sex pheromone of the female Asian elephant, Elephas maximus. Chem. Senses 22, 417–437 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Jemiolo, B., Alberts, J., Scohiniski-Wiggins, S., Harvey, S. & Novotny, M. Behavioural and endocrine responses of female mice to synthetic analogues of volatile compounds in male urine. Anim. Behav. 33, 1114–1118 (1985).

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank R. Hellmiss-Peralta for artistic work and illustrations, and C. Lee and A. Gresser for help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Dulac.

Related links

Related links

DATABASES

LocusLink

MUPs

V1Rs

V2Rs

V3Rs

β2m

Trp2

V1RL1–5

Glossary

CONSPECIFICS

Individuals of the same species.

DUFOUR'S GLAND

A pheromone-secreting gland that is situated in the base of the sting apparatus in the worker ant.

PSEUDOGENE

A DNA sequence that is related to a functional gene but cannot be transcribed owing to mutational changes or the lack of regulatory sequences.

LORDOSIS

A posture that is adopted by a female animal in anticipation of sexual intercourse, characterized by arching of the back to facilitate copulation.

CRIBRIFORM PLATE

One of the four components of the ethmoid bone in the base of the cranium. Its name derives from the Latin word for 'sieve', in reference to its spongy appearance.

OPEN READING FRAMES

Stretches of DNA that are flanked by a 5′ initiation codon and a termination codon, which must be in the same reading frame. The presence of an open reading frame is one of the criteria that need to be fulfilled to show that a gene is functional.

TRANSFERRIN

A metal-binding glycoprotein involved in ferric ion uptake into the cell. The pathway followed by transferrin bound to its receptor defines a classical recycling pathway.

CYCLOPHILIN

A protein that binds the immunosuppressant cyclosporin A.

CLATHRIN

A main structural component of coated vesicles that are implicated in protein transport. Clathrin heavy and light chains form a triskelion, the main building element of clathrin coats.

CALCITONIN

A 32 amino-acid polypeptide hormone that regulates calcium and phosphate levels in the blood.

PATCH CLAMP

Technique whereby a small electrode tip is sealed onto a patch of cell membrane, making it possible to record the flow of current through individual ion channels or pores within the patch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dulac, C., Torello, A. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci 4, 551–562 (2003). https://doi.org/10.1038/nrn1140

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing